Embedded Coder®
User's Guide

A

MATLAB&SIMULINK

R2015a <} MathWorks

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Embedded Coder® User's Guide
© COPYRIGHT 2011-2015 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used

or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

Revision History

April 2011 Online only New for Version 6.0 (Release 2011a)

September 2011 Online only Revised for Version 6.1 (Release 2011b)
March 2012 Online only Revised for Version 6.2 (Release 2012a)
September 2012 Online only Revised for Version 6.3 (Release 2012b)
March 2013 Online only Revised for Version 6.4 (Release 2013a)
September 2013 Online only Revised for Version 6.5 (Release 2013b)
March 2014 Online only Revised for Version 6.6 (Release 2014a)
October 2014 Online only Revised for Version 6.7 (Release 2014b)

March 2015 Online only Revised for Version 6.8 (Release 2015a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks

reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

http://www.mathworks.com/support/bugreports/

Contents

Model Architecture and Design

Modeling Environment

1

Set Up Your Modeling Environment 1-2

Application Objectives

2|

Guidelines and Standards

3

What Are the Standards and Guidelines? 3-2
MAAB Guidelines 3-4
MISRA C Guidelines 3-5
IEC 61508 Standard 3-7
Apply Simulink and Embedded Coder to the IEC 61508
Standard 3-7
Check for IEC 61508 Standard Compliance Using the
Model Advisoru .. 3-7
Validate Traceability 3-7

ISO 26262 Standard 3-9
Apply Simulink and Embedded Coder to the ISO 26262

Standard 3-9
Check for ISO 26262 Standard Compliance Using the
Model Advisoriiiiii i, 3-9
Validate Traceability 3-7
EN 50128 Standard 3-11
Apply Simulink and Embedded Coder to the EN 50128
Standard 3-11
Check for EN 50128 Standard Compliance Using the
Model Advisoriiii 3-11
Validate Traceability 3-7
DO-178C Standard 3-13
Apply Simulink and Embedded Coder to the DO-178C
Standard 3-13
Check for Standard Compliance Using the Model
AdVISOr ... 3-13
Validate Traceability 3-7

Patterns for C Code

4

About Modeling Patterns 4-3
Prepare a Model for Code Generation 4-4
Configure a Signal 4-4
Configure Input and Output Ports 4-4
Initialize States 4-5
Set Up Configuration Parameters for Code Generation . 4-5
Set Up an Example Model With a Stateflow Chart 4-6
Set Up an Example Model With a MATLAB Function
Block 4-7
Data Declaration 4-8
CConstruct, 4-8
Declare a Variable for a Block Parameter Using a Data
Object .. oot 4-8
CConstructci i 4-9

Contents

Declare a Variable for a Signal using a Data Object . . .

Data Type Conversion
CConstruct 0.
Modeling Patterns
Modeling Pattern for Data Type Conversion — Simulink

Block
Modeling Pattern for Data Type Conversion — Stateflow

Chart
Modeling Pattern for Data Type Conversion — MATLAB

Function Block
Other Type Conversions in Modeling

Type Qualifiers
Modeling Patterns for Type Qualifiers
Using a Tunable Parameter in the Base Workspace . . .
Use a Data Object of the Const Custom Storage Class

Relational and Logical Operators
Modeling Patterns for Relational and Logical Operators
Modeling Pattern for Relational or Logical Operators —

Simulink Blocks
Modeling Pattern for Relational and Logical Operators —
Stateflow Chart
Modeling Pattern for Relational and Logical Operators —
MATLAB Function Block

Bitwise Operations
Simulink Bitwise-Operator Block
Stateflow Chart
MATLAB Function Block

If-Else
CConstruct
Modeling Patterns
Modeling Pattern for If-Else: Switch block
Modeling Pattern for If-Else: Stateflow Chart
Modeling Pattern for If-Else: MATLAB Function Block

Switch
CConstruct
Modeling Patterns0.......
Modeling Pattern for Switch: Switch Case block

4-9

4-11
4-11
4-11

4-11

4-12

4-12
4-13

4-14
4-14
4-14
4-15

4-16
4-16

4-16

4-17

4-18

4-20
4-20
4-21
4-22

4-23
4-23
4-23
4-24
4-26
4-28

4-29
4-29
4-29
4-30

vii

viii

Contents

Modeling Pattern for Switch: MATLAB Function block
Convert If-Elseif-Else to Switch statement

For Loop
CConstruct 0.
Modeling Patterns:
Modeling Pattern for For Loop: For-Iterator Subsystem

block
Modeling Pattern for For Loop: Stateflow Chart
Modeling Pattern for For Loop: MATLAB Function

block

While Loop e
CConstruct i
Modeling Patterns
Modeling Pattern for While Loop: While Iterator

Subsystem block
Modeling Pattern for While Loop: Stateflow Chart . . .
Modeling Pattern for While Loop: MATLAB Function

Block

DoWhile Loop
CConstruct
Modeling Patterns
Modeling Pattern for Do While Loop: While Iterator

Subsystem block
Modeling Pattern for Do While Loop: Stateflow Chart .

Function Call
CConstruct i
Procedure
Results

Function Prototyping
CConstruct0 .
Modeling Patterns
Function Call Using Graphical Functions
Control Function Prototype of the model_step Function

External C Functions
CConstruct
Modeling Patterns
Use the Legacy Code Tool to Create S-functions

4-33
4-34

4-35
4-35
4-35

4-36
4-38

4-40

4-41
4-41
4-41

4-42
4-45

4-48

4-51
4-51
4-51

4-52
4-55

4-58
4-58
4-58
4-59

4-60
4-60
4-60
4-60
4-62

4-63
4-63
4-63
4-63

Use a Stateflow Chart to Make Calls to C Functions . .
Using a MATLAB Function Block to Make Calls to C
Functions

Macro Definitions (#define)
CConstruct
Modeling Patterns
Use a 'Define' Custom Storage Class
Use a Custom Header File

Conditional Inclusions (#if / #endif)

Typedef
CConstructo i
Procedure
Results

Structures for Parameters
CConstructt i
Procedure
Results

Structures for Signals
CConstruct0u ..
Modeling Patterns
Structure for Signals Using a 'Struct' Custom Storage

Class « vt
Structure for Signals Using a Simulink Non-Virtual Bus
Object .. oot

Nested Structures
CConstructci i
Procedure
Results

Bitfields
CConstruct i
Procedure
Results

Arrays for Parameters
C Construct
Procedure

4-65

4-66

4-69
4-69
4-69
4-69
4-70

4-72

4-73
4-73
4-73
4-74

4-75
4-75
4-75
4-76

4-717
4-77
4-717

4-717

4-78

4-80
4-80
4-80
4-82

4-84
4-84
4-84
4-85

4-86

4-86
4-86

ix

Results 4-87

Arrays for Signals 4-88
CConstruct i 4-88
Procedure 4-88
Results 4-88

Pointers for Signals 4-90
CConstruct i 4-90
Procedure 4-90
Results 4-90

Pointers Using Simulink Data Objects 4-91
CConstruct 4-91
Procedure 4-91
Results 4-91

Variant Systems

About Variant Systems 5-2
Why Generate Code for Variant Systems? 5-3

Generate Preprocessor Conditionals for Variant

Systems 5-4
Define Variant Controls 5-4
Configure Model for Generating Preprocessor Conditional

Directives e 5-5
Build Your Model 5-6
Review Code Variants in Code Generation Report 5-7
Generate Code for Model Variants 5-8
Generate Code for Variant Subsystems 5-10
Open Example Model 5-10
Define Variant Controls 5-10
Configure Model for Generating Preprocessor Conditional
Directives 5-12

Contents

View Generated Code 5-13
Restrictions on Variant Subsystem Code Generation . 5-15

Special Considerations for Generating Preprocessor
Conditionals 5-17

Limitations on Generating Code for Variants 5-18

Generated Code Components Not Compiled
Conditionally 5-19

Scheduling Considerations

6|

Use Discrete and Continuous Time 6-2
Support for Discrete and Continuous Time Blocks 6-2
Support for Continuous Solvers 6-2
Support for Stop Time 6-2

Optimize Multirate Multitasking Operation on RTOS

Targets e 6-4
OVEIVIEW . . vttt et it et et e e e 6-4
Use rtmStepTask 6-5
Scheduling Code for Multirate Multitasking on

VxWorks e 6-5
Suppress Redundant Scheduling Calls 6-6

Data, Function, and File Definition

Data Definition and Declaration Management

7]

Overview of Data Objects 7-2

xi

Create Simulink and mpt Data Objects 7-3

Ways to Create Data Objects 7-3
Create Data Objects with Data Object Wizard 7-4
Create mpt Data Objects with Data Object Wizard . . . 7-10
Simulink and mpt Data Object Comparison 7-10
Create Data Objects from External Data Source 7-15
Create Data Objects for a Model 7-18
Use Data Object Wizard 7-18
Inspect Data Objects 7-22
Generate and Inspect Code 7-23
Define Global Data Objects in Separate File 7-25
Define Global Data Objects in Separate Files 7-27
Save and Load Data Objects 7-28
Data Types

What Are User-Defined Data Types? 8-2
Control File Placement of User-Defined Types 8-4
Data Scope and Header File 8-4
Macro Guardst 8-5
Create and Apply User-Defined Data Types 8-7
Create Data Type Alias in Generated Code 8-10
Export Type Definition 8-10
Import Type Definition 8-11
Create a Fixed-Point Data Type 8-14

Use single Data Type as Default for Underspecified
Types . .. e 8-16

Specify Persistence Level for Signals and Parameters 8-19

xii Contents

Buses 8-22

About Buses and Code Generation 8-22
Set Bus Diagnostics 8-23
Optimize Virtual and Nonvirtual Buses 8-23
Use Single-Rate and Multi-Rate Buses 8-26
Set Bus Signal Initial Values 8-31
Use Buses with Atomic Subsystems 8-35
Rename Built-In Data Types 8-40
Register mpt User Object Types 8-42
Introduction 8-42
Register mpt User Object Types Using
sl_customization.m 8-42
mpt User Object Type Customization Using
sl_customization.m 8-44
Data Type Replacement 8-46
Replace Built-In Data Types 8-46
Programmatically Replace Built-In Data Types 8-50
Replace Names of Built-In Types in Code 8-52
Explore Example Model 8-52
Replace Data Type Names 8-53
Replace Data Type Limit Identifiers 8-54
Generate Code with Replacement Names 8-55
Data Type Replacement Limitations 8-56
Specify Boolean and Data Type Limit Identifiers 8-58
Data Type Limit Identifiers 8-58
Boolean Identifiers 8-59
Boolean and Data Type Limit Identifier Header Files . 8-59

Module Packaging Tool (MPT) Data Objects

9

MPT Data Object Properties 9-2

xiii

xiv

Custom Storage Classes

10|

Introduction to Custom Storage Classes
Custom Storage Class Memory Sections
Custom Storage Classes and Data Class Packages . . .
Custom Storage Class Examples

Resources for Defining Custom Storage Classes
Simulink Package Custom Storage Classes

Design Custom Storage Classes and Memory

Sections
Create Packages for Custom Storage Class Definitions
Use Custom Storage Class Designer
Edit Custom Storage Class Properties
Use Custom Storage Class References
Protect Custom Storage Class Definitions
Create and Edit Memory Section Definitions
Use Memory Section References

Apply Custom Storage Classes
About Applying Custom Storage Classes
Apply Custom Storage Classes to Parameters
Apply Custom Storage Classes to Signals
Custom Storage Classes Using Signal Objects
Custom Storage Classes Using Embedded Signal

Objectsot
Specify Custom Storage Classes Using GUI
Specify Custom Storages Classes Using API

Control Data Code by Creating Custom Storage Class
Explore Example Model
Create Data Class Package
Create Custom Storage Class
Apply Custom Storage Class
Generate Code

Generate Code with Custom Storage Classes
Grouped Custom Storage Classes

Contents

10-2
10-3
10-3
10-3

10-5

10-6

10-9
10-9
10-9
10-15
10-20
10-24
10-25
10-28

10-31
10-31
10-32
10-33
10-34

10-35
10-42
10-44

10-48
10-48
10-48
10-49
10-50
10-51

10-53
10-56

Define Advanced Custom Storage Classes Types
Introduction
Create Your Own Parameter and Signal Classes
Create Custom Attributes Classes for Custom Storage

Classes . ..ot
Write TLC Code for Custom Storage Classes
Register Custom Storage Class Definitions

GetSet Custom Storage Class
About GetSet Custom Storage Class
GetSet Custom Storage Class Properties
Apply the GetSet Custom Storage
GetSet Custom Storage Class Restrictions
Increase Code Efficiency With GetSet CSC

Custom Storage Class Implementation

Custom Storage Class Limitations

10-57
10-57
10-57

10-57
10-58
10-58

10-61
10-61
10-61
10-62
10-62
10-62

10-65

10-66

User Package Registration

11

About Data Object Wizard and User Packages

Register User Packages Using sl_customization.m . ..

User Package Customization Using

sl_customization.m

Function and Class Interfaces

12

Function Prototype Control
About Function Prototype Control

Configure Function Prototypes Using Graphical
Interfaces

Xv

xvi

Contents

Sample Procedure for Configuring Function

Prototypes

Configure Function Prototypes Programmatically . . .
Sample Script for Configuring Function Prototypes . .
Verify Generated Code for Customized Functions . . .
Function Prototype Control Limitations

C++ Class Interface Control

About C++ Class Interface Control
Simple Use of C++ Class Control .

Customize C++ Class Interfaces Using Graphical

Interfaces

Customize C++ Class Interfaces Programmatically . .
Configure Step Method for Model Class
Specify Custom Storage Class for C++ Class Code

Generation

Model Class Copy Constructor and Assignment

Operator

C++ Class Interface Control Limitations

Atomic Subsystem Code

About Nonvirtual Subsystem Code Generation

Configure Subsystem for Generating Modular Function

Code

Modular Function Code for Nonvirtual Subsystems . .
Nonvirtual Subsystem Modular Function Code

Limitations

12-13
12-18
12-22
12-22
12-23

12-25
12-25
12-26
12-32
12-47
12-49
12-50

12-51
12-52

12-55
12-55

12-56
12-61

12-66

Memory Sections

13

About Memory Sections

What Are Memory Sections?

Requirements for Defining Memory Sections

Define Memory Sections
Edit Memory Section Properties

Specify the Memory Section Name

13-2
13-2

13-3
13-5

13-5
13-6

Specify a Qualifier for Custom Storage Class Data

Code Generation

14

Definitions 13-7
Specify Comment and Pragma Text 13-7
Surround Individual Definitions with Pragmas 13-7
Include Identifier Names in Pragmas 13-8

Configure Memory Sections 13-9

Declare Constant Data as Volatile 13-10

Apply Memory Sections 13-13
Assign Memory Sections to Custom Storage Classes . 13-13
Apply Memory Sections to Model-Level Functions and

Internal Data 13-15

Apply Memory Sections to Atomic Subsystems 13-17

Generated Code with Memory Sections 13-21
Sample ERT-Based Model with Subsystem 13-21
Model-Level Data Structures 13-23
Model-Level Functions 13-23
Subsystem Function 13-24
Configuration
Application Objectives 14-2
High-Level Code Generation Objectives 14-3
Determine Model Configuration for Specified
Objectives 14-5
Configure Model for Code Generation Objectives Using
Code Generation Advisor 14-6

xvil

Configure Model for Code Generation Objectives Using
Configuration Parameters Dialog Box 14-10

Configure Code Generation Objectives

Programmatically 14-14
Check Objectives in Referenced Models 14-15
Checking Model and Configuration with Model

Advisor 14-16
Check Model During Code Generation 14-17
Create Custom Objectives 14-18

Specify Parameters in Custom Objectives 14-18
Specify Checks in Custom Objectives 14-19
Determine Checks and Parameters in Existing
Objectiveso v i e 14-19
How to Create Custom Objectives 14-21
Code Generation Targets 14-24
About Target Selection 14-24
Select an ERT Target 14-25
Customize an ERT Target 14-26
Configure Support for Numeric Data 14-26
Configure Support for Time Values 14-26
Support for Non-inlined S-Functions 14-27
Configure Model Function Generation and Argument
Passing 14-27
Set Up Support for Code Reuse 14-29
Configure a Code Replacement Library 14-31
Configuration Variations 14-32
Wizard 14-33
Configure and Optimize Model with Configuration Wizard
Blocks 14-33
Add a Configuration Wizard Block 14-34
Use Configuration Wizard Blocks 14-36
Create a Custom Configuration Wizard Block 14-36

xviii Contents

Code Appearance

15

Add Custom Comments to Generated Code 15-3

Add Custom Comments for Signal or Parameter

Identifiers 15-5
Add Global Comments 15-7
Use a Simulink DocBlock to Add a Comment 15-7

Use a Simulink Annotation to Add a Comment 15-10

Use a Stateflow Note to Add a Comment 15-10

Use Sorted Notes to Add Comments 15-11
Specify Comment Style 15-13
Customize Generated Identifier Naming Rules 15-14
Apply Naming Rules to Identifiers Globally 15-14
Apply Naming Rules to Simulink Data Objects 15-15
Identifier Format Control 15-19
Control Name Mangling in Generated Identifiers . . . 15-22
Minimize Name Mangling 15-22

Avoid Identifier Name Collisions with Referenced

Models e 15-24
Use Model Advisor to Detect Identifier Names Changed
During Code Generation 15-24
Maintain Traceability for Generated Identifiers 15-26
Exceptions to Identifier Formatting Conventions . . . 15-27
Identifier Format Control Parameters Limitations . . 15-28
Control Code Style 15-30
Control Parentheses in Generated Code 15-31
Control Indentation Style in Generated Code 15-31
Control Cast Expressions in Generated Code 15-33

xix

XX

Contents

Customize Code Organization and Format
Custom File Processing Components
Custom File Processing Configuration

Specify Templates For Code Generation

Code Generation Template (CGT) Files
Default CGT file
CGT File Structure v....
Built-In Tokens and Sections
Subsections

Custom File Processing (CFP) Templates
Custom File Processing (CFP) Template Structure . .

Change the Organization of a Generated File

Generate Source and Header Files with a Custom File
Processing (CFP) Template
Generate Code with a CFP Template

Analysis of the Example CFP Template and Generated
Code
Generate a Custom Section
Custom Tokens

Comparison of a Template and Its Generated File . .
Template and Generated File

Code Template API Summary

Generate Custom File and Function Banners
Create a Custom File and Function Banner Template

15-38
15-38
15-39

15-40

15-41
15-41
15-41
15-42
15-43

15-45
15-45

15-47
15-50
15-50
15-52
15-55
15-57

15-58
15-59

15-62

15-65
15-67

Customize a Code Generation Template (CGT) File for File

and Function Banner Generation

Template Symbols and Rules
Introduction,
Template Symbol Groups
Template Symbols
Rules for Modifying or Creating a Template

Code Annotation for Justifying Polyspace Checks . .

15-68

15-74
15-74
15-74
15-77
15-81

15-82

Manage Placement of Data Definitions and

Declarations 15-84
Overview of Data Placement 15-84
Priority and Usage 15-85
Ownership Settings 15-90
Memory Section Settings 15-91
Data Placement Rules 15-91
Settings for a Data Object 15-91
Data Placement Rules and Results 15-99

Specify Delimiter for #Includes 15-110
Enhance Readability of Code for Flow Charts 15-111
Appearance of Generated Code for Flow Charts 15-111
Convert If-Elseif-Else Code to Switch-Case
Statements 15-116
Example of Converting Code to Switch-Case
Statements 15-118

Source Code Generation

16

Generating Code Using Embedded Coder® 16-2
Generate Code Modules 16-10
Introduction 16-10
Generated Code Modules 16-10
User-Written Code Modules 16-13
Customize Generated Code Modules 16-13
Generate Reentrant Code from Top-Level Models . .. 16-16

Report Generation

17

Reports for Code Generation 17-2

xx1

xxii

Contents

HTML Code Generation Report Extensions 17-3
HTML Code Generation Report Location 17-5

HTML Code Generation Report for Referenced

Models e 17-6
Search Code Generation Report 17-7
Generate a Code Generation Report 17-8

Generate Code Generation Report After Build

Process 17-9
Open Code Generation Report 17-11
Limitation 17-11

Generate Code Generation Report Programmatically 17-13

View Code Generation Report in Model Explorer . . . 17-14
Package and Share the Code Generation Report 17-16
Package the Code Generation Report 17-16
View the Code Generation Report 17-17
Traceability in Code Generation Report 17-18

View Code Metrics and Definitions in the Generated

Code 17-20
Web View of Model in Code Generation Report 17-21
About Model Web View 17-21
Generate HTML Code Generation Report with Model Web
View .o 17-21
Model Web View Limitations 17-24
Analyze the Generated Code Interface 17-25
Code Interface Report Overview 17-25
Generating a Code Interface Report 17-26
Navigating Code Interface Report Subsections 17-28
Interpreting the Entry Point Functions Subsection . . 17-29
Interpreting the Inports and Outports Subsections . . 17-32
Interpreting the Interface Parameters Subsection . . . 17-34

Interpreting the Data Stores Subsection
Code Interface Report Limitations

Static Code Metrics
About Static Code Metrics
Static Code Metrics Analysis

Generate Static Code Metrics Report for Simulink
Model

Generate a Static Code Metrics Report for MATLAB
Code
Generate a Static Code Metrics Report Using the
MATLAB Coder Appo o it
Enable a Static Code Metrics Report at the Command
Line

Analyze Code Replacements in the Generated Code .

Document Generated Code with Simulink Report
Generator
Generate Code for the Model
Open the Report Generator
Set Report Name, Location, and Format
Include Models and Subsystems in a Report
Customize the Report
Generate the Report

17-35
17-36

17-38
17-38
17-38

17-41

17-47

17-47

17-50

17-52

17-54
17-55
17-55
17-57
17-58
17-59
17-60

Code Replacement for Simulink Models

18]

What Is Code Replacement?

Code You Can Replace From Simulink Models
About Code You Can Replace

Math Functions — Simulink Support

Math Functions — Stateflow Support
Memory Functions
Nonfinite Functions
Mutex and Semaphore Functions

18-2

18-4
18-4
18-4
18-10
18-15
18-16
18-17

xx1iii

xxiv

Lookup Table Functions 18-18

Operatorst e 18-18
Code Replacement Libraries 18-23
Code Replacement Terminology 18-25
Code Replacement Limitations 18-28
Replace Code Generated from Simulink Models 18-29
Choose a Code Replacement Library 18-32

About Choosing a Code Replacement Library 18-32

Explore Available Code Replacement Libraries 18-32

Explore Code Replacement Library Contents 18-32

Deployment
Desktops
Shared Object Libraries 19-2

About Host-Based Shared Libraries 19-2

Generate Shared Library Version of Model Code 19-3

Create Application Code to Use Shared Library 19-3

Host-Based Shared Library Limitations 19-7

Real-Time and Embedded Systems

20|

Standalone Programs (No Operating System) 20-2
About Standalone Program Execution 20-2
Generate a Standalone Program 20-2
Standalone Program Components 20-3

Contents

Main Program 20-3

rt_OneStep and Scheduling Considerations 20-4
Static Main Program Module 20-10
Rate Grouping Compliance and Compatibility Issues . 20-17
Operating System Integration 20-21
Processor Support Packages 20-22

Export Code Generated from Model to External

Application
Export Function-Call Subsystems 21-2
Exporting Function-Call Subsystems 21-2
Requirements for Exporting Function-Call
Subsystems 21-3
Techniques for Exporting Function-Call Subsystems . . 21-5
Optimize Exported Function-Call Subsystems 21-7
Export Functions That Depend on Elapsed Time 21-7
Function-Call Subsystem Export 21-8
Function-Call Subsystems Export Limitations 21-11
Control Generation of Function Prototypes 21-12
C++ Class Interface Control 21-14

Code Replacement Customization for Simulink

Models

What Is Code Replacement Customization? 22-3
Code You Can Replace From Simulink Models 22-4
About Code You Can Replace 22-4
Math Functions — Simulink Support 22-4

XXV

xxvi

Contents

Math Functions — Stateflow Support 22-10

Memory Functions 22-15
Nonfinite Functions 22-16
Mutex and Semaphore Functions 22-17
Operatorscv it e 22-18
Code Replacement Match and Replacement Process 22-22
Code Replacement Customization Limitations 22-24
Develop a Code Replacement Library 22-26
Quick Start Library Development 22-27
Identify Code Replacement Requirements 22-37
Mapping Information Requirements 22-37
Build Information Requirements 22-38
Registration Information Requirements 22-38

Prepare for Code Replacement Library Development 22-40

Define Code Replacement Mappings 22-42
Defining Code Replacement Mappings 22-42
Define Mappings Interactively with the Code Replacement

Tool ... 22-43
Define Mappings Programmatically 22-46

Specify Build Information for Replacement Code . . . 22-59
Build Information 22-59
Specify Build Information Interactively with the Code

Replacement Tool 22-60
Specify Build Information Programmatically 22-62

Register Code Replacement Mappings 22-68
Code Replacement Library Registration 22-68
Create Registration File Interactively with the Code

Replacement Tool 22-69
Create Registration File Programmatically 22-71
Register a Code Replacement Library 22-73
Registration Files That Define Multiple Code Replacement

Libraries 22-73
Registration Files That Define Code Replacement Library

Hierarchies, 22-74

Troubleshoot Code Replacement Library
Registration

Code Replacement Hits and Misses

Verify Code Replacements
Code Replacement Table Validation
Validate Table Definition File
Review Library Content
Review Table Content
Review Code Replacements

Troubleshoot Code Replacement Misses
Miss Reason Messagesc.couun..
Analyze and Correct Code Replacement Misses

Deploy Code Replacement Library
Math Function Code Replacement
Memory Function Code Replacement
Nonfinite Function Code Replacement
Semaphore and Mutex Function Replacement
Algorithm-Based Code Replacement

Lookup Table Function Code Replacement
Lookup Table Algorithm Replacement
Lookup Table Function Signatures
Interactive Mapping with Code Replacement Tool . .
Programmatic Specification
Sample Code Replacement Definition for the lookup2D

Function

Data Alignment for Code Replacement
Code Replacement Data Alignment
Specify Data Alignment Requirements for Function

Arguments
Provide Data Alignment Specifications for Compilers
Basic Example of Code Replacement Data Alignment

22-76
22-77
22-78
22-78
22-78
22-79
22-80
22-82
22-87
22-87
22-88
22-93
22-94
22-96
22-99
22-102
22-109
22-112
22-112
22-112
22-117
22-122
22-129

22-132
22-132

22-132

22-134
22-138

xxvii

xxviii

Contents

Replace MATLAB Functions with Custom Code Using
coder.replace

Replace coder.ceval Calls to External Functions . .
External Function Calls and coder.ceval
Example Files
Interactive External Function Call Replacement

Specification with Code Replacement Tool
Programmatic External Function Call Replacement
Specification

Replace MATLAB Functions Specified in MATLAB
Function Blocks

Reserved Identifiers and Code Replacement

Customize Matching and Replacement Process for
Functions
Customize Code Matching and Replacement for
Functions,

Scalar Operator Code Replacement

Addition and Subtraction Operator Code
Replacement
Algorithm Options
Interactive Specification with Code Replacement Tool
Programmatic Specification
Algorithm Classification
Limitations

Small Matrix Operation to Processor Code
Replacement

Matrix Multiplication Operation to MathWorks BLAS
Code Replacement

Matrix Multiplication Operation to ANSI/ISO C BLAS
Code Replacement

Remap Operator Output to Function Input

22-142
22-144
22-144
22-144
22-146

22-147

22-150

22-154

22-156

22-157

22-161

22-164
22-164
22-165
22-165
22-165
22-167

22-169

22-174

22-182

22-189

Customize Matching and Replacement Process for
Operatorsu ..
Create the Entry
Test the Entry

Fixed-Point Operator Code Replacement
Fixed-Point Operator Entries
Fixed-Point Numbers and Arithmetic
Addition
Subtraction
Multiplication
Division
Data Type Conversion (Cast)
Shift ...

Binary-Point-Only Scaling Code Replacement
Slope Bias Scaling Code Replacement

Net Slope Scaling Code Replacement
Multiplication and Division with Saturation
Multiplication and Division with Rounding Mode and

Additional Implementation Arguments

Equal Slope and Zero Net Bias Code Replacement .

Data Type Conversions (Casts) and Operator Code
Replacement
Casts from int32 To intl6
Casts Using Net Slope

Shift Left Operations and Code Replacement
Shift Lefts for intl6é Data
Shift Lefts Using Net Slope

22-192
22-192
22-197

22-199
22-199
22-203
22-203
22-204
22-204
22-205
22-206
22-206

22-209

22-213

22-217
22-217

22-220
22-225
22-229
22-229
22-230
22-234

22-234
22-235

Code Replacement Customization for MATLAB

Code

23|

What Is Code Replacement Customization?

23-3

xxix

XXX

Contents

Code You Can Replace from MATLAB Code 23-4

About Code You Can Replace 23-4
Math Functions 23-4
Memory Functions 23-9
Operators it 23-10
Code Replacement Match and Replacement Process 23-14
Code Replacement Customization Limitations 23-15
Develop a Code Replacement Library 23-16
Quick Start Library Development 23-17
Identify Code Replacement Requirements 23-27
Mapping Information Requirements 23-37
Build Information Requirements 23-38
Registration Information Requirements 23-38

Prepare for Code Replacement Library Development 23-30

Define Code Replacement Mappings 23-31
Defining Code Replacement Mappings 23-42
Define Mappings Interactively with the Code Replacement

Tool e 23-43
Define Mappings Programmatically 23-46

Specify Build Information for Replacement Code . . . 23-48
Build Information 23-59
Specify Build Information Interactively with the Code

Replacement Tool 23-60
Specify Build Information Programmatically 23-62

Register Code Replacement Mappings 23-57
Code Replacement Library Registration 23-57
Create Registration File Interactively with the Code

Replacement Tool 23-58
Create Registration File Programmatically 23-60
Register a Code Replacement Library 23-62
Registration Files That Define Multiple Code Replacement

Libraries 23-62
Registration Files That Define Code Replacement Library

Hierarchies 23-63

Troubleshoot Code Replacement Library
Registration

Code Replacement Hits and Misses

Verify Code Replacements
Code Replacement Table Validation
Validate a Table Definition File
Review Library Content
Review Table Content
Review Code Replacements

Troubleshoot Code Replacement Misses
Miss Reason Messagesc.couun..
Analyze and Correct Code Replacement Misses

Deploy Code Replacement Library
Math Function Code Replacement
Memory Function Code Replacement

Specify In-Place Code Replacement
In-Place Code Replacement
Argument Specification Requirements
Interactive Argument Replacement Specification with

Code Replacement Tool
Programmatic Argument Replacement Specification .

Replace MATLAB Functions with Custom Code Using
coder.replace

Replace coder.ceval Calls to External Functions
External Function Calls and coder.ceval
Example Files
Interactive External Function Call Replacement

Specification with Code Replacement Tool
Programmatic External Function Call Replacement
Specification

Reserved Identifiers and Code Replacement

23-65
23-66
23-67
23-67
23-67
23-68
23-69
23-71
23-76
23-76
23-77
23-82
23-83
23-85
23-87
23-87
23-87
23-87
23-91
23-94
23-96
23-96
23-96
23-98

23-99

xxx1

xxxii

Contents

Customize Matching and Replacement Process for
Functions

Scalar Operator Code Replacement

Addition and Subtraction Operator Code
Replacement
Algorithm Options
Interactive Specification with Code Replacement Tool
Programmatic Specification
Algorithm Classification
Limitations

Small Matrix Operation to Processor Code
Replacement

Matrix Multiplication Operation to MathWorks BLAS
Code Replacement

Matrix Multiplication Operation to ANSI/ISO C BLAS
Code Replacement

Remap Operator Output to Function Input

Customize Matching and Replacement Process for
Operators

Fixed-Point Operator Code Replacement
Fixed-Point Operator Entries
Fixed-Point Numbers and Arithmetic
Addition
Subtraction
Multiplication,
Division
Data Type Conversion (Cast)
Shift

Binary-Point-Only Scaling Code Replacement
Slope Bias Scaling Code Replacement

Net Slope Scaling Code Replacement
Multiplication and Division with Saturation

23-104

23-106

23-108
23-108
23-109
23-109
23-109
23-111

23-113

23-117

23-124

23-131

23-134

23-140
23-140
23-144
23-144
23-145
23-145
23-146
23-147
23-147

23-150

23-154

23-158
23-158

Multiplication and Division with Rounding Mode and

Additional Implementation Arguments 23-161
Equal Slope and Zero Net Bias Code Replacement . 23-165
Data Type Conversions (Casts) and Operator Code
Replacement 23-169
Shift Left Operations and Code Replacement 23-174
Performance
Configuration
Configure Code Optimizations 24-2
Specify Global Variable Localization 24-5
Set Hardware Implementation Parameters 24-6
Use External Mode with the ERT Target 24-7
Memory Management 24-7
Generation of Pure Integer Code with External Mode . 24-8

Code Execution Profiling

25|

Execution Profiling for Generated Code 25-2
Code Execution Profiling for SIL and PIL 25-5
Configure Code Execution Profiling for SIL and PIL . 25-6

xxxiii

XxXxiv

Contents

Execution Profiling for Atomic Subsystems and Model

Reference Hierarchies 25-8
View and Compare Code Execution Times 25-10
Analyze Code Execution Data 25-16
Tips and Limitations 25-18

Triggered Model Block 25-18
Outliers in Execution Time Profiles 25-18
Hardware-Specific Timer 25-18
Task Context Switching Due to Preemption 25-18
Data Type Replacement Support 25-19

Code Execution Profiling for MATLAB Coder

26|

Execution Time Profiling for SIL and PIL 26-2
Generate Execution Time Profile 26-3
View Execution Time Profile 26-4
Analyze Execution Time Data 26-7

Extract Execution Time Data for Kalman Estimator
Code 26-7

Data Copy Reduction

27

Optimize Global Variable Usage 27-2
Minimize Global Data Access 27-3
Use Global to Hold Temporary Results 27-8
Reuse Block Outputs in the Generated Code 27-12
Reuse Global Block Outputs 27-12

Virtualized Output Ports Optimization 27-16

Control Signal Storage 27-18
Signal Reuse for Root-Level Model Inputs and
Outputs e 27-19
Reuse Root-Level I/O Signals 27-19
Buffer Reuse for Model Block Boundary and Unit
Delay e 27-24
Signal Reuse for Model Block Boundary 27-24
Buffer Reuse for Unit Delay Block 27-25

Execution Speed

28|

Remove Initialization Code 28-2
Eliminate Zero Initialization Code for Internal Data . 28-3
Generate Pure Integer Code If Possible 28-6
Disable MAT-File Logging 28-7
Simplify Multiply Operations In Array Indexing 28-8

Generated Code Results 28-8
Replace boolean with Specific Integer Data Type . .. 28-12

Memory Usage

29|

Optimize Generated Code Using Minimum and

Maximum Values 29-2
Configure Your Model 29-2
Optimize Generated Code Using Specified Minimum and

Maximum Values, 29-3

XXXV

XxXxVvi

Verification

Contents

Limitations
Flat Structures for Reusable Subsystem Parameters .

Reduce Global Variables in Nonreusable Subsystem
Functions
Generate void-void Function
Generate Function with Arguments

Optimize Generated Code By Packing Boolean Data Into

Bitfields

Optimize Generated Code By Passing Reusable
Subsystem Outputs as Individual Arguments

29-7

29-9

29-13
29-13
29-14

29-16

29-19

Code Tracing

30

What Is Code Tracing?
Traceable Objects,
Basic Workflow for Using Traceability

Traceability Tags
Trace Code to Model Objects Using Hyperlinks
Trace Model Objects to Generated Code

Trace Stateflow Objects in Generated Code
Bidirectional Traceability for States and Transitions .
Bidirectional Traceability for State Transition Tables
Bidirectional Traceability for Truth Table Blocks . . .
Bidirectional Traceability for Graphical Functions . . .
Code-to-Model Traceability for Events
Model-to-Code Traceability for Junctions

30-2
30-2
30-3

30-5

30-6

30-8

30-11
30-11
30-13
30-16
30-18
30-19
30-20

Format of Traceability Comments for Stateflow

Objects ... i e 30-21
Reload Existing Traceability Information 30-25
Customize Traceability Reports 30-26
Generate a Traceability Matrix 30-28
Traceability Limitations 30-29

Component Verification

31

Component Verification in the Target Environment . . 31-2
Goals of Component Verification 31-3
Maximizing Code Portability and Configurability . .. 31-4

Simplifying Code Integration and Maximizing Code
Efficiency 31-5

Running Component Tests 31-6

Component Verification With a Real-Time Target

Environment
About Real-Time Software Component Verification . . 32-2
Real-Time Software Component Testing 32-4

xxxvii

xxxviii

Contents

Numerical Equivalence Checking

33

About SIL and PIL Simulations 33-2
What are SIL and PIL Simulations? 33-2
Why Use SILand PIL 33-3
How SIL and PIL Simulations Work 33-4
Comparison of SIL and PIL Simulation 33-5

Choose a SIL or PIL Approach 33-7
Verify Top Model Code 33-8
Verify Referenced Model Code 33-9
Verify Subsystem Code 33-9

Configure a SIL or PIL Simulation 33-10
Top-Model SIL or PIL Simulation 33-10
Model Block SIL or PIL Simulation 33-12
Usea SILor PILBlock 33-13
Check the SIL or PIL Configuration 33-14

Top Model Simulation Using SILor PIL 33-17

Referenced Model Simulation Using SIL or PIL 33-18

Verify Internal Signals of a Component 33-20

Simulation Mode Override Behavior in Model Reference

Hierarchy 33-21
Code Interfaces for SILand PIL. 33-23
Code Interface for Top-Model SIL or PIL. 33-23
Code Interface for Model Block SIL or PIL 33-24
Configure Hardware Implementation Settings for
SIL .. 33-25
Choose Hardware Implementation Approach 33-25
Portable Word Sizes 33-25
Test Hardware 33-28
Production hardware 33-29
Debug Code During SIL Simulations 33-30

Prevent Code Changes in Multiple SIL and PIL

Simulations 33-33
PIL Customization for Target Environment 33-35
Target Connectivity Configurations for PIL 33-35
Target Connectivity API Components 33-35
Communications rtiostream API 33-36
Create PIL Target Connectivity Configuration 33-38
Create a Connectivity API Implementation 33-38
Test an rtiostream Driver 33-39
Synchronize Host and Target 33-41
Specify Hardware Timer 33-42
Register a Connectivity API Implementation 33-44
Target Connectivity API Examples 33-44
View Test Harness in Code Generation Report 33-46
SIL and PIL Simulation Support and Limitations . . . 33-48
About SIL and PIL Simulation Support and
Limitations 33-49
Code Source Support 33-50
Block Support 33-52
Configuration Parameters Support 33-55
/O Support 33-61
Hardware Implementation Support 33-71
Other Feature Support 33-73
Programmatic Code Generation Verification 33-74
Code Generation Verification API Overview 33-74
Verify Numerical Equivalence with CGV 33-74
Verify Numerical Equivalence Between Two Modes of
Execution of a Model 33-75
Plot Output Signals 33-80

XxXXix

x1

Contents

Software-in-the-Loop Execution for MATLAB

Coder
Code Verification Through Software-in-the-Loop and
Processor-in-the-Loop Execution 34-2
Software-in-the-Loop Execution Using the MATLAB
Coder App o 34-4
Software-in-the-Loop Execution From Command
Line 34-6
SIL Execution of Code Generated for a Kalman
Estimator 34-6
Code Debugging During SIL Execution 34-9
PIL Customization for Target Environment 34-12
Target Connectivity Configurations for PIL 34-12
Target Connectivity PIL API Components 34-12
Communications rtiostream API 34-13
Create PIL Target Connectivity Configuration 34-15
Create a Connectivity API Implementation 34-15
Test an rtiostream Driver 34-16
Synchronize Host and Target 34-41
Specify Hardware Timer 34-19
Register a Connectivity API Implementation 34-44
Processor-in-the-Loop Execution Using the MATLAB
Coder Appot 34-22
Processor-in-the-Loop Execution From Command
Line 34-25
PIL Execution of Code Generated for a Kalman
Estimator 34-25
SIL/PIL Execution Support and Limitations 34-30

Code Coverage

35

Code Coverage in SIL and PIL Simulations
Configure SIL and PIL Code Coverage

View Code Coverage Information at the End of SIL or
PIL Simulations

Configure Code Coverage Programmatically

Code Coverage Summary and Annotations
LDRA Testbed Coverage
BullseyeCoverage Information

Code Coverage Tool Support

Code Coverage for PIL.
PIL Support for LDRA Testbed
PIL Support for BullseyeCoverage

Tips and Limitations
Compiler and Platform Support for SIL
Right-Click Subsystem Build Unsupported for Code

Coverageuiii e
BullseyeCoverage License Wait
Current Working Folder Cannot be UNC Path
Characters in matlabroot and File Path
Header Files with Identical Names
Code Coverage for Source Files in Shared Utility

Folders
BullseyeCoverage Behavior with Inline Macros
SIL and PIL Simulations with Open LDRA Testbed .
PIL Zero Coverage LDRA Testbed Annotations
Modify Legacy Code
IDE Link Does Not Support LDRA Testbed

35-2

35-3

35-5

35-8

35-10
35-10
35-12

35-15

35-16
35-16
35-17

35-18
35-18

35-18
35-18
35-18
35-18
35-19

35-19
35-19
35-20
35-20
35-20
35-20

xli

xlii

Embedded IDEs and Embedded Targets

Getting Started with Embedded Targets

36|

Embedded Coder Supported Hardware 36-2

Project and Build Configurations for Embedded

Targets
37

Model Setup e 37-2
Block Selection 37-2
Configure Target Hardware Resources 37-3
Configuration Parameters 37-5
Model Reference 37-12

IDE Projects 37-13
Support for Third Party Products 37-13
Code Generation and Build 37-13
Makefiles for Software Build Tool Chains 37-15
What is the XMakefile Feature 37-15
Using Makefiles to Generate and Build Software 37-17
Making an XMakefile Configuration Operational 37-20
Creating a New XMakefile Configuration 37-20
XMakefile User Configuration dialog 37-26

Verification and Profiling Generated Code

38

PIL Simulation for IDE and Toolchain Targets 38-2
OVEIVIEW . . vttt i e et et e e 38-2

Contents

PIL Approaches 38-3

Communicationsuuirinnenenennn.. 38-7
Running Your PIL Application to Perform Simulation and
Verification 38-13
Performing a Model Block PIL Simulation via SCI Using
Makefiles 38-13
Definitions 38-17
PIL Issues and Limitations 38-17

Code Execution Profiling for IDE and Toolchain

Targets e 38-19
Execution Time Profiling 38-19
Stack Profiling 38-19

Perform Execution Time Profiling for IDE and Toolchain

Targets e 38-22
Execution Profiling During Standalone Execution . . . 38-22
Execution Profiling During PIL Simulation 38-25

Perform Stack Profiling with IDE and Toolchain
Targets e 38-27

Processor-Specific Optimizations for Embedded

Targets

Replace Code for Embedded Targets 39-2
Using a Processor-Specific Code Replacement Library to

Optimize Code 39-2
Process of Determining Optimization Effects Using Real-

Time Profiling Capability 39-2

Working with Texas Instruments Code Composer
Studio 3.3 IDE

40

xliii

xliv

Contents

Code Composer Studio
Using Code Composer Studio with Embedded Coder

Software

Default Project Configuration

Getting Started
OVEIVIEW . o ittt e e et e
Verifying Your Code Composer Studio Installation . . .

IDE Automation Interface
Getting Started with IDE Automation Interface
Getting Started with RTDX
Constructing ticecs Objects
ticcs Properties and Property Values
Overloaded Functions for tices Objects
ticcs Object Properties
Function List

IDE Project Generator
Introducing IDE Project Generator
IDE Project Generator and Board Selection
Generate an IDE Project
Model Reference

Exporting Filter Coefficients from FDATool
About FDATool

Preparing to Export Filter Coefficients to Code Composer

Studio Projects
Exporting Filter Coefficients to Your Code Composer

Studio Project
Preventing Memory Corruption When You Export

Coefficients to Processor Memory

Using Makefiles with Code Composer Studio 3.x
Introduction
Set Up XMakefile for CCSv3
Prepare Your Model for CCSv3 and Makefiles
Create Target Configuration File in CCSv3
Load and Run the Embedded Software

Reported Limitations and Tips

Example Programs Do Not Run Well with Incorrect GEL

Files

40-3

40-3
40-3

40-5
40-5
40-8

40-9

40-9
40-25
40-42
40-43
40-43
40-44
40-50

40-53
40-53
40-53
40-55
40-58

40-62
40-62

40-63
40-66
40-71
40-77
40-77
40-77
40-78
40-79
40-79
40-81

40-81

Changing Values of Local Variables Does Not Work . 40-82
Code Composer Studio Cannot Find a File After You Halt

aProgram 40-82
C54x XPC Register Can Be Modified Only Through the PC
Register 40-84
Working with More Than One Installed Version of Code
Composer Studio 40-84
Changing CCS Versions During a MATLAB Session . 40-85
MATLAB Hangs When Code Composer Studio Cannot
FindaBoard 40-85
Using Mapped Drives 40-86
Uninstalling Code Composer Studio 3.3 Prevents
Embedded Coder From Connecting 40-86
PostCodeGenCommand Commands Do Not Apply to IDE
Projects 40-87
Setting Up Code Composer Studio (ert.tlc System Target
File) 40-88
Prepare Your Model for CCSv3.3 40-88
Prepare Your Model for CCSv4/5/6 40-88
IDE Link Frequently Asked Question: Why do I get an
error when I invoke TICCS? 40-90
Why do I get an error when I invoke TICCS? 40-90
How can I fix this problem? 40-90
What happens if I click Deselect All when CCS prompts
that 'New components were detected'? 40-92
How do I use CCS Component Manager to enable IDE
Link Components? 40-92

Working with Texas Instruments Code Composer
Studio 4 & 5 IDE

41

Set Up e 41-2
Code Composer Studio 41-3
Feature Support 41-3

xlv

xlvi

Getting Started 41-4

Verifying Your Code Composer Studio Installation . . . 414
Learning About Makefiles 414
Using Makefiles with Code Composer Studio 4/5 41-5
Introduction 41-5
Set Up XMakefile for CCSv4/5 41-5
Prepare Your Model for CCSv4/5 and Makefiles 41-6
Create Target Configuration File in CCSv4/5 41-7
Configure Windows Path for TI Debug Server Scripting
(DSS) oo 41-7
Load and Run the Embedded Software Using DSS . . . 41-8
Reported Limitations and Tips 41-11
Example Programs Do Not Run well with Incorrect GEL
Fileso 41-11
PostCodeGenCommand Commands Do Not Apply to IDE
Projects 41-11

Code Generation from MATLAB Code

Build Configuration for Code Generation from
MATLAB Code

42

Specify Comment Style for C/C++ Code 42-2
Specify Comment Style Using the MATLAB Coder
ADD - e 42-2
Specify Comment Style Using the Command-Line
Interface 42-3
Specify Indent Style for C/C++ Code 42-4
Specify Indent Style Using the MATLAB Coder App . . 42-5
Specify Indent Style Using the Command-Line
Interface 42-5

Contents

Generate Custom File and Function Banners for C/C++

Code e 42-6
Code Generation Template Files for MATLAB 42-9
Default CGT File 42-9
CGT File Structure 42-9
Components of the CGT File Sections 42-11
Customize Generated Identifiers 42-20

Customize Identifiers Using the MATLAB Coder App 42-20
Customize Generated Identifiers Using the Command

Line Interface 42-21

Control Signed Left Shifts in Generated Code 42-23
Control Signed Left Shifts Using the MATLAB Coder

ADPD - e 42-23
Control Signed Left Shifts Using the Command-Line

Interface 42-23

Control Data Type Casts in Generated Code 42-25

Specify Casting Mode Using the MATLAB Coder App 42-26
Specify Casting Mode Using the Command-Line
Interface 42-27

Code Replacement for MATLAB Code

43

What Is Code Replacement? 43-2
Code You Can Replace from MATLAB Code 43-4
About Code You Can Replace 43-4
Math Functions 43-4
Memory Functions 43-9
Operatorscuiinii e 43-10
Code Replacement Libraries 43-15
Code Replacement Terminology 43-17
Code Replacement Limitations 43-20

xlvii

xlviii

Contents

Replace Code Generated from MATLAB Code 43-21

Choose a Code Replacement Library 43-24
About Choosing a Code Replacement Library 43-24
Explore Available Code Replacement Libraries 43-24
Explore Code Replacement Library Contents 43-32

Verification of Code Generated from MATLAB

Code
44

Highlight Potential Data Type Issues in a Report 44-2

Enable Highlight Option Using the MATLAB Coder
ADD - 44-3

Enable Highlight Option Using the Command Line
Interface 44-4
Find Potential Data Type Issues in Generated Code . . 44-5
Data Type Issues Overview 44-5
Enable Highlighting of Potential Data Type Issues . . . 44-5
Find and Address Cumbersome Operations 44-6
Find and Address Expensive Rounding 44-8
Find and Address Expensive Comparison Operations . 44-9

Model Architecture and Design

Modeling Environment

1 Modeling Environment

Set Up Your Modeling Environment

1-2

When developing a system, use a combination of products to model each system
component based on the domain to which it applies.

The following table guides you to information and examples that pertain to use of the

Embedded Coder® product to meet goals for specific domains.

Goals

Related Product Information

Examples

Generate a software
design description

“Code Generation”
in the Simulink
Report Generator™
documentation

rtwdemo_codegenrpt

Trace model
requirements to
generated code

“Requirements
Traceability” in the
Simulink Verification
and Validation™
documentation

rtwdemo_requirements

Implement
application on fixed-
point processors

“Data Types and Scaling”
and “Fixed-Point Code
Generation” in the
Fixed-Point Designer™
documentation

rtwdemo_fixptl
rtwdemo_Tfuelsys_fxp_publish
rtwdemo_dspanc_fixpt

Use an integrated
development
environment (IDE)
to integrate an
application on a
target processor
automatically

“Program Building,
Interaction, and
Debugging” topics in
the Embedded Coder

documentation

“Program Building,
Interaction, and
Debugging” and Desktop
Targets topics in

the Simulink Coder
documentation

In rtwdemos, select one of the
following folders: Desktop IDEs,
Desktop Targets, Embedded IDEs,
or Embedded Targets

Application Objectives

The first step in applying Embedded Coder configuration options to the application
development process is to consider how your application objectives, particularly with
respect to efficiency, traceability, and safety, map to code generation options in a model
configuration set.

Parameters that you set in the Solver, Data Import/Export, Diagnostics, and Code
Generation panes of the Configuration Parameters dialog box affect the behavior of a
model in simulation and the code generated for the model.

Consider questions such as the following:

What settings might help you debug your application?

What is the highest objective for your application — efficiency, traceability,
debugging, safety precaution, or some other criteria?

What is the second highest objective?

Can the objective at the start of the project differ from the objective required for the
end result? What tradeoffs can you make?

After you answer these questions:

1

Define your objectives in the configuration set. For more information, see “High-
Level Code Generation Objectives” on page 14-3.

Use the Code Generation Advisor to identify parameter values that are not
configured for the objectives that you selected. For more information, see “Determine
Model Configuration for Specified Objectives” on page 14-5.

Guidelines and Standards

“What Are the Standards and Guidelines?” on page 3-2
“MAAB Guidelines” on page 3-4

“MISRA C Guidelines” on page 3-5

“TEC 61508 Standard” on page 3-7

“ISO 26262 Standard” on page 3-9

“EN 50128 Standard” on page 3-11

“D0O-178C Standard” on page 3-13

3 Guidelines and Standards

What Are the Standards and Guidelines?

If your application has mission-critical development and certification goals, your models
or subsystems and the code generated for them might need to comply with one or more of
the standards and guidelines listed in the following table.

Standard or Guidelines Organization For More Information, See...
Guidelines: Use of MATLAB®, |MAAB * Control Algorithm Modeling
Simulink. and Stateflow® Guidelines Using MATLAB,

software for control algorithm Simulink, and Stateflow

modeling — MathWorks Software: PDF, Word

Automotive Advisory Board * Develop Models and Code

(MAAB) Guidelines That Comply with “MAAB
Guidelines” on page 3-4

Guidelines: Use of the C Motor Industry Software + MISRA C website

Language in Critical Systems |Reliability Association « Technical Solution 1-1IFPOW on

(MISRA C*) (MISRA) the MathWorks website
Develop Models and Code

That Comply with “MISRA C
Guidelines” on page 3-5

Standard: AUTomotive AUTOSAR Development * Publications and specifications

Open System ARchitecture Partnership available from the AUTOSAR

(AUTOSAR) website
AUTOSAR Support from
Embedded Coder on the
MathWorks website
“AUTOSAR Standard”
Embedded Coder “AUTOSAR”
documentation

Standard: IEC 61508, International + IEC functional safety zone

Functional safety of electrical/ |Electrotechnical Commission website

electronic/ programmable + IEC 61508 Support in MATLAB

electronic safety-related and Simulink

systems

3-2

http://www.mathworks.com/automotive/standards/docs/MAAB_Style_Guideline_Version3p00_pdf.zip
http://www.mathworks.com/automotive/standards/docs/MAAB_Style_Guideline_Version3p00_pdf.zip
http://www.mathworks.com/automotive/standards/docs/MAAB_Style_Guideline_Version3p00_pdf.zip
http://www.mathworks.com/industries/auto/maab.html
http://www.mathworks.com/automotive/standards/docs/MAAB_Style_Guideline_Version3p00_pdf.zip
http://www.mathworks.com/automotive/standards/docs/MAAB_Style_Guideline_Version3p00_doc.zip
http://www.misra.org.uk/
http://www.misra.org.uk/
http://www.misra.org.uk/
http://www.misra-c.com/
http://www.mathworks.com/support/solutions/data/1-1IFP0W.html
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.mathworks.com/hardware-support/autosar.html
http://www.mathworks.com/hardware-support/autosar.html
http://www.iec.ch/
http://www.iec.ch/
http://www.iec.ch/zone/fsafety/
http://www.iec.ch/zone/fsafety/
http://www.mathworks.com/solutions/automotive/standards/iec-61508.html
http://www.mathworks.com/solutions/automotive/standards/iec-61508.html

What Are the Standards and Guidelines?

Standard or Guidelines

Organization

For More Information, See...

Develop Models and Code
That Comply with “IEC 61508
Standard” on page 3-7

Standard: ISO 26262, Road
Vehicles - Functional Safety

International Organization
for Standardization

ISO 26262 Support in MATLAB
and Simulink

Develop Models and Code
That Comply with “ISO 26262
Standard” on page 3-9

Standard: EN 50128, Railway
applications — Software for
railway control and protection
systems

European Committee
for Electrotechnical
Standardization

Develop Models and Code
That Comply with “EN 50128
Standard” on page 3-11

Standard: DO-178C, Software
Considerations in Airborne
Systems and Equipment
Certification

Radio Technical Commission
for Aeronautics (RTCA)

Develop Models and Code
That Comply with “DO-178C
Standard” on page 3-13

a. MISRA® and MISRA C are registered trademarks of MISRA Litd., held on behalf of the MISRA Consortium.

3-3

http://www.iso.org/iso/home.html
http://www.iso.org/iso/home.html
http://www.mathworks.com/automotive/standards/iso-26262.html
http://www.mathworks.com/automotive/standards/iso-26262.html
http://www.cenelec.eu/
http://www.cenelec.eu/
http://www.cenelec.eu/
http://www.rtca.org/
http://www.rtca.org/

3 Guidelines and Standards

MAAB Guidelines

3-4

The MathWorks Automotive Advisory Board (MAAB) involves major automotive OEMs
and suppliers in the process of evolving MathWorks controls, simulation, and code
generation products, including Simulink, Stateflow, and Simulink Coder. An important
result of the MAAB has been the “MAAB Control Algorithm Modeling” guidelines.

If you have a Simulink Verification and Validation product license, you can check that
your Simulink model or subsystem, and the code that you generate from it, complies
with MAAB guidelines. To check your model or subsystem, open the Simulink Model
Advisor. Navigate to By Product > Simulink Verification and Validation >
Modeling Standards > MathWorks Automotive Advisory Board Checks and run
the MathWorks Automotive Advisory Board checks.

For more information on using the Model Advisor, see “Run Model Checks” in the
Simulink documentation.

http://www.mathworks.com/products/simverification/

MISRA C Guidelines

MISRA C Guidelines

The Motor Industry Software Reliability Association (MISRA?) has established
“Guidelines for the Use of the C Language in Critical Systems” (MISRA C). For general
information about MISRA C, see www.misra-c.com.

In 1998, MIRA Ltd. published MISRA C (MISRA C:1998) to provide a restricted subset
of a standardized, structured language that met Safety Integrity Level (SIL) 2 and
higher. A major update based on feedback was published in 2004 (MISRA C:2004),
followed by a minor update in 2007 known as Technical Corrigendum (T'C1). In 2007,
MISRA also published the MISRA AC AGC standard, “MISRA AC AGC: Guidelines

for the Application of MISRA-C:2004 in the Context of Automatic Code Generation.”
MISRA AC AGC does not change MISRA C:2004 rules, rather it modifies the adherence
recommendation. For more information about MISRA C, see www.misra-c.com.

Embedded Coder and Simulink offer capabilities to minimize the potential for MISRA C
rule violations, especially rules deemed applicable by MISRA AC AGC.

To configure a model or subsystem so that the code generator is most likely to produce
MISRA C:2004 compliant code, use the Code Generation Advisor. For more information,
refer to:

“High-Level Code Generation Objectives”

“Determine Model Configuration for Specified Objectives”
The Model Advisor also checks that you developed your model or subsystem to increase
the likelihood of generating MISRA C:2004 compliant code. To check your model or
subsystem:
1 Open the Model Advisor.
2 Navigate to By Task > Modeling Guidelines for MISRA-C:2004.
3 Run the following checks:

“Check configuration parameters for MISRA-C:2004 compliance”
“Check for blocks not recommended for MISRA-C:2004 compliance”
“Identify blocks that generate expensive fixed-point and saturation code”

“Check for bitwise operations on signed integers”

2. MISRA and MISRA C are registered trademarks of MIRA Ltd., held on behalf of the MISRA Consortium.

3-5

http://www.misra-c.com
http://www.misra-c.com

3 Guidelines and Standards

For more information about using the Model Advisor, see “Run Model Checks” in the
Simulink documentation.

For information about using Embedded Coder software within MISRA C guidelines, see
Technical Solution 1-1IFPOW on the MathWorks website.

3-6

http://www.mathworks.com/support/solutions/data/1-1IFP0W.html

IEC 61508 Standard

IEC 61508 Standard

In this section...

“Apply Simulink and Embedded Coder to the IEC 61508 Standard” on page 3-7
“Check for IEC 61508 Standard Compliance Using the Model Advisor” on page 3-7
“Validate Traceability” on page 3-7

Apply Simulink and Embedded Coder to the IEC 61508 Standard

Applying Model-Based Design to a safety-critical system requires extra consideration
and rigor so that the system adheres to defined safety standards. IEC 61508, Functional
safety of electrical/electronic/programmable electronic safety related systems, is such

a standard. Because the standard was published when most software was coded by
hand, the standard needs to be mapped to Model-Based Design technologies. For
further information about MathWorks support for IEC 61508, see IEC 61508 Support in
MATLAB and Simulink.

MathWorks provides an IEC Certification Kit product that you can use to certify
MathWorks code generation and verification tools for projects based on the IEC 61508
standard. For more information, see http://www.mathworks.com/products/iec-61508/.

Check for IEC 61508 Standard Compliance Using the Model Advisor

If you have a Simulink Verification and Validation product license, you can check that
your Simulink model or subsystem and the code that you generate from it complies with
selected aspects of the IEC 61508 standard by running the Simulink Model Advisor.
Navigate to By Product > Simulink Verification and Validation > Modeling
Standards > IEC 61508, ISO 26262, and EN 50128 Checks or By Task > Modeling
Standards for IEC 61508 and run the “IEC 61508, ISO 26262, and EN 50128 Checks”.

For more information on using the Model Advisor, see “Run Model Checks” in the
Simulink documentation.

Validate Traceability

Typically, applications that require certification require some level of traceability
between requirements, models, and corresponding code.

3-7

http://www.mathworks.com/solutions/automotive/standards/iec-61508.html
http://www.mathworks.com/solutions/automotive/standards/iec-61508.html
http://www.mathworks.com/products/iec-61508/
http://www.mathworks.com/products/simverification/

3 Guidelines and Standards

3-8

To...

Use...

Associate requirements documents
with objects in Simulink models

The “Requirements Traceability” that is
available if you have a Simulink Verification and
Validation license.

Trace model blocks and subsystems to
generated code

The Model-to-code traceability option when
generating an HTML report during the code
generation or build process.

Trace generated code to model blocks
and subsystems

The Code-to-model traceability option when
generating an HTML report during the code
generation or build process.

ISO 26262 Standard

ISO 26262 Standard

In this section...
“Apply Simulink and Embedded Coder to the ISO 26262 Standard” on page 3-9

“Check for ISO 26262 Standard Compliance Using the Model Advisor” on page 3-9
“Validate Traceability” on page 3-7

Apply Simulink and Embedded Coder to the ISO 26262 Standard

Applying Model-Based Design to a safety-critical system requires extra consideration
and rigor so that the system adheres to defined functional safety standards. ISO 26262,
Road Vehicles - Functional Safety, is such a standard. For further information about
MathWorks support for ISO 26262, see ISO 26262 Support in MATLAB and Simulink.

MathWorks provides an IEC Certification Kit product that you can use to qualify
MathWorks code generation and verification tools for projects based on the ISO 26262
standard. For more information, see http://www.mathworks.com/products/iso—26262/.

Check for 1ISO 26262 Standard Compliance Using the Model Advisor

If you have a Simulink Verification and Validation product license, you can check that
your Simulink model or subsystem and the code that you generate from it complies with
selected aspects of the ISO 26262 standard by running the Simulink Model Advisor.
Navigate to By Product > Simulink Verification and Validation > Modeling
Standards > IEC 61508, ISO 26262, and EN 50128 Checks or By Task > Modeling
Standards for ISO 26262 and run the “IEC 61508, ISO 26262, and EN 50128 Checks”.

For more information on using the Model Advisor, see “Run Model Checks” in the
Simulink documentation.

Validate Traceability

Typically, applications that require certification require some level of traceability
between requirements, models, and corresponding code.

To... Use...

Associate requirements documents The “Requirements Traceability” that is

with objects in Simulink models available if you have a Simulink Verification and
Validation license.

3-9

http://www.mathworks.com/automotive/standards/iso-26262.html
http://www.mathworks.com/products/iec-61508/
http://www.mathworks.com/products/simverification/

3 Guidelines and Standards

3-10

To...

Use...

Trace model blocks and subsystems to
generated code

The Model-to-code traceability option when
generating an HTML report during the code
generation or build process.

Trace generated code to model blocks
and subsystems

The Code-to-model traceability option when
generating an HTML report during the code
generation or build process.

EN 50128 Standard

EN 50128 Standard

In this section...

“Apply Simulink and Embedded Coder to the EN 50128 Standard” on page 3-11
“Check for EN 50128 Standard Compliance Using the Model Advisor” on page 3-11
“Validate Traceability” on page 3-7

Apply Simulink and Embedded Coder to the EN 50128 Standard

Applying Model-Based Design to a safety-critical system requires extra consideration
and rigor so that the system adheres to defined safety standards. EN 50128, Railway
applications — Software for railway control and protection systems, is such a standard.

MathWorks provides an IEC Certification Kit product that you can use to certify
MathWorks code generation and verification tools for projects based on the EN 50128
standard. For more information, see http://www.mathworks.com/products/iec-61508/.

Check for EN 50128 Standard Compliance Using the Model Advisor

If you have a Simulink Verification and Validation product license, you can check that
your Simulink model or subsystem and the code that you generate from it complies with
selected aspects of the EN 50128 standard by running the Simulink Model Advisor.
Navigate to By Product > Simulink Verification and Validation > Modeling
Standards > ITEC 61508, ISO 26262, and EN 50128 Checks or By Task > Modeling
Standards for EN 50128 and run the “IEC 61508, ISO 26262, and EN 50128 Checks”.

For more information on using the Model Advisor, see “Run Model Checks” in the
Simulink documentation.

Validate Traceability

Typically, applications that require certification require some level of traceability
between requirements, models, and corresponding code.

To... Use...

Associate requirements documents The “Requirements Traceability” that is

with objects in Simulink models available if you have a Simulink Verification and
Validation license.

3-11

http://www.mathworks.com/products/iec-61508/
http://www.mathworks.com/products/simverification/

3 Guidelines and Standards

3-12

To...

Use...

Trace model blocks and subsystems to
generated code

The Model-to-code traceability option when
generating an HTML report during the code
generation or build process.

Trace generated code to model blocks
and subsystems

The Code-to-model traceability option when
generating an HTML report during the code
generation or build process.

DO-178C Standard

DO-178C Standard

In this section...

“Apply Simulink and Embedded Coder to the DO-178C Standard” on page 3-13
“Check for Standard Compliance Using the Model Advisor” on page 3-13
“Validate Traceability” on page 3-7

Apply Simulink and Embedded Coder to the DO-178C Standard

Applying Model-Based Design to a high-integrity system requires extra consideration
and rigor so that the system adheres to defined safety standards. DO-178C Software
Considerations in Airborne Systems and Equipment Certification is such a standard. A
supplement to DO-178C, DO-331, provides guidance on the use of Model-Based Design
technologies. MathWorks provides a DO Qualification Kit product that you can use to
qualify MathWorks verification tools for projects based on the DO-178C, DO-331, and
related standards. For more information, see http://www.mathworks.com/products/
do-178/.

For information about Model-Based Design and MathWorks support of aerospace and
defense industry standards, see http://www.mathworks.com/aerospace-defense/ .

Check for Standard Compliance Using the Model Advisor

If you have a Simulink Verification and Validation product license, you can check that
your Simulink model or subsystem and the code that you generate from it complies
with selected aspects of the DO-178C standard by running the Simulink Model Advisor.
Navigate to By Product > Simulink Verification and Validation > Modeling
Standards > DO-178C/D0-331 Checks or By Task > Modeling Standards for
DO-178C/DO0-331 and run the DO-178C/D0-331 checks.

For more information on using the Model Advisor, see “Run Model Checks” in the
Simulink documentation.

Validate Traceability

Typically, applications that require certification require some level of traceability
between requirements, models, and corresponding code.

3-13

http://www.mathworks.com/products/do-178/
http://www.mathworks.com/products/do-178/
http://www.mathworks.com/aerospace-defense/
http://www.mathworks.com/products/simverification/

3 Guidelines and Standards

To... Use...
Associate requirements documents The “Requirements Traceability” that is
with objects in Simulink models available if you have a Simulink Verification and

Validation license.

Trace model blocks and subsystems to | The Model-to-code traceability option when
generated code generating an HTML report during the code
generation or build process.

Trace generated code to model blocks |The Code-to-model traceability option when
and subsystems generating an HTML report during the code
generation or build process.

3-14

Patterns for C Code

* “About Modeling Patterns” on page 4-3

+ “Prepare a Model for Code Generation” on page 4-4
+ “Data Declaration” on page 4-8

+ “Data Type Conversion” on page 4-11

* “Type Qualifiers” on page 4-14

+ “Relational and Logical Operators” on page 4-16
+ “Bitwise Operations” on page 4-20

+ “If-Else” on page 4-23

* “Switch” on page 4-29

* “For Loop” on page 4-35

+ “While Loop” on page 4-41

* “Do While Loop” on page 4-51

* “Function Call” on page 4-58

* “Function Prototyping” on page 4-60

+ “External C Functions” on page 4-63

* “Macro Definitions (#define)” on page 4-69

* “Conditional Inclusions (#if / #endif)” on page 4-72
* “Typedef” on page 4-73

+ “Structures for Parameters” on page 4-75

+ “Structures for Signals” on page 4-77

+ “Nested Structures” on page 4-80

+ “Bitfields” on page 4-84

+ “Arrays for Parameters” on page 4-86

+ “Arrays for Signals” on page 4-88

+ “Pointers for Signals” on page 4-90

4 Patterns for C Code

* “Pointers Using Simulink Data Objects” on page 4-91

4-2

About Modeling Patterns

About Modeling Patterns

Several standard methods are available for setting up a model to generate specific C
constructs in your code. For preparing your model for code generation, some of these
methods include: configuring signals and ports, initializing states, and setting up
configuration parameters for code generation. Depending on the components of your
model, some of these methods are optional. Methods for configuring a model to generate
specific C constructs are organized by category, for example, the Control Flow category
includes constructs iF-else, switch, for, and whi le. Refer to the name of a construct
to see how you should configure blocks and parameters in your model. Different modeling
methodologies are available, such as Simulink blocks, Stateflow charts, and MATLAB
Function blocks, to implement a C construct.

Model examples have the following naming conventions:

Model Components Naming Convention

Inputs ul, u2, u3, and so on
Outputs y1,y2,y3, and so on
Parameters pl, p2, p3, and so on
States X1, x2, x3, and so on

Input ports are named to reflect the signal names that they propagate.

4 Patterns for C Code

Prepare a Model for Code Generation

4-4

In this section...

“Configure a Signal” on page 4-4

“Configure Input and Output Ports” on page 4-4

“Initialize States” on page 4-5

“Set Up Configuration Parameters for Code Generation” on page 4-5
“Set Up an Example Model With a Stateflow Chart” on page 4-6
“Set Up an Example Model With a MATLAB Function Block” on page 4-7

Configure a Signal

Create a model in Simulink. For more information, see “Modeling Basics”.

Right-click a signal line. Select Properties. For more information about the Signal
Properties dialog box, see “Signal Properties”.

Enter a signal name for the Signal name parameter.

On the same Signal Properties dialog box, select the Code Generation tab. Use
the drop down menu for the Storage class parameter to specify a storage class.
Examples in this chapter use Exported Global.

Note: Alternatively, on the Signal Properties dialog box, select Signal name must
resolve to Simulink signal object. Then create a signal data object in the base
workspace with the same name as the signal. See “Create Simulink and mpt Data
Objects” for more information on creating data objects in the base workspace.
(Examples use mpt.Signal and specify the Storage class as ExportedGlobal.

Configure Input and Output Ports

1

In your model,

Double-click an Inport or Outport block. A Block Parameters dialog box opens.
Select the Signal Attributes tab.

Specify the Port dimensions and Data type. Examples leave the default value for
Port dimensions as —1 (for inherited) and Data type as Inherit: auto.

Prepare a Model for Code Generation

Initialize States

Double-click a block.
In the Block Parameters dialog box, select the Main tab.

Specify the Initial conditions and Sample time. For more information, see “
Specify Sample Time”.

Select the State Attributes pane. Specify the state name. See “Discrete Block State
Naming in Generated Code”.

You can also use the Data Object Wizard for creating data objects. A part of this
process initializes states. See “Create Data Objects with Data Object Wizard”.

Set Up Configuration Parameters for Code Generation

1

Open the Configuration Parameter dialog box by selecting Simulation > Model
Configuration parameters. You can also use the keyboard shortcut Ctr1+E.

Open the Solver pane and select

Solver type: Fixed-Step
+ Solver: discrete (no continuous states)

Open the Optimization > Signals and Parameters pane, and select the Inline
parameters parameter.

Open the Code Generation pane, and specify ert.tlc as the System Target
File.

Clear Generate makefile.
Select Generate code only.

Enable the HTML report generation by opening the Code Generation >
Report pane and selecting Create code generation report, Launch report
automatically, and Code-to-model. Enabling the HTML report generation is
optional.

Click Apply and then OK to exit.

4-5

4 Patterns for C Code

4-6

Set Up an Example Model With a Stateflow Chart

Follow this general procedure to create a simple model containing a Stateflow chart.

From the Stateflow > Chart library, add a Stateflow chart to your model .
2 Add Inport blocks and Outport blocks according to the example model.
3 Open the Stateflow Editor by performing one of the following:

* Double-click the Stateflow chart.
+ Press Ctrl+R.

4 Select Chart > Add Inputs & Outputs > Data Input from Simulink to add the
inputs to the chart. A Data dialog box opens for each input.

5 Specify the Name (ul, u2, ...) andthe Type (Inherit: Same as Simulink)
for each input, unless specified differently in the example. Click OK.

Click Apply and close each dialog box.

6 Select Chart > Add Inputs & Outputs > Data Output from Simulink to add the
outputs to the chart. A Data dialog opens for each output.

7 Specify the Name (y1, y2, ...) and Type (Inherit: Same as Simulink) for
each output, unless specified differently in the example. Click OK.

8 Click Apply and close each dialog box.

9 In the Stateflow Editor, create the Stateflow diagram specific to the example.
10 The inputs and outputs appear on the chart in your model.

11 Connect the Inport and Outport blocks to the Stateflow Chart.

12 Configure the input and output signals; see “Configure a Signal” on page 4-4.

Prepare a Model for Code Generation

Set Up an Example Model With a MATLAB Function Block

4. E—@

example ¥ T

E: e 5 e
IS =
P '
-
P

MATLAB Function

1 Add the number of Inport and Outport blocks according to a C construct example
included in this chapter.

2 From the Simulink User-defined Functions library drag a MATLAB Function block
into the model.

3 Double-click the block. The MATLAB Function Block Editor opens. Edit the function
to implement your application.

4 Click File > Save and close the MATLAB Function Block Editor.

5 Connect the Inport and Outport blocks to the MATLAB Function block. See
“Configure a Signal” on page 4-4.

6 Save your model.

4-7

4 Patterns for C Code

Data Declaration

4-8

C Construct

int32 pl = 3;

Declare a Variable for a Block Parameter Using a Data Object

You can specify certain block parameters as a variable. If you define the variable as a
data object, the variable is global. Where the variable is declared in the generated code
depends on the custom storage class that you choose (and whether you select Inline
Parameters on the Optimization > Signals and Parameters pane). If you choose
Inline Parameters, then the data object name is used in the generated code. If you did
not choose Inline Parameters, the generated code creates a global structure that stores
all of the parameters. For more information on how to create a data object, see “Create
and Apply User-Defined Data Types”.

There are several methods for configuring data objects:

* For a model with many parameters, use the Data Object Wizard, which analyzes
your model and finds the unresolved data objects and data types. You can then create
the data objects in the Data Object Wizard. The procedure for using the Data Object
Wizard for a parameter is similar to the procedure for a signal. For an example, see
“Declare a Variable for a Signal using a Data Object” on page 4-9.

+ To add, delete, edit, and configure data objects, use the base workspace in the Model
Explorer.

* To create and configure data objects, use the MATLAB command line.

The following example demonstrates how to create a data object using the Model
Explorer. The declaration statement in the generated code is as follows:

int Kp = 3;
1 Create a model containing a Constant block and a Gain block.

2 Press Ctrl+E to open the Configuration Parameters dialog box.

3 On the Optimization > Signals and Parameters pane of the Configuration
Parameter dialog box, select Inline parameters.

4 Click Apply and OK. The Configuration Parameter dialog box closes.

Data Declaration

5 In your model, double-click the Constant block. The Block Parameters dialog box
opens.

In the Value field, enter a variable name. In this example, the variable name is p1.
In your model, double-click the Gain block. The Block Parameters dialog box opens.
In the Value field, enter a variable name. In this example, the variable name is p2.

Press Ctrl+H to open the Model Explorer. On the Model Hierarchy pane, select the
base workspace.

10 Add two mpt parameter objects. Select Add > Add Custom. On the Contents of:
Base Workspace pane, you see the parameters.

0O ©© N o

11 Double-click each mpt.Parameter object and change their names to p1 and p2.

12 Click the pl parameter. The data object parameters are displayed in the right pane
of the Model Explorer.

13 In the Value field, enter 3 for pl. For the Data type, select int32. Because you
chose an mpt parameter, the Storage Class is already set to Global (Custom).

14 In the Value field, enter 5 for p2. For the Data type, select int32.
15 Press Ctrl+B to generate code.

In the model.c file you see:

int32 pl1
int32 p2

3;
5;

Note: Depending on the storage class, the global variable is represented differently in the
generated code. For more information, see “Parameter Objects”.

C Construct

int pl = 3;

Declare a Variable for a Signal using a Data Object

1 Create a model and label the signals.

2 Open the Data Object Wizard. In the Simulink Editor, select Code > Data
Objects > Data Object Wizard. If you are not familiar with creating Simulink
Data Objects using the wizard, refer to “Data Object Wizard” .

4-9

4 Patterns for C Code

4-10

Click Find. The list of unresolved parameters and objects populates the Data Object
Wizard. You can do mass edits for identical data objects.

Select the signals individually or select all signals by clicking Check All.

From the parameter Choose package for selected data objects drop-down list,
select the mpt package. Click Apply Package. When you open the Model Explorer
the data objects appear in the base workspace.

In the base workspace, click the p1 data object . The data object parameters appear
in the right pane of the Model Explorer.

From the Data type drop-down list, select intl16.

You can also specify the storage class. The data object is an mpt.Parameter object,
therefore the Storage Class is automatically set to Global (Custom).

Note: The Storage class alters the data object implementation in the generated code.
For more information, see “Signal Objects for Code Generation”.

Data Type Conversion

Data Type Conversion

C Construct

yl = (double)ul;

Modeling Patterns

+ “Modeling Pattern for Data Type Conversion — Simulink Block” on page 4-11
+ “Modeling Pattern for Data Type Conversion — Stateflow Chart” on page 4-12

+ “Modeling Pattern for Data Type Conversion — MATLAB Function Block” on page
4-12

Modeling Pattern for Data Type Conversion — Simulink Block

One method to create a data type conversion is to use a Data Type Conversion block from
the Simulink > Commonly Used Blocks library.

double ‘:"_-.

ul ¥l
Data Type Conversion

ex_data_type_SL
1 From the Commonly Used Blocks library, drag a Data Type Conversion block into
your model and connect to the Inport and Outport blocks.

2 Double-click on the Data Type Conversion block to open the Block Parameters dialog
box.

3 Select the Output data type parameter as double.
4 Press Ctrl+B to build the model and generate code.

The generated code appears in ex_data_type SL.c, as follows:

int32_T ul;
real T yl1;

void ex_data_type_SL_step(void)

{
yl = (real_T)ul;

4-11

4 Patterns for C Code

4-12

}
The Embedded Coder type definition for double is real _T.

Modeling Pattern for Data Type Conversion — Stateflow Chart

!
."J-

¥ 1= double (u1};
]
A

o

Stateflow Chart Type Conversion
Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on page 4-6 .
This example contains one Inport block and one Outport block.

2 Name the example model ex_data type_ SF.

3 Double-click the Inport block and select the Signal Attributes tab. Specify the
Data Type as int32 from the drop down menu.

4 Double-click the Outport block and select the Signal Attributes tab. Specify the
Data Type as Inherit: auto from the drop down menu.

5 Press Ctrl+B to build the model and generate code.
Results

The generated code appears in ex_data_ type_ SF.c, as follows:
int32_T ul;

real_T yl;

void ex_data_type_SF_step(void)

{
yl = (real_T)ul;

Modeling Pattern for Data Type Conversion — MATLAB Function Block

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function Block” on
page 4-7 . This example model contains one Inport block and one Outport block.

Data Type Conversion

2 Name the model ex_data_type ML_Func.
3 Inthe MATLAB Function Block Editor enter the function, as follows:
function yl = typeconv(ul)

y1l = double(ul);
end

4 Press Ctrl+B to build the model and generate code.
Results

The generated code appears in ex_data_ type ML_func.c, where real32_Tis a float
and real _T is a double. Type conversion occurs across assignments.

real32_T ul;
real_T y1;

void ex_data_type_ML_func_step(void)
{

}

yl = ul;

Other Type Conversions in Modeling

Type conversions can also occur on the output of blocks where the output variable is
specified as a different data type. For example, in the Gain block, you can select the
Inherit via internal rule parameter to control the output signal data type. Another
example of type conversion can occur at the boundary of a Stateflow chart. You can
specify the output variable as a different data type.

4-13

4 Patterns for C Code

Type Qualifiers

4-14

Modeling Patterns for Type Qualifiers

* “Using a Tunable Parameter in the Base Workspace” on page 4-14

+ “Use a Data Object of the Const Custom Storage Class” on page 4-15

Using a Tunable Parameter in the Base Workspace

A tunable parameter is a block parameter whose value can be changed at runtime. The
storage class property of a parameter specifies how the parameter is declared in the
generated code.

ot f——D

Out1

Constant

ex_type_qual
Procedure

Create a model containing a Constant block and an Outport block.

2 Double-click the Constant block. In the Constant value field, enter the parameter
name pl.

3 In the base workspace, create a MATLAB variable for pl and specify its Value as
9.8 and its Data type as double.

4 Press Ctrl+E to open the Configuration Parameters dialog box and select the
Optimization > Signals and Parameters pane.

Select the Inline parameters parameter, which activates the Configure button.
Click the Configure button to open the Model Parameter Configuration dialog box.
To declare a tunable parameter, from the Source list, select the variable p1.

Click the Add to table button to add p1l to the Global (tunable) parameters
section.

9 Click the Storage Class and select Exported Global.

© N O O

10 Click the Storage Type Qualifier arrow and select const.

Type Qualifiers

11 Click Apply to save the changes.
12 Press Ctrl+B to build the model and generate code.

Results

The generated code appears in ex_type_qual .c as follows:
/* Exported block parameters */
const real_T pl = 9.8; /* Variable: pl

* Referenced by: "<Root>/Constant”
*/

Use a Data Obiject of the Const Custom Storage Class

One way to create a type qualifier in the generated code is to create a data object and
specify a custom storage class. Use the previous model, ex_type_ qual, for this example.
Specify pl differently as follows:

Procedure
1 Press Ctrl+H to open the Model Explorer. On the Model Hierarchy pane, select the
base workspace.

2 Select Add > Add Custom to add an mpt parameter object. The parameter is
displayed in the Contents of: Base Workspace pane.

3 Double-click the mpt.Parameter object and change the Name to p1.

4 Click the p1 parameter which displays the data object parameters on the right pane
of the Model Explorer.

5 Inthe Value field, enter 9.8 for pl. Specify the Data type as auto for 64—bit
double.

6 You can use the different type qualifiers by selecting a custom storage class from the
Storage class list. For this example, select ConstVolatile (custom).

7 In the Configuration Parameters dialog box, on the Optimization > Signals and
Parameters pane, select the Inline parameters.

8 Press Ctrl+B to build the model and generate code.
Results
The generated code produces the type qualifier in ex_type_qual .c:

const volatile real T pl = 9.8;

4-15

4 Patterns for C Code

Relational and Logical Operators

Modeling Patterns for Relational and Logical Operators

+ “Modeling Pattern for Relational or Logical Operators — Simulink Blocks” on page

4-16

+ “Modeling Pattern for Relational and Logical Operators —Stateflow Chart” on page
4-17

* “Modeling Pattern for Relational and Logical Operators — MATLAB Function Block”
on page 4-18

Modeling Pattern for Relational or Logical Operators — Simulink Blocks

O 3
u
- "
Cr—* ¥
= U
uz
Lgical
Oiperator

ex_logical_SL
Procedure
1 From the Logic and Bit Operations library, drag a Logical Operator block into

your model.

2 Double-click the block to configure the logical operation. Set the Operator field to
OR.

3 Name the blocks, as shown in the model ex_logical_SL.
4 Connect the blocks and name the signals, as shown in the model ex_logical_SL.
5 Press Ctrl+B to build the model and generate code.

Note: You can use the above procedure to implement relational operators by replacing
the Logical Operator block with a Relational Operator block.

4-16

Relational and Logical Operators

Results

Code implementing the logical operator OR is in the ex_logical_SL_step function in
ex_logical _SL.c:

/* Exported block signals */

boolean_T ul; /* "<Root>/ul” */
boolean_T u2; /* "<Root>/u2* */
boolean_T y1; /* "<Root>/Logical Operator®*/

/* Logic: "<Root>/Logical Operator® incorporates:
* Inport: "<Root>/ul”

* Inport: "<Root>/u2*

*/

yl = (ul || u2);

Modeling Pattern for Relational and Logical Operators — Stateflow Chart

L

o
/"“-.
L

y1=ul||uZ;

H

|
o
L

ex_logical_SF/Logical Operator Stateflow Chart

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on page 4-6.
This example model contains two Inport blocks and one Outport block.

2 Name the example model ex_logical_SF.

3 Inthe Stateflow Editor, specify the Data Type for y1 as Boolean.

4 In the Stateflow Editor, create the Stateflow diagram as shown. The relational
or logical operation actions are on the transition from one junction to another.
Relational statements specify conditions to conditionally allow a transition. In that
case, the statement would be within square brackets.

5 Press Ctrl+B to build the model and generate code.

4-17

4 Patterns for C Code

4-18

Results

Code implementing the logical operator OR is in the ex_logical_SF_step function in
ex_logical_SF.c:

boolean_T ul; /* "<Root>/ul" */
boolean_T u2; /* "<Root>/u2" */
boolean_T y1; /* "<Root>/Chart” */
void ex_logical_SF_step(void)
{

yl = (ul || u2);
}

Modeling Pattern for Relational and Logical Operators — MATLAB
Function Block

This example demonstrates the MATLAB Function block method for incorporating
operators into the generated code using a relational operator.

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function Block” on
page 4-7 . This example model contains two Inport blocks and one Outport block.

2 Name the example model ex_rel_operator_ML.

3 In the MATLAB Function Block Editor enter the function, as follows:
function yl = fcn(ul, u2)

yl = ul > u2;
end

4 Press Ctrl+B to build the model and generate code.
Results

Code implementing the relational operator '>'is in the ex_rel_operator_ML_step
function in ex_rel_operator_ML.c:

real T ul; /* "<Root>/ul" */
real T u2; /* "<Root>/u2* */
boolean_T y; /* "<Root>/MATLAB Function® */

void ex_rel_operator_ML_step(void)

Relational and Logical Operators

y = (ul > u2);

4-19

4 Patterns for C Code

Bitwise Operations

4-20

Simulink Bitwise-Operator Block

Bitwise

AND 'f_h

ul

0xD09 7

Bitwize
Orperator
ex_bit_logic_SL
Procedure
1 Drag a Bitwise Operator block from the Logic and Bit Operations library into

your model.

2 Double-click the block to open the Block Parameters dialog.

3 Select the type of Operator. In this example, select AND.

4 In order to perform Bitwise operations with a bit-mask, select Use bit mask.
Note: If another input uses Bitwise operations, clear the Use bit mask parameter
and enter the number of input ports.

5 In the Bit Mask field, enter a decimal number. Use bin2dec or hex2dec to convert
from binary or hexadecimal. In this example, enter hex2dec("D9").

6 Name the blocks, as shown in, model ex_bit_logic_SL.

7 Connect the blocks and name the signals, as shown in, model ex_bit_logic_SL.

8 Press Ctrl+B to build the model and generate code.

Results

Code implementing the logical operator OR is in the ex_bit_logic_SL_step function
in ex_bit_logic SL.c:

uint8 T ul;

Bitwise Operations

uint8 T y1;
void ex_bit_logic_SL_step(void)

{
yl = (uint8_T)(ul & 217);

}

Stateflow Chart

L]
'l
o
A

v1=u1 & kD

]
e

ex_bit_logic_SF/Bit_Logic Stateflow Chart

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on page 4-6.

This example contains one Inport block and one Outport block.

O b WOWDN

Bit Logic.

6 Press Ctrl+B to build the model and generate code.

Results

Name the example model ex_bit_logic_SF.

From the Stateflow Editor, select Tools > Explore to open the Model Explorer.
In the Model Explorer, on the right pane, select Enable C-bit operations.
In the Stateflow Editor, create the Stateflow diagram, ex_bit_logic_SF/

Code implementing the logical operator OR is in the ex_bit_logic_SF_step function

in ex_bit_logic_SF.c:

uint8 T ul;
uint8 T y1;

void bit_logic_SF_step(void)

{
yl = (uint8_T)(ul & 0OxD9);

4-21

4 Patterns for C Code

4-22

}

MATLAB Function Block

In this example, to demonstrate the MATLAB Function block method for implementing
bitwise logic into the generated code, use the bitwise OR, '|".

Procedure
1 Follow the steps for “Set Up an Example Model With a MATLAB Function Block” on
page 4-7. This example model contains two Inport blocks and one Outport block.

2 Name your model ex_bit_logic_ML.
3 In the MATLAB Function Block Editor enter the function, as follows:

function yl = fcn(ul, u2)
yl = bitor(ul, u2);
end
4 Press Ctrl+B to build the model and generate code.

Results

Code implementing the bitwise operator OR is in the ex_bit_logic_ML_step function
inex_bit logic ML.c:

uint8 T ul;
uint8 T u2;
uint8_T y1;

void ex_bit_logic_ML_step(void)
{

yl = (uint8_T)(ul | u2);

}

If-Else

If-Else
C Construct
if (ul > u2)
{
yl = ul;
b
else
{
yl = u2;
b

Modeling Patterns

“Modeling Pattern for If-Else: Switch block” on page 4-24
“Modeling Pattern for If-Else: Stateflow Chart” on page 4-26
“Modeling Pattern for If-Else: MATLAB Function Block” on page 4-28

4-23

4 Patterns for C Code

4-24

Modeling Pattern for If-Else: Switch block

One method to create an if-else statement is to use a Switch block from the Simulink
> Signal Routing library.

G
u

.

ol o=

L

Relational

Operator
- .
C}‘_ w2 "
u2

Switch

Model ex_if else_SL

Procedure

1

Drag the Switch block from the Simulink>Signal Routing library into your model.

2 Connect the data inputs and outputs to the block.

3 Drag a Relational Operator block from the Logic & Bit Operations library into your
model.

4 Connect the signals that are used in the if-expression to the Relational Operator
block. The order of connection determines the placement of each signal in the if-
expression.

5 Configure the Relational Operator block to be a greater than operator.

6 Connect the controlling input to the middle input port of the Switch block.

7 Double-click the Switch block and set Criteria for passing first input to u2~=0.
The software selects ul if u2 is TRUE; otherwise u2 passes.

8 Enter Ctr1+B to build the model and generate code.

Results

The generated code includes the following ex_if_else_SL_step function in the file
ex_if _else _SL.c:

If-Else

/* External inputs (root inport signals with auto storage) */
External Inputs U;

/* External outputs (root outports fed by signals with auto storage) */
ExternalOutputs Y;

/* Model step function */
void ex_if_else_SL_step(void)

{
/* Switch: "<Root>/Switch”" incorporates:
* Inport: "<Root>/ul*
* Inport: "<Root>/u2*
* Qutport: "<Root>/yl*
* RelationalOperator: “<Root>/Relational Operator”
*/
if (U.ul > U.u2) {
Y.yl = U.ul;
} else {
Y.yl = U.u2;
}
}

4-25

4 Patterns for C Code

4-26

Modeling Pattern for If-Else: Stateflow Chart

/* [-Else *f

7 [u1 = uZ2]
(HM—

#
L

—z P

y1=u2} y1=ul}

ex_if_else SF/Chart

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on page 4-6.
This example model contains two Inport blocks and one Outport block.

2 Name your model ex_if _else SF.

3 When configuring your Stateflow chart, select Chart > Add Patterns > Decision >
If-Else. The Stateflow Pattern dialog opens. Fill in the fields as follows:

Description I T-Else (optional)
If condition ul > u2
If action yl = ul
Else action yl = u2

4 Press Ctrl+B to build the model and generate code.
Results

The generated code includes the following ex_if_else_SF_step function in the file
IT Else SF.c:

/* External inputs (root inport signals with auto storage) */
External Inputs U;

/* External outputs (root outports fed by signals with auto storage) */
ExternalOutputs Y;

/* Model step function */

If-Else

void ex_if_else_SF_step(void)

/* Stateflow: "<Root>/Chart
* Inport: "<Root>/ul*

* Inport: "<Root>/u2*

* Qutport: "<Root>/yl*

*/

/* Gateway: Chart */

/* During: Chart */

/* Transition: "<S1>:14" */
/* I1f-Else */

if (U.ul > U.u2) {

/* Transition: "<S1>:13"
/* Transition: "<S1>:12"
Y.yl = U.ul;
/* Transition: "<S1>:11"
} else {
/* Transition: "<S1>:10"
Y.yl = U.u2;
}

/* Transition: "<S1>:9% */

*/
*/

*/

*/

incorporates:

4-27

4 Patterns for C Code

4-28

Modeling Pattern for If-Else: MATLAB Function Block

Procedure

1

Follow the steps for “Set Up an Example Model With a MATLAB Function Block” on
page 4-7. This example model contains two Inport blocks and one Outport block.

2 Name your model ex_if_else ML.
3 In the MATLAB Function Block Editor enter the function, as follows:
function yl = fcn(ul, u2)
if ul > u2;
yl = ul;
else yl = u2;
end
4 Press Ctrl+B to build the model and generate code.
Results

The generated code includes the following ex_if_else_ML_step function in the file
ex_if _else ML.c:

/* External inputs (root inport signals with auto storage) */
External Inputs U;

/* External outputs (root outports fed by signals with auto storage) */
ExternalOutputs Y;

/* Model step function */
void ex_if_else_ML_step(void)

/* MATLAB Function Block: "<Root>/MATLAB Function® incorporates:
* Inport: "<Root>/ul”
* Inport: "<Root>/u2-”
* Qutport: "<Root>/y1l*
*/
/* MATLAB Function "MATLAB Function®: "<S1>:1% */
if (U.ul > U.u2) {
/* "<S1>:1:4" */
/* "<S1>:1:5" */
Y.yl = U.ul;
} else {
/* "<S1>:1:6" */
Y.yl = U.u2;
3
3

Switch

Switch

C Construct

switch (ul)

{

case 2:
yl = u2;
break;

case 3:
u3;
break;

default:
yl = u4;
break;

}

Modeling Patterns

* “Modeling Pattern for Switch: Switch Case block” on page 4-30
+ “Modeling Pattern for Switch: MATLAB Function block” on page 4-33
* “Convert If-Elseif-Else to Switch statement” on page 4-34

4-29

4 Patterns for C Code

4-30

Modeling Pattern for Switch: Switch Case block

One method for creating a switch statement is to use a Switch Case block from the
Simulink > Ports and Subsystems library.

i
it
ta
i fa

w2 = {}1_;1

5[4
Fa

Switch Case Action

Subsystem

1 ui case[3]
[3] 1
ul -
@ 5y merge e
ud i
ul - ¥
Switch Case Aclion Merge
Subsystemi

a
m

W
[

v

oelal

ult: {}
@T" ud i

Switch Case s

Switch Case Action
Subsystem2

Model ex_switch_SL

Procedure

1 Drag a Switch Case block from the Simulink > Ports and Subsystems library into

your model.

2 Double-click the block. In the Block Parameters dialog box, fill in the Case
Conditions parameter. In this example, the two cases are: {2,3}.

3 Select the Show default case parameter. The default case is optional in a switch

statement.
4 Connect the condition input ul to the input port of the Switch block.

5 Drag Switch Case Action Subsystem blocks from the Simulink>Ports and
Subsystems library to correspond with the number of cases.

6 Configure the Switch Case Action Subsystem subsystems.

Switch

7 Drag a Merge block from the Simulink > Signal Routing library to merge the
outputs.

8 The Switch Case block takes an integer input, therefore, the input signal ul is type
cast to an Int32.

9 Enter Ctrl+B to build the model and generate code.

Results

The generated code includes the following ex_switch_SL_step function in the file
ex_switch_SL.c:

/* Exported block signals */
int32_T ul; /* "<Root>/ul® */

/* External inputs (root inport signals with auto storage) */
External Inputs U;

/* External outputs (root outports fed by signals with auto storage) */
ExternalOutputs Y;

/* Model step function */
void ex_switch_SL_step(void)
{
/* SwitchCase: "<Root>/Switch Case® incorporates:
ActionPort: "<S1>/Action Port*
ActionPort: "<S2>/Action Port*
ActionPort: "<S3>/Action Port*
Inport: "<Root>/ul®
SubSystem: "<Root>/Switch Case Action Subsystem®
SubSystem: "<Root>/Switch Case Action Subsysteml®
SubSystem: "<Root>/Switch Case Action Subsystem2®

o4 % ok % % %

*/
switch (ul) {
case 2:
/* Inport: "<S1>/u2" incorporates:
* Inport: "<Root>/u2*
* Qutport: "<Root>/yl*
*/
Y.yl = U.u2;
break;

case 3:

/* Inport: "<S2>/u3" incorporates:
* Inport: "<Root>/u3*
* Qutport: "<Root>/yl*
*/

Y.yl = U.u3;

break;

default:

/* Inport: "<S3>/u4" incorporates:
* Inport: "<Root>/u4*
* Qutport: "<Root>/yl*
*/

Y.yl = U.u4;

break;

}

4-31

4 Patterns for C Code

4-32

Switch

Modeling Pattern for Switch: MATLAB Function block

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function Block” on
page 4-7. This example model contains four Inport blocks and one Outport block.
2 Name your model ex_switch_ML.

3 Inthe MATLAB Function Block Editor enter the function, as follows:

function yl1 = fcn(ul, u2, u3, u4d)

switch ul
case 2
yl = u2;
case 3
yl = u3;
otherwise
yl = u4;
end

4 Press Ctrl+B to build the model and generate code.
Results

The generated code includes the following ex_switch_ML_step function in the file
ex_switch_ML.c:

/* External inputs (root inport signals with auto storage) */
External Inputs U;

/* External outputs (root outports fed by signals with auto storage) */
ExternalOutputs Y;

/* Model step function */
void ex_switch_ML_step(void)
{
/* MATLAB Function Block: "<Root>/MATLAB Function® incorporates:
* Inport: "<Root>/ul®
* Inport: "<Root>/u2*
* Inport: "<Root>/u3*
* Inport: "<Root>/u4*
* Qutport: "<Root>/yl*

/* MATLAB Function "MATLAB Function®: "<S1>:1% */
/* "<S1>:1:4" */
switch (U.ul) {

case 2:

/* "<S1>:1:6" */

Y.yl = U.u2;

break;

4-33

4 Patterns for C Code

4-34

case 3:

/* "<S1>:1:8" */
Y.yl = U.u3;
break;

default:
/* "<S1>:1:10° */
Y.yl = U.u4;
break;
3
}

Convert If-Elseif-Else to Switch statement

If a MATLAB Function block or a Stateflow chart uses i F-elseif-else decision logic,
you can convert it to a switch statement by using a configuration parameter. In the
Configuration Parameters dialog box, on the Code Generation > Code Style pane,
select the “Convert if-elseif-else patterns to switch-case statements” parameter. For
more information, see “Converting If-Elseif-Else Code to Switch-Case Statements” in
the Simulink documentation. For more information on this conversion using a Stateflow
chart, see “Enhance Readability of Code for Flow Charts”.

For Loop

For Loop

C Construct

yl = 0;
for(inx = 0; inx <10; inx++)
{

yl = ul[inx] + y1;
}

Modeling Patterns:

“Modeling Pattern for For Loop: For-Iterator Subsystem block” on page 4-36
+ “Modeling Pattern for For Loop: Stateflow Chart” on page 4-38
+ “Modeling Pattern for For Loop: MATLAB Function block” on page 4-40

4-35

4 Patterns for C Code

4-36

Modeling Pattern for For Loop: For-lterator Subsystem block

One method for creating a For loop is to use a For Iterator Subsystem block from the
Simulink > Ports and Subsystems library.

u1 for]...1 i —p-

ul vl
For terator
Subsystem
Model ex_for_loop_SL
For . . '
lterator R
For terator
-+ y
1
j e |V =
a ™|+ }1
QO r—
i Add
Index 1—
“Wector z
Unit Delay

For lterator Subsystem
Procedure

1 Drag a For Iterator Subsystem block
library into your model.
2 Connect the data inputs and outputs

Open the Inport block.

w

from the Simulink > Ports and Subsystems

to the For Iterator Subsystem block.

4 In the Block Parameters dialog box, select the Signal Attributes pane and set the

Port dimensions parameter to 10.

5 Double-click the For Iterator Subsystem block to open the subsystem.

For Loop

6 Drag an Index Vector block from the Signal-Routing library into the subsystem.

7 Open the For Iterator block. In the Block Parameters dialog box set the Index-mode
parameter to Zero-based and the Iteration limit parameter to 10.

8 Connect the controlling input to the topmost input port of the Index Vector block,
and the other input to the second port.

9 Drag an Add block from the Math Operations library into the subsystem.

10 Drag a Unit Delay block from Commonly Used Blocks library into the subsystem.

11 Double-click the Unit Delay block and set the Initial Conditions parameter to O.
This parameter initializes the state to zero.

12 Connect the blocks as shown in the model diagram.

13 Save the subsystem and the model.

14 Enter Ctr1+B to build the model and generate code.

Results

The generated code includes the following ex_for_loop_SL_step function in the file
ex_for_loop_SL.c:

/* External inputs (root inport signals with auto storage) */
External Inputs U;

/* External outputs (root outports fed by signals with auto storage) */
ExternalOutputs Y;

/* Model step function */
void ex_for_loop_SL_step(void)
{
int32_T sl_iter;
int32_T rtb_y1;
/* Outputs for iterator SubSystem: "<Root>/For lterator Subsystem®
* Forlterator: "<S1>/For Iterator”
*/
for (sl_iter = 0; sl_iter < 10; sl_iter++) {
/* Sum: "<S1>/Add" incorporates:
* Inport: "<Root>/ul*
* MultiPortSwitch: "<S1>/Index Vector”
* UnitDelay: "<S1>/Unit Delay"
*/
rtb_yl = U.ul[sl_iter] + DWork.UnitDelay_ DSTATE;

incorporates:

/* Update for UnitDelay: "<S1>/Unit Delay® */
DWork.UnitDelay DSTATE = rtb_y1l;
3

/* end of Outputs for SubSystem: "<Root>/For lterator Subsystem® */

/* Outport: "<Root>/yl" */
Y.yl = rtb_yl;

4-37

4 Patterns for C Code

Modeling Pattern for For Loop: Stateflow Chart

. finx=10] T

o w1 = ulfinx]+y 1}

Model ex_for_loop_SF

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on page 4-6.
This example model contains one Inport block and one Outport block.

2 Name the model ex_for_loop_ SF.

Enter Ctr1+R to open the Model Explorer.

4 In the Model Explorer, select the output variable, ul, and in the right pane, select
the General tab and set the Initial Value to O.

5 In the Stateflow Editor, select Chart > Add Patterns > Loop > For. The
Stateflow Pattern dialog opens.

6 Fill in the fields in the Stateflow Pattern dialog box as follows:

w

Description For Loop (optional)
Initializer expression inx =0

Loop test expression inx < 10
Counting expression inx++

For loop body yl = ul[inx] + vyl

The Stateflow diagram is shown.
7 Press Ctrl+B to build the model and generate code.

4-38

For Loop

Results

The generated code includes the following ex_for_loop_SF_step function in the file
ex_for_loop_SF.c:

/* Block signals (auto storage) */
BlocklO B;

/* External inputs (root inport signals with auto storage) */
External Inputs U;

/* External outputs (root outports fed by signals with auto storage) */
ExternalOutputs Y;

/* Model step function */
void ex_for_loop_SF_step(void)

int32_T sf_inx;

/* Stateflow: "<Root>/Chart”™ incorporates:
* Inport: "<Root>/ul”
*/
/* Gateway: Chart */
/* During: Chart */
/* Transition: "<S1>:24" */
/* For Loop */
/* Transition: "<S1>:25" */
for (sf_inx = 0; sf_inx < 10; sf_inx++) {
/* Transition: "<S1>:22% */
/* Transition: "<S1>:23" */
B.yl = U.ul[sf_inx] + B.yl;

/* Transition: °"<S1>:21% */

}
/* Transition: "<S1>:20" */

/* Outport: "<Root>/yl® */
Y.yl = B.yl;

4-39

4 Patterns for C Code

4-40

Modeling Pattern for For Loop: MATLAB Function block

Procedure

1

Follow the directions for “Set Up an Example Model With a MATLAB Function
Block” on page 4-7. This example model contains one Inport block and one Outport
block.

2 Name your model ex_for_loop_ML.
3 In the MATLAB Function Block Editor enter the function, as follows:
function yl1 = fcn(ul)
yl = 0;
for inx=1:10
yl = ul(inx) + yl ;
end
4 Press Ctrl+B to build the model and generate code.
Results

The generated code includes the following ex_for_loop_ML_step function in the file
ex_for_loop ML.c:

/* Exported block signals */
real_T ul[10]; /* "<Root>/ul” */
real_T yl; /* "<Root>/MATLAB Function® */

/* Model step function */
void ex_for_loop_ML_step(void)

{
Iint32_T inx;

/* MATLAB Function Block: "<Root>/MATLAB Function® incorporates:
* Inport: "<Root>/ul”
*/
/* MATLAB Function "MATLAB Function®: "<S1>:1% */
/* "<S1>:1:3" */
yl = 0.0;
for (inx = 0; inx < 10; inx++) {
/* "<S1>:1:5" */
/* "<S1>:1:6" */
yl = ul[inx] + yi;
¥
3

While Loop

While Loop

C Construct

while(flag && (num_iter <= 100)
{

flag = func Q;

num_iter ++;

}

Modeling Patterns

“Modeling Pattern for While Loop: While Iterator Subsystem block” on page 4-42
+ “Modeling Pattern for While Loop: Stateflow Chart” on page 4-45
+ “Modeling Pattern for While Loop: MATLAB Function Block” on page 4-48

4-41

4 Patterns for C Code

4-42

Modeling Pattern for While Loop: While lterator Subsystem block

One method for creating a while loop is to use a While Iterator Subsystem block from
the Simulink > Ports and Subsystems library.

1 T IC while { .}
Initial Condition
SET to TRUE
While lterator
Subsystem
Model ex_while_loop_SL
flagh—~ »| cond
unc while {
.
@ 2| C> * IC
IC

While lterator

ex_while_loop_SL/While lterator Subsystem

Procedure

1 Drag a While Iterator Subsystem block from the Simulink > Ports and
Subsystems library into the model.

2 Drag a Constant block from the Simulink > Commonly Used Blocks library
into the model. In this case, set the Initial Condition to 1 and the Data Type to
Boolean. You do not have to set the initial condition to FALSE. The initial condition
can be dependent on the input to the block.

While Loop

3 Connect the Constant block to the While Iterator Subsystem block.

4 Double-click the While Iterator Subsystem block to open the subsystem.

5 Place a Subsystem block next to the While Iterator block.

6 Right-click the subsystem and select Block Parameters (Subsystem). The Block
Parameters dialog box opens.

7 Select the Treat as atomic unit parameter to configure the subsystem to generate
a function. This enables parameters on the Code Generation tab.

8 Select the Code Generation tab. From the Function packaging list, select the
option, Nonreusable function.

9 From the Function name options list, select the option, User specified. The
Function name parameter is displayed.

10 Specify the name as func.

11 Click Apply.

12 Double-click the func subsystem block. In this example, function func() has an
output Flag set to O or 1 depending on the result of the algorithm in func(). Create
the func() algorithm as shown in the following diagram:

Random
MNumber
1 o
Relational fleg
Constant1 Operstor
func

13 Double-click the While Iterator block to set the Maximum number of iterations to
100.

14 Connect blocks as shown in the model and subsystem diagrams.

Results

The generated code includes the following ex_while_loop_SL_ step function in the file
ex_while_loop_SL.c:

/* Exported block signals */

4-43

4 Patterns for C Code

boolean_T IC; /* "<Root>/Initial Condition SET to TRUE" */
boolean_T flag; /* "<S2>/Relational Operator® */

/* Block states (auto storage) */
D_Work DWork;

/* Start for atomic system: "<S1>/func() Is a function that updates the flag® */
void func_Start(void)

/* Start for RandomNumber: “<S2>/Random Number® */

DWork.RandSeed = 1144108930U;

DWork.NextOutput = rt_NormalRand(&DWork.RandSeed) * 1.7320508075688772E+000;
3

/* Output and update for atomic system:
* *"<S1>/func() Is a function that updates the flag™ */
void func(void)

/* RelationalOperator: ®"<S2>/Relational Operator® incorporates:
* Constant: "<S2>/Constantl”

* RandomNumber: ®<S2>/Random Number*

*/

flag = (DWork.NextOutput > 1.0);

/* Update for RandomNumber: ®*<S2>/Random Number*® */
DWork.NextOutput = rt_NormalRand(&DWork.RandSeed) * 1.7320508075688772E+000;
3

/* Model step function */
void ex_while_loop_SL_step(void)
{

int32_T sl_iter;

boolean_T loopCond;

/* Outputs for iterator SubSystem:
* “<Root>/While lterator Subsystem® incorporates:
* Whilelterator: "<S1>/While Iterator”
*/
sl _iter = 1;
loopCond = IC;
while (loopCond && (sl_iter <= 100)) {
/* Outputs for atomic SubSystem:
* "<S1>/func() Is a function that updates the flag® */
funcQ;

/* end of Outputs for SubSystem:

* "<S1>/func() Is a function that updates the flag® */
loopCond = flag;

sl_iter++;

}

/* end of Outputs for SubSystem: "<Root>/While lterator Subsystem® */

4-44

While Loop

Modeling Pattern for While Loop: Stateflow Chart

um_iler nim_iter I
w | d"} i num_iter
e
unc)
Y
Chart Trigger(}
flag
func
Model ex_while_loop_SF
4
num_tter =1;
¥
p [(flag) && (num_iter==100]]
::___}J =
2 T~
H‘“x. .
H‘.H““a. num_iter++
HH“»‘_

]
'

ex_while_loop_SF/Chart Executes the desired while-loop

Procedure

1 Add a Stateflow Chart to your model from the Stateflow > Chart library.

2 Double-click the chart.

3 Add the input, Flag, and output, func, to the chart and specify their data type.
4 Connect the data input and output to the Stateflow chart as shown in the model

diagram.

5 In the Model Explorer, select the output variable, then, in the right pane, select the

General tab and set the Initial Value to O.

4-45

4 Patterns for C Code

4-46

10

11

12

13
14
15

16
17

18

Select Chart > Add Patterns > Loop > While. The Stateflow Pattern dialog opens.
Fill in the fields for the Stateflow Pattern dialog box as follows:

Description While Loop (optional)
While condition (flag) && (num_iter<=100)
Do action func; num_iter++;

Place a Subsystem block in your model.

Right-click the subsystem and select Block Parameters (Subsystem). The Block
Parameters dialog box opens.

Select the Treat as atomic unit parameter to configure the subsystem to generate
a function. This enables parameters on the Code Generation tab.

Select the Code Generation tab. From the Function packaging list, select the
option, Nonreusable function.

From the Function name options list, select the option, User specified. The
Function name parameter is displayed.

Specify the name as func.

Click Apply to apply the changes.

Double-click the func subsystem block. In this example, function func has an
output Flag set to O or 1 depending on the result of the algorithm in func(). The

Trigger block parameter Trigger type is function-call. Create the func()
algorithm, as shown in the following diagram:

rancom
Mumber - fag flag
Relational
Operator
1
Constant
Trigger

ex_while_loop_SF/func A function that updates the flag
Save and close the subsystem.

Connect blocks to the Stateflow chart as shown in the model diagram for
ex_while_loop_ SF.

Save your model.

While Loop

Results

The generated code includes the following ex_while_loop_SF_step function in the file
ex_while_loop_SF.c:

/* Exported block signals */
Iint32_T num_iter; /* "<Root>/Chart Executes the desired while-loop® */
boolean_T flag; /* "<S2>/Relational Operator® */

/* Block states (auto storage) */
D_Work DWork;

/* Model step function */
void ex_while_loop_SF_step(void)

/* Stateflow: "<Root>/Chart Executes the desired
* while-loop™ incorporates:
* SubSystem: "<Root>/func() A function that
* updates the flag”
*/
/* Gateway: Chart
Executes the desired while-loop */
/* During: Chart
Executes the desired while-loop */
/* Transition: "<S1>:2° */
num_iter = 1;
while (flag && (num_iter <= 100)) {
/* Transition: "<S1>:3" */
/* Transition: "<S1>:4" */
/* Event: "<S1>:12" */
funcQ);
num_iter = num_iter + 1;

/* Transition: "<S1>:5° */

}

/* Transition: "<S1>:1" */

}

4-47

Patterns for C Code

4-48

Modeling Pattern for While Loop: MATLAB Function Block

Zfunc_fag>

h

func_flag func()
fcn 1

Trigger()
MATLAB Function func_flag

func

Model ex_while_loop_ML

Procedure

1

In the Simulink Library Browser, click Simulink > User Defined Functions, and
drag a MATLAB Function block into your model.

Double-click the MATLAB Function block. The MATLAB Function Block Editor
opens.

In the MATLAB Function Block Editor enter the function, as follows:
function fcn(func_flag)

flag = true;
num_iter = 1;

while(flag && (num_iter<=100))
func;
flag = func_flag;
num_iter = num_iter + 1;
end

Click Save and close the MATLAB Function Block Editor.

Place a Subsystem block in your model, right-click the subsystem and select Block
Parameters (Subsystem). The Block Parameters dialog box opens.

Select the Treat as atomic unit parameter to configure the subsystem to generate
a function. This enables parameters on the Code Generation tab.

While Loop

7 Select the Code Generation tab. From the Function packaging list, select the
option, Nonreusable function.

8 From the Function name options list, select the option, User specified. The
Function name parameter is displayed.

9 Specify the name as func.
10 Click Apply.

11 Double-click the func() subsystem block. In this example, function func() has
an output Flag set to 0 or 1 depending on the result of the algorithm in func().
The Trigger block parameter Trigger type is function-call. Create the func()
algorithm, as shown in the following diagram:

il

Random Trigger
Mumber _
=
—D-.1
» func_fag f
Relational unc flag
Operator

1

Constant1

Model ex_while_loop_ML func
12 Save and close the subsystem.

13 Connect the MATLAB Function block to the func() subsystem.

14 Save your model.
Results

The generated code includes the following while_loop_ML_step function in the file
while_loop_EML.c. In some cases an equivalent for loop might be generated instead
of awhile loop.

/* Exported block signals */
boolean_T func_flag; /* "<S2>/Relational Operator® */

/* Block states (auto storage) */
D_Work DWork;

/* Model step function */
void while_loop_ML_step(void)
{

boolean_T func_flag_0;

boolean_T flag;

int32_T num_iter;

4-49

4 Patterns for C Code

/* MATLAB Function Block: "<Root>/MATLAB Function Executes
* the desired While-Loop®" incorporates:

* SubSystem: "<Root>/func() updates the "flag"*

*/

func_flag_0 = func_flag;

/* MATLAB Function “MATLAB Function

* Executes the desired While-Loop™: "<S1>:1" */
/* "<S1>:1:3" */

flag = TRUE;

/* "<S1>:1:4" */
num_iter = 1;
while (flag && (num_iter <= 100);
num_iter++) {
/* "<S1>:1:6" */
/* "<S1>:1:7" */
funcQ;

/* "<S1>:1:8" */
flag = func_flag_0;

/* "<S1>:1:9" */
num_iter++;

4-50

Do While Loop

Do While Loop

C Construct

num_iter = 1;
do {
flag = func(Q;
num_iter++;
}
while (flag && num_iter <= 100)

Modeling Patterns

“Modeling Pattern for Do While Loop: While Iterator Subsystem block” on page
4-52

+ “Modeling Pattern for Do While Loop: Stateflow Chart” on page 4-55

4-51

4 Patterns for C Code

Modeling Pattern for Do While Loop: While lterator Subsystem block

One method for creating a while loop is to use a While Iterator Subsystem block from
the Simulink > Ports and Subsystems library.

do { ... } while

While lterator

Subsystem

ex_do_while_loop_SL

<flag> do {
cond

1 while

Y

flag

func

While lterator

ex_do_while_loop_SL/While lterator Subsystem

Procedure

1 Drag a While Iterator Subsystem block from the Simulink > Ports and
Subsystems library into the model.

2 Double-click the While Iterator Subsystem block to open the subsystem.

3 Place a Subsystem block next to the While Iterator block.

4 Right-click the subsystem and select Block Parameters (Subsystem). The Block
Parameters dialog box opens.

5 Select the Treat as atomic unit parameter to configure the subsystem to generate
a function. This enables parameters on the Code Generation tab.

6 Select the Code Generation tab. From the Function packaging list, select the

4-52

option, Nonreusable function.

Do While Loop

7 From the Function name options list, select the option, User specified. The
Function name parameter is displayed.

8 Specify the name as func.

9 Click Apply.

10 Double-click the func subsystem block. In this example, function func has an
output Flag set to O or 1 depending on the result of the algorithm in func. Create the
func algorithm as shown in the following diagram:

|
i
; K
ot oo =
ex_do_while_loop_SL/While lterator Subsystem/func

11 Double-click the While Iterator block. This opens the Block Parameters dialog.

12 Set the Maximum number of iterations to 100.

13 Specify the While loop type as do-while.

14 Connect blocks as shown in the model and subsystem diagrams.

15 Enter Ctr1+B to generate code.

Results

void func(void)

{

}

voi

{

flag = (DWork.NextOutput > (real_T)P.Constantl_Value);

DWork.NextOutput =
rt_NormalRand(&DWork.RandSeed) * P.RandomNumber_StdDev +
P.RandomNumber_Mean;

d ex_do_while_loop_SL_step(void)
int32_T sl_iter;
sl_iter = 1;
do {
funcQ;

sl _iter++;
} while (flag && (sl_iter <= 100));

4-53

4 Patterns for C Code

4-54

Do While Loop

Modeling Pattern for Do While Loop: Stateflow Chart

<flag>

h 4

flag [tj[%an(}

N 4
Chart Trigger()
flag
func

ex_do_while_loop_SF

num_iter="1;

&
r'l‘.
e

num_iter++;

¥

-
.8

(" po=ra

4

{fTag && (num_iter<=100}]

ex_do_while_loop_SF/Chart

O b WO -

Add a Stateflow Chart to your model from the Stateflow > Chart library.
Double-click the chart to open it.

Add the inputs and outputs to the chart and specify their data type.
Connect the data input and output to the Stateflow chart.

In the Model Explorer, select the output variable, then, in the right pane, select the
General tab and set the Initial Value to O.

4-55

4 Patterns for C Code

4-56

10

11

12

13
14
15

16
17

18

Select Chart > Add Patterns > Loop > While. The Stateflow Pattern dialog opens.
Fill in the fields for the Stateflow Pattern dialog box as follows:

Description While Loop (optional)
While condition (flag) && (num_iter<=100)
Do action func; num_iter++;

Place a Subsystem block in your model.

Right-click the subsystem and select Block Parameters (Subsystem). The Block
Parameters dialog box opens.

Select the Treat as atomic unit parameter to configure the subsystem to generate
a function. This enables parameters on the Code Generation tab.

Select the Code Generation tab. From the Function packaging list, select the
option, Nonreusable function.

From the Function name options list, select the option, User specified. The
Function name parameter is displayed.

Specify the name as func.

Click Apply to apply the changes.

Double-click the func subsystem block. In this example, function func has an
output Flag set to O or 1 depending on the result of the algorithm in func. The

Trigger block parameter Trigger type is function-call. Create the func
algorithm, as shown in the following diagram:

rancom
Mumber - fag flag
Relational
Operator
1
Constant
Trigger

ex_do_while_loop_SF/func Updates the flag
Save and close the subsystem.

Connect blocks to the Stateflow chart as shown in the model diagram for
ex_do _while_loop_SF.

Save your model.

Do While Loop

Results

void ex_do_while_loop_SF_step(void)
{
int32_T sf_num_iter;
num_iter = 1;
do {
funcQ;
num_iter++;
} while (flag && (sf_num_iter <= 100));

4-57

4 Patterns for C Code

Function Call

To generate a function call, add a subsystem, which implements the operations that you
want.

C Construct

void add_function(void)

{
yl = ul + u2;
T
O
ul ¥i _._
Q=
uz

Add_Subsystemn

ex_function_call

Procedure

1 Create a model containing a subsystem. In this example, the subsystem has two
inputs and returns one output.

2 Double-click the subsystem. Create Add_Subsystem, as shown.

»{ 1]

yi

ex_function_call/Add_Subsystem

3 Right-click the subsystem and select Block Parameters (Subsystem) to open the
Subsystem Parameters dialog box.

4 Select the Treat as atomic unit parameter. This enables parameters on the Code
Generation tab.

4-58

Function Call

Select the Code Generation tab. For the Function packaging parameter, from
the drop-down list, select Nonreusable function

5 For the Function name options parameter, from the drop-down list, select User
specified.

6 In the Function name field, enter the subsystem name, add_function.

7 Click Apply and OK.

8 Press Ctrl+B to build and generate code.

Results

In ex_function_call.c, the function is called from ex_function_call_step:

void ex_function_call_step(void)

}

add_function();

The function prototype is externed through the subsystem file, add_function.h.

extern void add_function(void);

The function definition is in the subsystem file add_function.c:

void add_function(void)

{
}

function_call_Y.yl = ul + u2;

4-59

4 Patterns for C Code

Function Prototyping

4-60

C Construct

double add_function(double ul, double u2)
{

}

return ul + u2;

Modeling Patterns

* “Function Call Using Graphical Functions” on page 4-60
+ “Control Function Prototype of the model_step Function” on page 4-62

Function Call Using Graphical Functions

Procedure
1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on page 4-6.
This example model contains two Inport blocks and one Outport block.

2 Name the example model ex_func_SF.

In the Stateflow Editor, create a graphical function by clicking the fx button and
placing a graphical function into the Stateflow chart.

Edit the graphical function signature to: output = add_function(ul, u2).

5 Add the transition action, as shown in the following diagram.

Function Prototyping

-
A
I

y1 = add_function{u, u2});

i

function output = add_function(in?, in2

utput =inl + in2;

Ii‘.
‘J:
P
I_t-l

ex_func_SF/Chart

In the Stateflow chart is an example of a simple transition that calls add_function.

6 Open the Model Explorer. From the Model Hierarchy tree, select ex_func_SF >
Chart > f()add_function. On the right pane, specify the Function Inline Option
as Function.

7 From the Model Hierarchy tree, click Chart and on the right pane select the Export
Chart Level Functions (Make Global) parameter. This makes the function
available globally to the entire model.

8 Press Ctrl+B to build the model and generate code.
Results

ex_Tunc_SF.c contains the generated code:

real_T add_function(real_T inl, real_T in2)

{
}

return inl + in2;

void ex_func_SF_step(void)

yl = add_function(ul, u2);
}

4-61

4 Patterns for C Code

4-62

Control Function Prototype of the model_step Function

D e D
01 ul v1 v

% u2

ex_control_step_function

Procedure

1 Create the model, ex_control_step_function. See “Configure a Signal” on page
4-4 and “Configure Input and Output Ports” on page 4-4, for more information.

2 Press Ctrl+E to open the Configuration Parameters dialog box.

3 On the Code Generation > Interface pane, click Configure Model Functions to
open the Model Interface dialog box.

4 Specify the Function specification parameter as Model specific C
prototypes.

5 Click Get Default Configuration to update the Configure model initialize and
step functions section and list the input and output arguments.

6 To configure the function output argument to pass a pointer, in the Step function
arguments table, specify the Category for the Outport as a Pointer. In addition,
you can specify the step function arguments order and type qualifiers.

7 To validate your changes, click Validate.
8 Press Ctrl+B to build the model and generate code.

Results

ex_control_step_function.c contains the generated code:

void ex_control_step_function_custom(real_T arg_ul, real_T arg_u2, ...
real _T *arg_yl)

(*arg_yl) = arg_ul + arg_u2;

External C Functions

External C Functions
C Construct

extern double add(double, double);

#include "add.h"
double add(double ul, double u2)

{
double y1;
yl = ul + u2;
return (yl);
}

Modeling Patterns

There are several methods for integrating legacy C functions into the generated code.
These methods either create an S-function or make a call to an external C function. For
more information on S-functions, see “S-Functions and Code Generation”.

+ “Use the Legacy Code Tool to Create S-functions” on page 4-63
+ “Use a Stateflow Chart to Make Calls to C Functions” on page 4-65
+ “Using a MATLAB Function Block to Make Calls to C Functions” on page 4-66

Use the Legacy Code Tool to Create S-functions

This method uses the Legacy Code Tool to create an S-function and generate a TLC file.
The code generation software uses the TLC file to generate code from this S-function. The
advantage of using the Legacy Code Tool is that the generated code is fully inlined and
does not need wrapper functions to access the custom code.

Procedure

1 Create a C header file named add.h that contains the function signature:

extern double add(double, double);
2 Create a C source file named add. c that contains the function body:

double add(double ul, double u2)

4-63

4 Patterns for C Code

4-64

{
double y1;
yl = ul + u2;
return (yl);
s

To build an S-function for use in both simulation and code generation, Run the
following script or execute each of these commands at the MATLAB command line:

%% Initialize legacy code tool data structure
def = legacy_code("initialize*);

%% Specify Source File
def._SourceFiles = {"add.c"};

%% Specify Header File
def_HeaderFiles = {"add.h"};

%% Specify the Name of the generated S-function
def._SFunctionName = "add_function”;

%% Create a c-mex File for S-function
legacy_code("sfcn_cmex_generate®, def);

%% Define function signature and target the Output method
def._OutputFcnSpec = [“"double yl1 = add(double ul, double u2)"];

%% Compile/Mex and generate a block that can be used in simulation
legacy_code("generate_for_sim®, def);

%% Create a TLC file for Code Generation
legacy_code("sfcn_tlc_generate®, def);

%% Create a Masked S-function Block
legacy_code("slblock_generate®, def);
The output of this script produces:
A new model containing the S-function block
A TLC file named add_function.tlc.
A C source file named add_function.c.
* A mexw32 dll file named add_function.mexw32

Add inport blocks and an outport block and make the connections, as shown in the
model.

External C Functions

double y1 = add{double u1, double uZ) —h--‘1
v i -

0 0
o =

add_function

ex_function_call_Ict

5 Name and save your model. In this example, the model is named
ex_TFunction_call_lct.

6 Press Ctrl+B to build the model and generate code.
Results

The following code is generated in ex_function_call_lIct.c:

real_T ul;
real_T u2;
real_T yl;
void ex_function_call_lct_step(void)

yl = add(ul, u2);

The user-specified header file, add.h, is included in ex_function_call_Ict.h:

#include "add.h"

Use a Stateflow Chart to Make Calls to C Functions

Procedure

Create a C header file named add.h that contains the example function signature.
2 Create a C source file named add. c that contains the function body.

Follow the steps for “Set Up an Example Model With a Stateflow Chart” on page 4-6.
This example model contains two Inport blocks and one Outport block.

Name the example model ex_exfunction_call_SF.

5 Double-click the Stateflow chart and edit the chart as shown. Place the call to the
add function within a transition action.

4-65

4 Patterns for C Code

4-66

y1 = add(ul,u2),

o
e

l..

ex_exfunction_call_SF/Chart

6 On the Stateflow Editor, select Simulation > Model Configuration
Parameters.

7 On the Configuration Parameters dialog box, select Simulation Target > Custom
Code. In the Include custom C code in generated section, on the left pane, select
Header file and in the Header file field, enter the #include statement:

#include "add.h"

8 In the Include list of additional section, select Source files and in the Source
files field, enter add.c.

9 Press Ctrl+B to build the model and generate code.
Results

ex_exfunction_call_SF.c contains the following code in the step function:
real T ul;

real _T u2;

real_T yl;

void exfunction_call_SF_step(void)

{
yl = (real_T)add(ul, u2);

ex_exfunction_call_SF._h contains the include statement for add. h:

#include "add.h"

Using a MATLAB Function Block to Make Calls to C Functions

Procedure

1 Create a C header file named add.h that contains the example function signature.

External C Functions

2 Create a C source file named add. c that contains the function body.

3 In the Simulink Library Browser, click Simulink > User Defined Functions, and
drag a MATLAB Function block into your model.

4 Double-click the MATLAB Function block. The MATLAB Function Block Editor
opens.

5 Edit the function to include the statement:
function yl = add_function(ul, u2)
%Set the class and size of output
yl = ul;
%Call external C function
y1l = coder.ceval("add”,ul,u2);
end

6 Open the Configuration Parameters dialog box, and select Simulation Target >
Custom Code.

7 In the Include custom C code in generated section, on the left pane, select
Header file and in the Header file field, enter the statement, :
#include "add.h"

8 In the Include list of additional section, select Source files and in the Source
files field, enter add.c.

9 Add two Inport blocks and one Outport block to the model and connect to the
MATLAB Function block.

10 Configure the signals: ul, u2, and y1, as described in “Configure a Signal” on page
4-4.

11 Save the model as ex_exfunction_call_ML.

12 Press Ctrl+B to build the model and generate code.

Results

ex_exfunction_call_ML.c contains the following code:

real_T ul;
real_T u2;
real_T yl1;

void ex_exfunction_call_ML_step(void)

{

4-67

4 Patterns for C Code

yl = add(ul, u2);
}

ex_exfunction_call_ML.h contains the #include statement for add. h:

#include "add.h"

4-68

Macro Definitions (#define)

Macro Definitions (#define)

C Construct

#define p_1 9.8;

Modeling Patterns
“Use a 'Define' Custom Storage Class” on page 4-69

“Use a Custom Header File” on page 4-70

Use a 'Define' Custom Storage Class

Procedure

1 Create a model containing a Gain block.

cI)—- D
ul y1

Gain

2 Press Ctrl+E to open the Configuration Parameters dialog box.

3 In the Configuration Parameter dialog box, on the Optimization > Signals and
Parameters pane, select Inline parameters.

4 Click Apply and OK.

5 In your model, double-click the Gain block. The Block Parameters dialog box opens.
6 In the Value field, enter a variable name. In this example, the variable name is p1.
7

Press Ctrl+H to open the Model Explorer. On the Model Hierarchy pane, select the
Base Workspace.

8 To add an mpt parameter object, in the menu bar, select Add > Add Custom. The
parameter appears in the Contents of: Base Workspace pane.

9 Double-click the mpt.Parameter object and change its name to p1.

10 Click the pl parameter. The data object parameters are displayed in the right pane
of the Model Explorer.

4-69

4 Patterns for C Code

11 In the Value field, enter 9.8. In the Code generation options section, click the
Storage Class drop-down list and select DeFine(Custom).

12 Press Ctrl+B to generate code.
Results

The generated code includes the inlined parameter, pl, in ex_define_data object.c:
/* Model step function */
void ex_define_data_object_step(void)

{
rtY.yl = pl * rtU.ul;

Use a Custom Header File

Procedure

1 Follow steps 1 through 10 of “Use a 'Define' Custom Storage Class” on page 4-69.

2 In the Simulink.Parameter dialog box for p1, in the Value field, enter 9.8. In the
Code generation options section, click the Storage Class drop-down list and
select ImportFromFile(Custom).

3 In the Header file parameter, enter the name of the header file, in this example,
external_params.h.

4 Click Apply and OK.

5 Create the C header file, external _params.h that contains the #define
statement:

#ifndef _EXTERNAL_PARAMS
#define _EXTERNAL_PARAMS

#define pl 9.8
#endif
/* EOF */

6 Press Ctrl+B to generate code.
Results

The generated code includes the inlined parameter, pl, in ex_define_data_object.c:
/* Model step function */

void ex_define_data_object_step(void)

{

4-70

Macro Definitions (#define)

ex_define_data_object_Y._Outl = pl * ex_define_data_object_U.Inl;

4-71

4 Patterns for C Code

Conditional Inclusions (#if / #endif)

4-72

You can generate preprocessor conditional directives in your code by implementing
variant blocks (Model Variants block or Variant Subsystem block) in your model. In the
generated code, preprocessor conditional directives select a section of code to execute at
compile time. To implement variants in your model, see “Workflow for Implementing
Variants”. To generate code for variants, see “Generate Preprocessor Conditionals for
Variant Systems”.

Typedef

Typedef

To generate a typedef definition, use a Simulink_AliasType data object.

C Construct

typedef double float_64;

Procedure

1

Create the ex_get_typedef model with a Gain block.

|

» 2 >

%ﬁm =" y1 _:Tr)
Gain

In the Gain block parameter dialog box, select the Parameter Attributes tab, and
specify the Parameter data type as double.

Right-click the ul signal and select Properties. In the Signal Properties dialog box,
select Signal name must resolve to Simulink signal object.

Right-click the y1 signal and select Properties. In the Signal Properties dialog
box, select the Code Generation tab, and specify the Storage class parameter as
ExportedGlobal.

Create a new alias type by using a Simulink.AliasType data object. At the MATLAB
command line, enter:
Ffloat_64 = Simulink_.AliasType;

In the base workspace, double-click Float_64. The Simulink.AliasType dialog box
opens.

Specify the Base type parameter as double. Click Apply and OK.

Create a data object for the ul signal. In the base workspace, select Add >
Simulink Signal, and name it ul. Specify the Data type parameter as float_64
and the Storage class parameter as Global (custom).

Note: You can also specify an output data type for Simulink blocks using the new
alias type.

Click Apply and OK.

4-73

4 Patterns for C Code

4-74

10 Press Ctrl+B to generate code.

Note: An alternative method for defining a typedef is to import the alias type from a
custom header file. If you want to import all of the typedefs from a C header file, using
this alternative method is useful.

Results

The generated code includes the typedef definition, which is declared within #ifndef
and #endi f statements in the ex_get_typedef types.h file.

#ifndef _DEFINED_TYPEDEF_FOR_float_64_
#define _DEFINED_TYPEDEF_FOR_float_64_

typedef real_T float_64;
typedef creal_T cfloat_64;

#endif

Note: real _T is the Embedded Coder typedeT for double .

The generated code also includes the declaration of the Simulink data objects of the alias
type in ex_get_typedef.c.

float_64 y1;
float_64 ul;

Related Examples
. “Create Data Type Alias in Generated Code”

Structures for Parameters

Structures for Parameters

To generate a structure containing parameters, use a mpt.Parameter object with a
Struct (custom) storage class.

C Construct

typdef struct {
double p1;
double p2;
double p3;

} my_struct_type;

my_struct_type my_struct={1.0,2.0,3.0};

Procedure
1 Create the ex_struct_param model with three Constant blocks and three Outport
blocks.
pl———(D
Constant1 vl
p2—— (2D
Constant2 y2
p3— (3D
Constant3 y3
2 Create a data object for each parameter, p1l, p2, and p3. At the MATLAB command
line, enter:
pl mpt.Parameter;

mpt.Parameter;
mpt.Parameter;

p2
p3

3 In the base workspace, double-click one of the parameter data objects to open the
mpt.Parameter dialog box.

4 Specify a Value parameter for each parameter object.

5 Specify the Storage class parameter as Struct (Custom) for each parameter
object.

4-75

4 Patterns for C Code

6 In the Custom Attributes section, specify the Struct name as my_struct. Click
Apply and OK.

7 Press Ctrl+E to open the Configuration Parameters dialog box.

8 Open the Optimization > Signals and Parameters pane, and select the Inline
parameters parameter.

9 Click Apply and OK.
10 Press Ctrl+B to generate code.

Results

The generated code includes the typedef definition for a structure, which is declared in
the ex_struct_param_types.h file.

/* Type definition for custom storage class: Struct */
typedef struct my_struct_tag {
real_T pl;
real_T p2;
real_T p3;
} my_struct_type;

The generated code also includes the declaration of my struct in ex_struct_param.c.

/* Definition for custom storage class: Struct */
my_struct_type my_struct = {

/* pl */

1.0,

/% p2 */
2.0,

/* p3 */
3.0

4-76

Structures for Signals

Structures for Signals

To generate a structure containing parameters, use a mpt.Signal object with a Struct
(custom) storage class or a Simulink non-virtual bus object.

C Construct

typedef struct {
double ul;
double u2;
double u3;

} my_signals;

Modeling Patterns
“Structure for Signals Using a 'Struct' Custom Storage Class” on page 4-77

“Structure for Signals Using a Simulink Non-Virtual Bus Object” on page 4-78

Structure for Signals Using a 'Struct' Custom Storage Class
Procedure

1 Create the ex_signal_struct_csc model using the blocks shown and follow the
steps to configure the signals and model.

ut €ul : @1)
Gain1 y
2 +u2 4 (2
u2 - y2
Gain2
u3 €u3 : C_g)
Gain3 ¥

2 Double-click a Gain block to open the block parameter dialog box. Set the values of
the Gain blocks as shown in the model diagram.

3 Right-click the ul signal and select Properties. In the Signal Properties dialog box,
select Signal name must resolve to Simulink signal object. Repeat for signals
u2 and u3.

4-77

4 Patterns for C Code

4 At the MATLAB command line, create a mpt.Signal data object for each input
signal.
ul

u2
u3

mpt.Signal;
mpt.Signal;
mpt.Signal;

Note: You can also create a data object in the Model Explorer base workspace, by
selecting Add > Add Custom.

5 In the base workspace, configure each of the data objects, ul, u2, and u3. Double-
click a data object, to open the mpt.Signal parameter dialog box.

6 Specify the Data type parameter as auto and the Storage class parameter as
Struct (custom).

7 Click Apply and OK.
8 Press Ctrl+B to generate code.

Results

The generated code includes the typedef definition for a structure, which is declared in
the ex_signal_struct_csc_types.h file.
/* Type definition for custom storage class: Struct */
typedef struct my_signal_struct_tag {
real_T ul;
real_T u2;

real_T u3;
} my_signal_struct_type;

The generated code also includes the declaration of my_signal_struct in
ex_signal_struct_csc.c.

/* Definition for custom storage class: Struct */
my_signal_struct_type my_signals;

Structure for Signals Using a Simulink Non-Virtual Bus Object
Procedure

1 Create the ex_signal_struct_bus model using the blocks shown and follow the
steps to configure the bus object and model.

4-78

Structures for Signals

o

0 ut

@D o D
U2 u2 v1 v

3 u3
u3
This block creates a bus signal from its inputs.

Add the Inport blocks, an Outport block, and a Bus Creator block to your diagram.
Double-click the Bus Creator block to open the block parameter dialog box.
Specify the Number of inputs parameter as 3. Click Apply.

O b WOWDN

In your model diagram, connect the three Inport blocks to the three inports of the
Bus Creator block. Also, connect the outport of the Bus Creator block to the Outport
block.

6 Label the signals as shown in the model diagram.
7 In the Bus Creator block parameter dialog box, Signals in bus now displays the
signals connected to the Bus Creator block.

8 Create a bus object named MySignals that includes signals ul,u2, and u3. For more
information on creating bus objects, see “Manage Bus Objects with the Bus Editor”.
Once the bus object, MySignals, is created, it appears in the base workspace.

9 In the Bus Creator block parameter dialog box, select the Output as nonvirtual
bus parameter, which specifies that bus signals must be grouped into a structure in
the generated code.

10 Click Apply and OK.
11 Press Ctrl+B to generate code.

Results

The generated code includes the typedef definition for a structure, which is declared in
the signal_struct bus_ types.h file.

typedef struct {
real_T ul;
real_T u2;
real_T u3;

} MySignals;

4-79

4 Patterns for C Code

Nested Structures

One way to create nested structures of signals in the generated code is by using multiple
non-virtual bus objects. When nesting bus objects, all of the bus objects must either be
non-virtual, or all of them must be virtual.

C Construct

typedef struct {
double ul;
double u2;
double u3;

} my_signalsl123;

typedef struct {
double u4;
double u5;
double u6;

} my_signals456;

typedef struct {
my_signalsl23 y1;

my_signals456 y2;
} nested_signals;

Procedure

1 Create the ex_nested_structure model using the blocks shown and follow the
steps to configure the bus objects and model.

4-80

Nested Structures

&b ut
ut
ZUQ u2 v1
3 u3
u3
L
I)M ud Generate a
nested structure
C%)Lﬁ y2
B ut
ut

For each bus in the model, follow the instructions for “Structure for Signals
Using a Simulink Non-Virtual Bus Object” on page 4-78, creating bus objects
My_Signals_123 and My_Signals_456.

Drag a Bus Creator block into your model. Configure the Bus Creator block so that it
takes in signals from different buses.

Double-click the Bus Creator block to open the block parameter dialog box.
Specify the Number of inputs parameter as 2. Click Apply.

In your model diagram, connect the two bus outports to the inports of the new Bus
Creator block.

Label the signals as shown in the model diagram.

In the Bus Creator block parameter dialog box, Signals in bus now displays the
signals, y1 and y2, connected to the Bus Creator block.

Create a bus object named Nested_Signals that includes signals y1 and y2,
where the DataType for y1 is My Signals_123 and the DataType for y2 is
My Signhals_456.

4-81

4 Patterns for C Code

B= Bus Editor - Manage Bus Objects in the Base Workspace H=] B3

File Edit View Options Help
JJ{_B# ‘E’é |-§ -t 3 | & By B X “JFiIter:Ib\,r Bus Mame ;I B
[ame |pataType | Simulink Bus: Nested_signals

y1{My_Signals... My_Signals_123 ~Properties
y2{My_Signals... My_Signals_458

Elﬁ Base Workspace
- = My_Signals_123

Name: INested_SignaIs

HeaderFile: I

Description:

For more information on creating bus objects, see “Manage Bus Objects with the Bus
Editor”. Once the bus object, Nested_Signals, is created, it appears in the base
workspace.

10 In the Bus Creator block parameter dialog box, select the Output as nonvirtual
bus parameter, which specifies that bus signals must be grouped into a structure in
the generated code.

11 Click Apply and OK.

12 Press Ctrl+B to generate code.

Results

The generated code includes the typedef definitions for structures, which are declared
in the ex_nested_structure_types.h file.

#ifndef _DEFINED_TYPEDEF_FOR_My_Signals_123_
#define _DEFINED_TYPEDEF_FOR_My_Signals_123_

typedef struct {
real_T ul;
real_T u2;
real_T u3;

} My_Signals_123;

#endif

4-82

Nested Structures

#ifndef _DEFINED_TYPEDEF_FOR_My_Signals_456_
#define _DEFINED_TYPEDEF_FOR_My_Signals_456_

typedef struct {
real_T u4;
real_T u5;
real_T u6;

} My_Signals_456;

#endif

#ifndef _DEFINED_TYPEDEF_FOR_Nested_Signals_
#define _DEFINED_TYPEDEF_FOR_Nested_Signals_

typedef struct {
My_Signals_123 y1;
My_Signals_456 y2;
} Nested_Signals;

#endif

4-83

4 Patterns for C Code

Bitfields

4-84

One way to create bitfields in the generated code is by using a mpt.Parameter object
with Bitfield (Custom) storage class.

C Construct

typedef struct {
unsigned int pl :
unsigned int p2 :
unsigned int p3 :
} my_struct_type

R

Procedure

1 Using the model, ex_struct_param, in “Structures for Parameters” on page 4-75,
rename the model as ex_struct_bitfield_CSC.

2 Create a data object for each parameter, pl, p2, and p3. At the MATLAB command

line, enter:

pl = mpt.Parameter;
p2 = mpt.Parameter;
p3 = mpt.Parameter;

3 In the base workspace, double-click one of the parameter data objects to open the
mpt.Parameter dialog box.

4 Specify the Value parameter for each parameter object.

5 Specify the Storage class parameter as BitField (Custom) for each parameter
object.

6 In the Custom Attributes section, specify the Struct name as my_struct. Click
Apply and OK.

7 Specify the data objects for each parameter.

Bitfields

Contents of: Base Workspace I ‘ mpt.Parameter: p1

Column View: |Data Objects vl Show Details 3 obiect(s) Value: IU
|Name | Value |DaIETypE |Min | Max |I: Data type: IbUUlEﬁn j

[#] p1 0 boolean -Inf Inf [
p2 1 boolean -Inf Inf
[i‘:‘il p3] boolean -Inf Inf

Dimensions: I [11] Complexity: I real

Minimum: I -Inf Maximum: I Inf

Units:

Code generation options

Storage dass: IBiiFiEId {Custom)

Struct name: [my_struct

’rCusbom attributes

8 Press Ctrl+E to open the Configuration Parameters dialog box.

9 Open the Optimization > Signals and Parameters pane, and select the Inline
parameters parameter.

10 Click Apply and OK.
11 Press Ctrl+B to generate code.

Results

The generated code of the model, ex_struct _bitfield CSC, includes the typedef
definition for a Bitfield, which is declared in the ex_struct_bitfield CSC types.h
file.

/* Type definition for custom storage class: BitField */
typedef struct my_struct_tag {

uint_T pl : 1;

uint_T p2 :© 1;

uint_T p3 :© 1;
} my_struct_type;

4-85

4 Patterns for C Code

Arrays for Parameters

To create an array in the generated code, you can use a constant parameter in the base
workspace, or a mpt.Parameter.

C Construct
int params[5]= {1,2,3,4,5};
Procedure

1 Create a model, ex_array_params, containing the Constant blocks and Outport
blocks and label the blocks as shown in the model diagram.

params 1 p—————{_1)
Constant1 y1

params2p—————— {2)
Constant2 y2

2 Double-click the Constantl block and give the Constant value the name of a
parameter, paramsl.

3 Double-click the Constant2 block and give the Constant value the name of a
parameter, params2.

4 To create the parameters in the base workspace, at the MATLAB command line,
enter:

paramsl = [1,2,3,4,5];
params2 = mpt.Parameter;

5 In the base workspace, double-click params2 to open the mpt.Parameter dialog
box.

6 In the Value field, specify the array, [1 2 3 4 5].
7 Press Ctrl+E to open the Configuration Parameters dialog box.

8 Open the Optimization > Signals and Parameters pane, and select the Inline
parameters parameter.

9 Click Apply and OK.

4-86

Arrays for Parameters

10 Press Ctrl+B to generate code.

Results

The generated code includes the array, params2, in the ex_array_params.c file:

intl6_T params2[5] = { 1, 2, 3, 4, 5} ;

The data object, paramsi, is defined in the array_params_data. c file:

/* Constant parameters (auto storage) */
const ConstParam_array_params array_params_ConstP = {
/* Computed Parameter: Constantl_Value

* Referenced by: "/Constantl”

*/

{1, 2,3,4,5%}
}:
where ConstParam_array_params is a structure containing the array and defined in

the array_params.h file.

typedef struct {
/* Computed Parameter: Constantl_Value
* Referenced by: "/Constantl”
*/
intl6_T Constantl_Value[5];
} ConstParam_array_params;

4-87

4 Patterns for C Code

Arrays for Signals

To create an array in the generated code for signal data, you can specify a signal as
ExportedGlobal, or use a mpt.Signal object.

C Construct

int ul[5];
int y1[5];

Procedure

1 Create the ex_array_signals model using the blocks shown and follow the steps
to configure the signals and model.

&b

ut

h i

| B
ul L5/ Al G—P
Gain ¥
2 Double-click the Inport block to open the Inport block parameter dialog box.

3 Select the Signal Attributes tab and specify the Port dimensions parameter as 5,
for an array of length 5.

4 Click OK.
5 Right-click the ul signal line and select Properties.

6 Select the Code Generation tab and specify the Storage Class parameter as
ExportedGlobal.

7 Repeat steps 5 and 6 for signal y1.
8 Press Ctrl+B to generate code.

Note: Alternatively, you can use Simulink data objects (mpt.Signal) to specify the
storage class and dimensions for the signals, ul and y1.

Results
The generated code includes arrays for ul and y1 in the ex_array_signals.c file:

intlé_T ul[5];
intle_T yl1[5];

4-88

Arrays for Signals

In this case, a For loop is generated to carry out the gain operations on elements of the
input signal.
int32_T i;
for (i =0; 1 <5; i++) {
yi[i] = (int16_T)(5 * ul[il);

However, if the dimension of the array is less than a threshold value (typically 5), code
generation might not include a for loop for array operations.

4-89

4 Patterns for C Code

Pointers for Signals

4-90

To create a pointer in the generated code, you can configure a signal to use the
ImportedExternPointer storage class or use an mpt.Signal (or mpt.Parameter for
parameters) object with an ImportedExternPointer storage class.

C Construct

extern double *ul;

Procedure

This is a quick method to obtain pointers in the generated code. You cannot control the
data type, which is decided by the model compilation process.

1

Create the ex_pointer_signal model using the blocks shown and follow the steps
to configure the signals and model.

ut Gain vl

2 Label the signal to be imported as a pointer, in this example, ul.

3 Right-click the ul signal line and select Properties.

4 Select the Code Generation tab and specify the Storage Class parameter as
ImportedExternPointer.

5 Click OK.

6 Press Ctrl+B to generate code.

Results

The generated code includes the extern declaration for the pointer in the
ex_pointer_signal_private_h file.

extern real T *ul;

Pointers Using Simulink Data Objects

Pointers Using Simulink Data Obijects

You can control the data type of a signal or parameter by using a Simulink data object to
generate a pointer.

C Construct

extern double *ul;

Procedure

You can use this procedure for either a signal or parameter. To create a pointer for a
parameter, use an mpt.Parameter instead of an mpt.Signal data object described in
step 3.

1 Create the ex_pointer_signal_data_object model using the blocks shown and
follow the steps to configure the signals and model.

&b

ut

h 4

| B
ul L2/ Al ER

Gain y
Label the signal to be imported as a pointer, in this example, ul.
At the MATLAB command line, create a data object for signal ul.

w N

ul = mpt.Signal;

In the base workspace, double-click ul to open the mpt.Signal dialog box.
Specify the Storage class parameter as ImportedExternPointer.

Click Apply and OK.

Press Ctrl+B to generate code.

N O O A~

Results

The generated code includes the extern declaration for the pointer in the
ex_pointer_signal_data object private.h file.

extern real_T *ul;

The ex_pointer_signal_data object private.h file imports the pointer into the
generated code. To compile the code, you must declare and define the pointer in the main
program.

4-91

Variant Systems

“About Variant Systems” on page 5-2

“Why Generate Code for Variant Systems?” on page 5-3

“Generate Preprocessor Conditionals for Variant Systems” on page 5-4

“Review Code Variants in Code Generation Report” on page 5-7

“Generate Code for Model Variants” on page 5-8

“Generate Code for Variant Subsystems” on page 5-10

“Restrictions on Variant Subsystem Code Generation” on page 5-15

“Special Considerations for Generating Preprocessor Conditionals” on page 5-17
“Limitations on Generating Code for Variants” on page 5-18

“Generated Code Components Not Compiled Conditionally” on page 5-19

5 Variant Systems

About Variant Systems

Embedded Coder generates code from a Simulink model containing one or more Variant
Subsystem blocks. To learn how to create a model containing variant blocks, see
“Workflow for Implementing Variants”.

Code 1s generated for different variant choices, the active variant, and the default
variant. To generate code for variants, set the following conditions in theVariant
Subsystem block:

* Deselect Override variant conditions and use the following variant.
+ Select Generate preprocessor conditionals.
Code generated for variants is surrounded by C preprocessor conditionals #iF, #else,

#elif, and #endif. Therefore, the active variant is selected at compile time and the
preprocessor conditionals determine which sections of the code to execute.

To construct model reference variants and generate preprocessor directives in the
generated code, see the example rtwdemo_preprocessor_script.

To construct variant subsystems and generate preprocessor directives in the generated
code, see the example rtwdemo_preprocessor_subsys_script.

Why Generate Code for Variant Systems?

Why Generate Code for Variant Systems?

When you implement variants in the generated code, you can:

* Reuse generated code from a set of application models that share functionality with
minor variations.

+ Share generated code with a third party that activates one of the variants in the code.

+ Validate the supported variants for a model and then choose to activate one variant
for a particular application, without regenerating and re-validate the code.

* Generate code for the default variant that is selected when an active variant does not
exist.

5-3

5 Variant Systems

Generate Preprocessor Conditionals for Variant Systems

5-4

In this section...

“Define Variant Controls” on page 5-4

“Configure Model for Generating Preprocessor Conditional Directives” on page 5-5

“Build Your Model” on page 5-6

Define Variant Controls

To learn about variant controls, see “Create, Export, and Reuse Variant Controls” in
the Simulink documentation. Perform the following steps to define variant controls for
generating code.

1 Open the Model Explorer and select the Base Workspace node.

2 A variant control can be a condition expression, a Simulink.Variant class object
specifying a condition expression or a Simul ink.Parameter object. In the
Model Explorer, select Add > Simulink Parameter. Specify a name for the new
parameter.

3 Use the function Simul ink.VariantManager . findVariantControlVars
to find and convert MATLAB variables used in variant control expressions into
Simulink.Parameter objects. For an example, see “Convert Variant Control
Variables into Simulink.Parameter Objects”.

4 Onthe Simulink.Parameter property dialog box, specify the Value and Data
type.

5 Select one of these Storage class values.

ImportedDefine(Custom)
CompilerFlag(Custom)

+ A storage class created using the Custom Storage Class Designer. Your storage
class must have the Data initialization parameter set to Macro and the Data
scope parameter set to Imported. See “Use Custom Storage Class Designer” for
more information.

6 Specify the value of the variant control. If the storage class is either
ImportedDefine(Custom) or a custom storage class, do the following:

a Specify the Header File parameter as an external header file in the Custom
Attributes section of the Simul ink.Parameter property dialog box.

Generate Preprocessor Conditionals for Variant Systems

b Enter the values of the variant controls in the external header file.

Note: The generated code refers to a variant control as a user-defined macro.
The generated code does not contain the value of the macro. The value of the
variant control determines the active variant in the compiled code.

If the variant control is a Compi lerFlag custom storage class the value of the
variant control is set at compile time. On the Code Generation > General pane
of the Model Configuration Parameters dialog box, add a makefile option to
the “Make command” parameter. For example, for variant control, VSSMODE, enter
make_rtw OPTS="'-DVSSMODE=1"in the Make command field.

Note: If you want to modify the value of the variant control after generating the
makefile, use a makefile option when compiling your code. For example, at a
command line outside of MATLAB, enter:

makecommand - model._mk OPTS="-DVSSMODE=1"

Follow the instructions in “Configure Model for Generating Preprocessor Conditional
Directives” on page 5-5 to implement variant objects for code generation. Check

that only one variant object is active in the generated code by implementing the
condition expressions of the variant objects such that only one evaluates to true.
The generated code includes a test of the variant objects to determine that there is
only one active variant. If this test fails, your code will not compile.

Note: You can define the variant controls using Simul ink.Parameter object of
enumerated type. This approach provides meaningful names and improves the
readability of the conditions. The generated code includes preprocessor conditionals
to check that the variant condition contains valid values of the enumerated type.

Configure Model for Generating Preprocessor Conditional Directives

A WN —

Open the Configuration Parameter dialog box.
Select the Code Generation pane, and set System target file as ert.tlc.
In the Report pane, select Create code generation report.

Select the Code Generation pane, and clear “Ignore custom storage classes”. In
order to generate preprocessor conditionals, you must use custom storage classes.

5 Variant Systems

5-6

5 Select the Interface pane, and select the Use Local Settings option of the
Generate preprocessor conditionals parameter. This parameter is a global
setting for the parent model. This setting enables the Generate preprocessor
conditionals parameter located in the Model Variants block parameters dialog
box or Variant Subsystem parameters dialog box. See “Generate preprocessor
conditionals” for more information.

6 Open the Model Variants block parameters dialog box or the Variant Subsystem
block parameter dialog box, depending on your application. Select the Generate
preprocessor conditionals parameter. If the block parameters dialog box
was already open, close and reopen the dialog box to see the enabled Generate
preprocessor conditionals parameter.

7 Clear the parameter, Override variant conditions and use following variant.

Build Your Model

After configuring your model to generate code, build your model.

Review Code Variants in Code Generation Report

Review Code Variants in Code Generation Report

The Code Variants Report displays a list of the variant objects in alphabetical order
and their condition. The report also lists the model blocks that have Variants, and the
referenced models that use them. In the Contents section of the code generation report,
click the link to the Code Variants Report:

Code Variants Report for rtwdemo_preprocessor

Table of Contents

* Variant Control
® Model Reference Blocks that have Variants
* Suybsystem Blocks that have Variants

Variant Control [hide

Variant Condition Used in Blocks

LINEAR VSSMODE == <Root>/Left Controller
<Root>/Right Controller

NONLINEAR VSSMODE == <Root>/Left Controller

<Root=/Right Controller

Model Reference Blocks that have Variants [hide

Model Block Variant Model

<Root>/Left Controller LINEAR rtwdemo_linl
NONLINEAR rtwdemo_nlinl

<Root>/Right Controller LINEAR rtwdemo._finr
NONLINEAR rtwdemo_nlinr

Subsystem Blocks that have Variants [hide

(No SubSystem blocks that have Variants)

5 Variant Systems

Generate Code for Model Variants

5-8

To open a model for generating preprocessor conditionals, enter rtwdemo_preprocessor.

After building the model, look at the variants in the generated code.
rtwdemo_preprocessor_types.h includes the following:

+ Call to external header file, rtwdemo_preprocessor_macros.h, which contains the
macro definition for the variant control variable, VSSMODE.

/* Includes for objects with custom storage classes. */
#include "‘rtwdemo_importedmacros.h"

* Preprocessor directives defining the variant objects, LINEAR and NONLINEAR. The
values of these macros depend on the value of the variant control variable, VSSMODE.
The condition expression associated with each macro, LINEAR and NONLINEAR,
determine the active variant.

/* Model Code Variants */
#ifndef LINEAR

#define LINEAR (VSSMODE == 0)
#endif

#ifndef NONLINEAR

#define NONLINEAR (VSSMODE == 1)
#endif

* Check that exactly one variant is active at a time:
/* Exactly one variant for "<Root>/Left Controller® should be active */
#if (LINEAR) + (NONLINEAR) != 1

#error Exactly one variant for "<Root>/Left Controller® should be active
#endif

Calls to the step and initialization functions are conditionally compiled as shown in a
portion of the step function, rtwdemo_preprocessor_step:
#if LINEAR
/* ModelReference: "<Root>/Left Controller®™ */
rtwdemo_linl(&rtb_Add, &rtb_LeftController_vmerge_1,
&(rtwdemo_preprocessor_DWork.LeftController_1_DWORK1.rtdw));
#elif NONLINEAR
/* ModelReference: "<Root>/Left Controller®™ */
rtwdemo_nlinl(&rtb_Add, &rtb_LeftController_vmerge_1,
&(rtwdemo_preprocessor_DWork.LeftController_2_DWORK1.rtdw));

#endif
and

#1T LINEAR

/* ModelReference: "<Root>/Right Controller® */

Generate Code for Model Variants

rtwdemo_linr(&trb_Add, &rtb_RightController_vmerge,
&(rtwdemo_preprocessor_DWork._RightController_1_DWORK1.rtdw));

#elif NONLINEAR
/* ModelReference: "<Root>/Right Controller® */
rtwdemo_nlinr(&rtb_Add, &rtb_RightController_vmerge_1,
&(rtwdemo_preprocessor_DWork._RightController_2_DWORK1.rtdw));

#endif /* LINEAR */

5 Variant Systems

Generate Code for Variant Subsystems

5-10

In this section...

“Open Example Model” on page 5-10
“Define Variant Controls” on page 5-10

“Configure Model for Generating Preprocessor Conditional Directives” on page 5-12

“View Generated Code” on page 5-13

Open Example Model

Open model rtwdemo_preprocessor_subsys, which contains a variant subsystem.

Define Variant Controls

Variant controls can be a condition expression or Simul ink.Variant object specifying a
condition expression or a default variant. Condition expressions specified directly or used
in Simulink.Variant objects should reference Simul ink.Parameter objects.

Open the Model Explorer and click the Base Workspace.

2 Select Add > Simulink Parameter to create the variant control variable, VSSMODE.

3 Inthe Simulink.Parameter property dialog box for VSSMODE, specify the Value as
1 and the Data type as int32.

4 Select one of these Storage class values.
* ImportedDefine(Custom)

* Set the external Header File as rtwdemo_importedmacros.h. An external
header file is required for the ImportedDefine(Custom) storage class.

Note: The generated code refers to a variant control variable as a user-defined
macro. The generated code does not contain the value of the macro. The value
of the variant control variable determines the active variant in the compiled
code.

Generate Code for Variant Subsystems

Simulink.Parameter: ¥5SMODE

Yalue: int3201)

Data bvpe: ink32 hd 3-8
Dimensions: |[1 1] Complexity: | real

Mlinirnum: [1] Maimurm: []

nits:

Code generation opkions

Skarage class: | ImpartedDefine (Custam)

Cuskomn attributes

HeaderFile: rbwdemo_impartedmacras.b

+ CompilerFlag(Custom)

+ Set the makefile option to enable a variant. In the Configuration
Parameters dialog box, select the Code Generation > General pane. Then

set Build configuration to Specify.
+ In the C Compiler field, add a -D option. For example, for variant control

VSSMODE, enter -D'""VSSMODE=1"".
Open the RightController variant subsystem and create third variant
LinearModified. Then, open the parameter dialog box for the RightController
subsystem variant.
Set the Variant control values for the three variants, setting the LinearModified
variant as default.

5-11

5 Variant Systems

Pk Function Block Parameters: RightController 3

Yariant Subsysterm

The variant subsystem block can have one active variant for simulation. The variant contral deter mines
which wariant is active. It can be a condition expression, a Simulink.Yariant object specifying a condition
expression or a default variant,

Yariant choices (list of child subsystems)

@ Marme {read-onky) Yariant contral Condition {read-only)
lzl Linear LIMEAFR. * WSEMODE==

— |LinearModified {default) v (MAAY

@ Monlinear MOMLIMEAR. * WSEMODE==1

%,

[T Cwerride variant conditions and use the fallowing variant Code generation

Variant: [LINEAR (Linear) zenerate preprocessor conditionals

Open block in Yariant Manager

J 0K H Cancel H Help Apply

5-12

7 For each variant subsystem, open the parameter dialog box and select Treat as
atomic unit.

Configure Model for Generating Preprocessor Conditional Directives

In order to generate preprocessor conditional directives configure your model as follows:

Generate Code for Variant Subsystems

On the Code Generation pane of the Configuration Parameter dialog box,
specify the System target file parameter as ert.tlc and clear “Ignore custom
storage classes”. In order to generate preprocessor conditionals, you must use custom
storage classes.

On the Code Generation > Interface pane of the Configuration Parameters
dialog box, set Generate preprocessor conditionals to Enable all or Use
local settings. This parameter is a global setting that is applicable to all variant
blocks in the model.

If you specify Enable all, the Generate preprocessor conditionals option is
disabled on the variant subsystem block and the preprocessor conditions are always
generated.

If you specify Use local settings, preprocessor conditions are generated only
when you set the block parameter GeneratePreprocessorConditions to on.

For more information, see “Generate preprocessor conditionals”.

View Generated Code

The generated code contains child subsystems of the Variant Subsystem block
protected by C preprocessor conditionals. In this case, the selection of the active variant
(subsystem) is deferred until the generated code is compiled. Only one variant object,
which 1s encoded in C macros, must evaluate to true.

After building the model, look at the variants in the generated code.
AutoSSVar_types.h includes the following:

Call to external header file, rtwdemo_preprocessor_subsys_types.h, which
contains the macro definitions for the variant control variable VSSMODE.

/* Includes for objects with custom storage classes. */
#include "rtwdemo_importedmacros.h"

Preprocessor directives defining the variant objects. The values of these macros
depend on the value of VSSMODE. The condition expression associated with each macro

determine the active variant.
/* Model Code Variants */
#ifndef LINEAR

#define LINEAR (VSSMODE == 0))
#endif

#ifndef NONLINEAR
#define NONLINEAR (VSSMODE == 1)

5-13

5 Variant Systems

5-14

#endif

* Check for exactly one variant being active at a time:

/* Exactly one variant for "<Root>/LeftController® should be active */
#if (LINEAR) + (NONLINEAR) != 1

#error Exactly one variant for "<Root>/LeftController® should be active
#endif

/* Exactly one variant for "<Root>/RightController” should be active */
#if (LINEAR) + (NONLINEAR) > 1

#error Exactly one variant for "<Root>/LController® should be active
#endif

Calls to the step and initialization functions are conditionally compiled in
rtwdemo_preprocessor_subsys.c. The conditional for the default variant is also
included.
#if LINEAR

Linear(rtb_Addl, &rtb_VariantMergeForOutportOutl, &rtDWork.Linear_c);
#elif NONLINEAR

Nonlinear(rtb_Addl, &rtb_VariantMergeForOutportOutl, &rtDWork.Nonlinear_a);
#else

/* Output and update for atomic system: "<S2>/LinearModified® */
rtb_VariantMergeForOutportOutl = lookl_binlx(rtb_Addl, ...

rtCP_LookupTable_bpOlDat_j, rtCP_LookupTable_tableDa_j, 4U);

#endif

Restrictions on Variant Subsystem Code Generation

Restrictions on Variant Subsystem Code Generation

To generate preprocessor conditionals, the types of blocks that you can place within

the child subsystems of a Variant Subsystem block are limited. Connections are not
allowed in the Variant Subsystem block diagram. However, during the code generation
process, one VariantMerge block is placed at the input of each Outport block within
the Variant Subsystem block diagram. All of the child subsystems connect to each of the
VariantMerge blocks.

In the figure below, the code generation process makes the following connections and
adds VariantMerge blocks to the sldemo_variant_subsystems model.

When compared to a generic Merge block the VariantMerge block can have only one
parameter which is the number of Inputs. The VariantMerge block is used for code
generation in variant subsystems internally, and is not available externally to be used in
models. The number of inputs for VariantMerge is determined and wired as shown in
the figure below.

>

Ot 1 -

sut

Ot Z -

]

rder Controller

Dutl

Out2

OwtZ |-

Nenlinear Controller

5-15

5 Variant Systems

5-16

The child subsystems of the Variant Subsystem block must be atomic subsystems.

Select Treat as atomic unit parameter in the Subsystem block parameters dialog, to
make the subsystems atomic. The VariantMerge blocks are inserted at the outport of
the subsystems if more than one child subsystems are present. If the source block of a
VariantMerge block input is nonvirtual, an error message will be displayed during code
generation. You must make the source block contiguous, by inserting Signal Conversion
blocks inside the variant choices. The VariantMerge block does not support variable
dimensions through it, so you cannot have child subsystems with different output signal
dimensions.

Special Considerations for Generating Preprocessor Conditionals

Special Considerations for Generating Preprocessor Conditionals

* The code generation process checks that the inports and outports of a Model Variants
block are identical (same port numbers and names) to the corresponding inports and
outports of its variants. The build process for simulation does not make this check.
Therefore, if your variant block contains mismatched inports or outports, the code
generation process issues an error.

* The port numbers and names for each child variant subsystem must belong to a
subset of the port numbers and names of the parent Variant Subsystem block.

* The code generation process checks that there is at least one active variant by
using the variant control values stored in the base workspace. The variant control
that evaluates to true becomes the active variant. If none of the variant controls
evaluates to true, the default variant, if specified, becomes the active variant. The
code generation process issues an error if an active variant does not exist.

+ If you comment out child subsystems listed in the Variant Choices table in the
Variant Subsystem block parameter dialog box, the code generator does not generate
code for the commented out subsystems.

+ If the sample time for a default variant differs from that of the other variant choices,
the #else preprocessor conditional is not generated for the default variant. Instead,
an #if V(<variant conditions>) is generated.

5-17

5 Variant Systems

Limitations on Generating Code for Variants

* When you are generating code for Model Variants blocks and Variant Subsystem
blocks, the blocks cannot have:

* Mass matrices
Function call ports
* Outports with constant sample time
+ Simscape™ blocks
* The Model Variants block and its referenced models must have the same number of

inports and outports.
The port numbers and names for each active child subsystem must belong to a subset
of the port numbers and names of the parent Variant Subsystem block.

5-18

Generated Code Components Not Compiled Conditionally

Generated Code Components Not Compiled Conditionally

The following components in the generated code are not compiled conditionally. This is
true even if they are referenced only by code for variant subsystems or models that are
conditionally compiled.

rtModel data structure fields
#include's of utility files

Global non-constant parameter structure fields; when the configuration parameter
Optimization > Signals and Parameters > Parameter structure is set to
NonHierarchical

Global constant parameter structure fields that are referenced by multiple
subsystems activated by different variants

Parameters that are configured to use an imported, exported, or custom code
generation storage class, and are referenced by multiple subsystems that are
activated by different variants

Parameters that are configured to use an imported, exported, or custom code
generation storage class, and are used by variant model blocks

5-19

Scheduling Considerations

* “Use Discrete and Continuous Time” on page 6-2

* “Optimize Multirate Multitasking Operation on RTOS Targets” on page 6-4

6 Scheduling Considerations

Use Discrete and Continuous Time

6-2

In this section...

“Support for Discrete and Continuous Time Blocks” on page 6-2
“Support for Continuous Solvers” on page 6-2

“Support for Stop Time” on page 6-2

Support for Discrete and Continuous Time Blocks

The ERT target supports code generation for discrete and continuous time blocks. If the
Support continuous time option is selected, you can use these blocks in your models,
without restriction.

Note that use of certain blocks i1s not recommended for production code generation

for embedded systems. The Simulink Block Data Type Support table summarizes
characteristics of blocks in the Simulink and Fixed-Point Designer block libraries,
including whether or not they are recommended for use in production code generation. To
view this table, execute the following command and see the “Code Generation Support”
column of the table that appears:

showblockdatatypetable

Support for Continuous Solvers

The ERT target supports continuous solvers. In the Solver options dialog, you can select
an available solver in the Solver menu. (Note that the solver Type must be Fixed-step
for use with the ERT target.)

Note Custom targets must be modified to support continuous time. The required
modifications are described in “Custom Targets” in the Simulink Coder documentation.

Support for Stop Time

The ERT target supports the stop time for a model. When generating host-based
executables, the stop time value is honored if one of the following is true:

+ Classic call interface is selected on the Interface pane

Use Discrete and Continuous Time

+ External mode is selected in the Data exchange subpane of the Interface pane

+ MAT-file logging is selected on the Interface pane

Otherwise, the executable runs indefinitely.

Note: The ERT target provides both generated and static examples of the ert_main.c
file. The ert_main.c file controls the overall model code execution by calling the
model_step function and optionally checking the ErrorStatus/StopRequested
flags to terminate execution. For a custom target, if you provide your own custom static
main.c, you should consider including support for checking these flags.

6-3

6 Scheduling Considerations

Optimize Multirate Multitasking Operation on RTOS Targets

6-4

In this section...

“Overview” on page 6-4
“Use rtmStepTask” on page 6-5
“Scheduling Code for Multirate Multitasking on VxWorks” on page 6-5

“Suppress Redundant Scheduling Calls” on page 6-6

Overview

Using the rtmStepTask macro, targets that employ the task management mechanisms
of an RTOS can eliminate certain redundant scheduling calls during the execution

of tasks in a multirate, multitasking model, thereby improving performance of the
generated code.

To understand the optimization that is available for an RTOS target, consider how the
ERT target schedules tasks for bareboard targets (where RTOS is not present). The
ERT target maintains scheduling counters and event flags for each subrate task. The
scheduling counters are implemented within the real-time model (rtM) data structure as
arrays, indexed on task identifier (tid).

The scheduling counters are updated by the base-rate task. The counters are clock rate
dividers that count up the sample period associated with each subrate task. When a
given subrate counter reaches a value that indicates it has a hit, the sample period for
that rate has elapsed and the counter is reset to zero. When this occurs, the subrate task
must be scheduled for execution.

The event flags indicate whether or not a given task is scheduled for execution. For

a multirate, multitasking model, the event flags are maintained by code in the main
program for the model. For each task, the code maintains a task counter. When the
counter reaches 0, indicating that the task's sample period has elapsed, the event flag for
that task is set.

On each time step, the counters and event flags are updated and the base-rate task
executes. Then, the scheduling flags are checked in tid order, and tasks whose event flag
is set is executed. Therefore, tasks are executed in order of priority.

For bareboard targets that cannot rely on an external RTOS, the event flags are
mandatory to allow overlapping task preemption. However, an RTOS target uses the

Optimize Multirate Multitasking Operation on RTOS Targets

operating system itself to manage overlapping task preemption, making the maintenance
of the event flags redundant.

Use rimStepTask

The rtmStepTask macro is defined in model _h and its syntax is as follows:

boolean task_ready = rtmStepTask(rtm, idx);

The arguments are:

* rtm: pointer to the real-time model structure (rtm)

* 1dx: task identifier (tid) of the task whose scheduling counter is to be tested

rtmStepTask returns TRUE if the task's scheduling counter equals zero, indicating that
the task should be scheduled for execution on the current time step. Otherwise, it returns
FALSE.

If your target supports the Generate an example main program parameter, you can
generate calls to rtmStepTask using the TLC function RTMTaskRunsThisBaseStep.

Scheduling Code for Multirate Multitasking on VxWorks

The following task scheduling code, from ertmainlib.tlc, is designed for multirate

multitasking operation on a Wind River® Systems VxWorks® target. The example uses
the TLC function RTMTaskRunsThisBaseStep to generate calls to the rtmStepTask
macro. A loop iterates over each subrate task, and rtmStepTask is called for each
task. If rtmStepTask returns TRUE, the VxWorks semGive function is called, and the
VxWorks RTOS schedules the task to run.

%assign ifarg = RTMTaskRunsThisBaseStep("i'")
for (i = 1; 1 < %<FcnNumST>; i++) {
if (<ifarg>) {
semGive(taskSemList[i]);
iT (semTake(taskSemList[i],NO_WAIT) I= ERROR) {
logMsg("'Rate for SubRate task %d is too fast.\n",i,0,0,0,0,0);
semGive(taskSemList[i]);
3
3
}

6-5

6 Scheduling Considerations

Suppress Redundant Scheduling Calls

Redundant scheduling calls are still generated by default for backward compatibility. To
change this setting and suppress them, add the following TLC variable definition to your
system target file before the %include '‘codegenentry.tlc" statement:

%assign SuppressSetEventsForThisBaseRateFcn = 1

6-6

Data, Function, and File Definition

Data Definition and Declaration
Management

+ “Overview of Data Objects” on page 7-2

+ “Create Simulink and mpt Data Objects” on page 7-3

+ “Create Data Objects for a Model” on page 7-18

* “Define Global Data Objects in Separate File” on page 7-25
+ “Define Global Data Objects in Separate Files” on page 7-27
+ “Save and Load Data Objects” on page 7-28

7 Data Definition and Declaration Management

Overview of Data Objects

7-2

Data objects include the parameters and signals that the source code uses, and a
description of their properties. Data objects appear in the middle pane of the Model
Explorer. They also appear in the MATLAB workspace. You can control the property
values for each data object, thereby determining how each parameter and signal is
defined and declared in generated code.

Simulink uses a hierarchy of terms that are drawn from object-oriented programming.
For details, see “ Data Objects” in the Simulink documentation. The sketch below
summarizes this hierarchy.

Package
Class - Class
Y llj T P = Property
PV PV PV PV PV = Property Value

You can use the Simul ink.Parameter class to declare a data object for a parameter,
where Simulink is the package name and Parameter is the class name. Likewise, an
instance of a Simulink.Signal class, creates a data object for a signal. Signal data
objects have a different set of properties than a parameter data objects. When you create
a data object, you specify a values for each of the properties, which defines that object.
For more information, see Simulink.Parameter and Simulink.Signal.

Related Examples
. “Create Data Objects for a Model” on page 7-18

Create Simulink and mpt Data Obijects

Create Simulink and mpt Data Objects

In this section...

“Ways to Create Data Objects” on page 7-3

“Create Data Objects with Data Object Wizard” on page 7-4
“Create mpt Data Objects with Data Object Wizard” on page 7-10
“Simulink and mpt Data Object Comparison” on page 7-10

“Create Data Objects from External Data Source” on page 7-15

Ways to Create Data Objects

The Embedded Coder software provides the mpt (module packaging tool) data object,
which contains the properties of Simulink data objects plus properties that provide
additional control over module packaging. For a comparison of the properties of Simulink
and mpt data objects, see “Simulink and mpt Data Object Comparison” on page 7-10.

There are different ways of creating Simulink and mpt data objects.
* Using the MATLAB command line.
+ Using the Model Explorer.

For Simulink data objects, select Add > Simulink Parameter or Add > Simulink
Signal.

For mpt data objects, select Add > Add Custom.

For more information, see “ Data Objects” in the Simulink documentation.

* By invoking the Data Object Wizard for an existing model. For more information and
examples, see “Data Object Wizard” in the Simulink documentation and “Create mpt
Data Objects with Data Object Wizard” on page 7-10.

* Creating data objects based on an external source. You can do this manually item by
item, or together using a script. For more information, see “Create Data Objects from
External Data Source” on page 7-15.

The following sections illustrate how to create Simulink and mpt data objects and
compares their properties as data types.

7-3

7 Data Definition and Declaration Management

7-4

Create Data Obijects with Data Object Wizard

You can use Data Object Wizard to create data objects for your model (see “Data Object
Wizard” in the Simulink documentation).

Data Object Wizard is especially useful for creating multiple data objects for

+ Existing models that do not currently use data objects.

+ Existing models to which you have added signals or parameters and therefore you
need to create more data objects.

Create Data Objects

This procedure creates Simulink data objects using Data Object Wizard.

1 Open the model for which you want to create data objects. For example, open
rtwdemo_mp¥ (which is located in toolbox/rtw/rtwdemos).

2 Open Data Object Wizard by entering dataobjectwizard at the MATLAB

command line or by selecting Data Object Wizard from the Code > Data Objects
menu in the Simulink editor. The Data Object Wizard dialog box appears:

Create Simulink and mpt Data Obijects

Data Object Wizard EI [=) @
Find model data that are not associated with data objects and create objects for these
data.

‘ Object Name | Class ‘ Package
Choose package for selected data objects: Simulink Apply Package
Model name: rtwdemo_mpf Browse...

Find opti
| Root inputs V| States V| Block outputs V| Alias types
/| Root outputs /| Data stores /| Parameters
Find Create Cancel Help

The Model name field displays the name of the model. You could specify a different
model by editing the field or by selecting the model using the adjacent Browse
button. When the Model name field is nonempty, the Find button is enabled.

In the Find options pane, select the desired check boxes. For descriptions of

each check box, see “Data Object Wizard” in the Simulink documentation. Be

sure to check the Alias types option. This finds user-registered data types in the
sl_customization.m file plus data type replacements specified for the model in
the Data Type Replacement pane of the Configuration Parameters dialog box. The
Data Object Wizard can create Simul ink.AliasType objects from these.

Click the Find button. The model's potential data objects appear. This includes the
model's signals (root inputs, root outputs, and block outputs), discrete states, data
stores, and parameters, depending on:

The check boxes you selected in the previous step

The constraint mentioned in the note above

7 Data Definition and Declaration Management

Data Object Wizard finds only those signals, parameters, data stores, and states
whose storage class is set to Auto. The Wizard lists each data store and discrete
state that it finds as a signal class.

5 Click Select All. Notice in the Choose package for selected data objects field
that Simulink, the default, is selected. Therefore, the data objects are associated
with the Simul ink package, as shown below.

Data Object Wizard E = @
The following model data are not associated with data objects.
Select data objects you want to create.
| Object Name | Class Package
A Signal Simulink
B Signal Simulink
] Signal Simulink
D Signal Simulink
DS Signal Simulink
E Signal Simulink
Final Signal Simulink
L Signal Simulink
SS Signal Simulink
F1 Parameter Simulink
G1 Parameter Simulink
G2 Parameter Simulink
G3 Parameter Simulink
Gain1 Parameter Simulink
GainZ Parameter Simulink
Select Al Deselect All
Choose package for selected data objects: Simulink w | Apply Package
Wodel name: rtwdemo_mpt Browse.
Find opti
/| Root inputs V| States /| Block outputs V| Alias types
| Root outputs | Data stores V| Parameters
| Create | | Cancel | ‘ Help |

6 Click Create. The data objects are added to the MATLAB workspace, and they
disappear from Data Object Wizard.

7 Click Cancel. The Data Object Wizard dialog box disappears.

Now you can set property values for the data objects.

Set Property Values for Data Objects

Most of the property values of data objects are supplied by defaults. A few are from the
model. Note that for Simulink data objects, the default storage class is Auto.

1 Type daexplr on the MATLAB command line, and press Enter. The Model Explorer

appears.

Create Simulink and mpt Data Obijects

2

In the Model Hierarchy (left) pane, select Base Workspace. The Simulink data
objects appear in the Contents (middle) pane, as shown below.

[Model Explorer | =N ===
File Edit View Tools Add Help
O BhES® [+ &8
Sesrch: by Name - Neme: &Y Sesrch
Model Hierarchy @ == Contents of: Base Workspace (orly) Base Workspace
4 Y Simulink Root: =
e pre— Column View: showDetals 1Sobiect®) v The base (MATLAG) norkspace contans variables tha e e o ol Smurk
- models. These variables can be used to parameterize certain model, block and
€ Configuration Preferences e Vaue Dawlype Min Max Dmensions signal parameters.
+ Ll vciemo_ ot =0 auo nouoa
(=g} auto oo o
[c auto nua 1
=g auto [N
[l os auto nua 1
[E=R3 auto nua 1
o] F1 2 auto nn
[Firal auto [N
o] 61 3 auto nn
|Eder] 26 auto nn
o] 63 9 auto nn
Lo%) Gain1 5 auto nn
Lo%] Gain2 3 auo nn
[a=gn auto oo o
[ss auto [N B
Contents Search Results

If the objects that you see do not appear in the order shown, click the Name column
header in the middle pane to sort the objects in ascending order by name.

To see the properties of a Simulink data object, select a data object in the middle
pane. The right pane displays the property names for that object. These property
names also appear as column headings in the middle pane. For example, if you select
signal data object A in the middle pane, the Model Explorer looks like this:

7-7

7 Data Definition and Declaration Management

 Hode Exlorer =]
File Edit View Tools Add Help
EO LR EHHMES g
Search: by Name + Neme: B Search
Model Hierarchy [B]E] = contentsof: . Workspace (only) Fiter Contents SimulinkSignak: A
4 ¥ Simulnk Root - . o
P Sinudnk Roo Column View: [Data Object v | ShowDetsis 15chjectls) v Datatpe: auto - =
B Base workspace
a;,chﬁguranunpreferen(es Name. = \sle DatType Min Max Dmd Complexity: [auto -
> [Pal rowdemo_mef
En auto 0 0 1 oDmensons: -1 Dimensions mode:
=B auto 0o o4
Hec ato 0o oa Sample time: -1 Sample mode: auto v
Ho auto 00 | dimam:) Maximum: n
DS auto nn -
e asto 0o o4 Initial value: Units:
] F1 2 aute n o Code generation options
auto oo - Storage dass: [Auto = |=
6 auto nn
26 aute oo Alignment: -1
3 aute n oo
5 auto nn Description:
3 au n oo
L auto no 4
55 auto nn -
a0 i 5
Contents Search Results

4 You can change the values specified for the properties of the selected object. For
example, with A selected, change its StorageClass property from Auto to Default
(Custom), then click Apply. The property changes as shown below:

7-8

Create Simulink and mpt Data Obijects

= rr— e
File Edit View Tools Add Help
BO 480X EHHNEDS [« &8
Search: by Name + Neme: &K Search
Model Hierarchy [B]E] = contentsof: . Workspace (only) Fiter Contents Simulink.Signak: A
4 Py Simink Root — = . =
P Sinudnk Roo Column View: [Data Objeck v | ShowDetsis 15objectis) [Dstatype: aubo - >>
[Base workspace
@) Configuration Preferences e = Ve DatsType Min Max Dmd Complesity: [outo -
riwdemo_mpf .
EHa aute 00 1 Dmensons: -1 Dimensions mode: [aute -
e aute oo o -
Hec e 0o | Ssweletme: -1 Semplemode: [auto =
Ho o 00 | wemm [Maxinu: 0
[Hos auto 0o o+
He o 0@ o | mmvslvaue: Units:
L] P2 2 auto n o Code generation options
[T Findl auto oo - Storage dass: [Default (Custom) =) IF
[61 6 auo 0o
[&2 26 auto 0o Alas:
[&3 3 aue 0o e M
2] Gaint 5t 0o
(%] Gain2 -3 auto oo
L o 0 [- | Desmoton:
[dss auto 0o o+
a i »
« i 5
Revert Help Apoly
Contents Search Results

You can use Control-Right-Click to select multiple objects in the center pane, then edit a
property value. The wizard applies the new value to the selected objects. For descriptions
of object properties and their values, see “Parameter and Signal Property Values”.

Generate and Inspect Code

Data objects for the model have been created. You have specified property values for each
data object's properties. Now you generate and inspect the source code, to see if it needs
correction or modification. If it does, you can change property values and regenerate the
code until it is what you want.

1 In the Configuration Parameters dialog box, click Code Generation in the left
pane.

2 Inthe Report pane, select the Create code generation report check box.

Note When you select the Create code generation report check box, the code
generation software automatically selects two check boxes on the pane: Launch
report automatically and Code-to-model. For large models, you may find that
HTML report generation (step 4 below) takes longer than you want. In this case,

7-9

7 Data Definition and Declaration Management

7-10

consider clearing the Code-to-model check box (and the Model-to-code check box
if selected). The report will be generated faster.

3 Inthe Code Generation pane, select the Generate code only check box. The
Build button changes to Generate Code.

Note The generate code process generates the .c/.cpp and .h files. The build
process adds compiling and linking to generate the executable. For details on build,
see “How Executable Programs Are Built From Models” in the Simulink Coder
documentation.

4 Click the Generate Code button. After a moment, the HTML code generation report
appears, listing the generated files on the left pane.

5 Select and review files in the HTML code generation report. See “Traceability in
Code Generation Report” for more information.

Create mpt Data Objects with Data Object Wizard

Create mpt data objects using Data Object Wizard the same way you did for Simulink
data objects, as explained in “Create Data Objects with Data Object Wizard” on page
7-4, except select mpt as the package instead of Simulink.

Set the property values for the mpt data objects the same way you set them for Simulink
data objects, as explained in “Set Property Values for Data Objects” on page 7-6,

with the following exceptions:

* Accept the default custom storage class for mpt data objects, Global (Custom)

+ For data objects A and F1, type mydefinitionfile in the Definition file field on
the Model Explorer.

Then generate and inspect the code.

Note The Alias field is related to “Override Data Object Naming Rules”.

Simulink and mpt Data Object Comparison

The mpt data object contains the properties of Simulink data objects plus properties that
provide additional control over module packaging. The differences between Simulink and
mpt data objects can be illustrated by comparing

Create Simulink and mpt Data Obijects

“Signal and Parameter Properties” on page 7-11
“Configuration Parameters” on page 7-13

“Generated Code” on page 7-14

Key differences include the following:

Different custom storage classes displayed in the Model Explorer for mpt data objects
provide more control over the appearance of the generated code.

Additional custom attributes (owner, definition file, persistence level, memory section)
for mpt data objects provide more control over data packaging in the generated code.

On the Comments pane of the Configuration Parameters dialog box, the Custom
comments (MPT objects only) option allows you to add a comment just above a
signal or parameter's identifier in the generated code.

On the Code Placement pane of the Configuration Parameters dialog box, in the

Global data placement (MPT data objects only) subpane:

+ The Signal display level parameter allows you to specify whether or not the code
generator declares a signal data object as global data

The Parameter tune level parameter allows you to specify whether or not the
code generator declares a parameter data object as tunable global data

Signal and Parameter Properties

The properties that appear in Model Explorer when mpt is the package include the
properties that appear when Simul ink is the package plus additional properties. Notice
this by comparing the next two figures. (For descriptions of properties in Model Explorer,
see “Parameter and Signal Property Values”.)

7-11

7 Data Definition and Declaration Management

7-12

Model Explorer
File Edit View Tools Add Help

HO 6B DR HE
Search: by Name v MName

Model Hierarchy

] ad
@A Search

@ =2 Contentsof: ... Workspace fonly) Filter Contents

4 % smulink Root

[Base workspace

(@ Configuration Preferences
rtwdemo_mpf

Column View: Data Object: v | Show Detals 1Sobiect(s)

Name Value DataType Min Max Dime

Simulink Signal: A

Dats type: auto

S

Complexity: [auto

A auto 0 0 1 pmensons: -1 Dimensions mode:
B auto 0o
c o 0o o Semple tine: -1 Sample mode auto -
D auto non - Minimun: n Masximunn: "
bs auto oo -t
e uto 0o -t Initial value: Units:
Fi 2 auto mno Code generation options
Finsl auto oo - Storage class: [Auto. <] |
] 61 6 auto AR
62 26 auto 0o Algnment: -1
] 63) auto nn
] Gain1 5 auto nn Description:
] Gain2 3 auto AR
L auto oo -t
55 auto oo -t
O m]
af .] g Revert Apply
Contents SearchResults |
Madel Explorer
File Edit View Tools Add Help
- om
FEIEEE L) M +g=
Search: by Name v Name: G4, Ssearch
Model Hierarchy (=] = contenisofi .workspace (o) Fiker Contens mpt.Signak: A
- Simuiink Root = .
i) Column View: [Data Object v | Show Details 15 obiect(s) '~ Zat=ibresy autn
Base Workspace
> [rtwdema_mpf
A auto nmimn Dimensions: -1 Dimensions mode: |auto -
8 auto nmon o+
: R R Be—
D auto mimn = Minimum: §] Maximum: n
DS auto mn -
e asto oo 4 Initial value: Units: E
o F1 2 auto nmaun 1 Code generation options
Findl auto o Storage dass: [Giobal (Custom) -
61 3 auto mn
]2 26 auto 0o Custom attributes
163 9 auto mnn MemorySection: [Default -]
o] Gain1 5 auto
M,] o HeaderFile:
[s] Gainz2 3 auto mnn L4
L auto mn - Owner
SS auto -1
nu DefinitionFile:
Persistencelevel: 1
Alizs:
Alignment: -1
< i] »
« i
[J D Revert Apply
Contents SearchResuits |

Create Simulink and mpt Data Obijects

Configuration Parameters

The following configuration parameters relate to module packaging features. These
parameters are available in the Configuration Parameters dialog box and Model Explorer
when the system target file selected for a Simulink model is ert.tlc (or a system target
file derived from an ert.tlc):

* Custom comments (MPT objects only) option on the Code Generation >
Comments pane
* In the Global data placement (MPT data objects only) subpane on the Code
Generation > Code Placement pane:
Signal display level parameter

Parameter tune level parameter

7-13

7 Data Definition and Declaration Management

Generated Code

In the example used in “Set Property Values for Data Objects” on page 7-6, you selected
Default (Custom) in the Storage class field for signal A and parameter F1. You
selected the default Auto in the Storage class field for the remaining data objects.
But for the mpt data objects you used the default Global (Custom) in the Storage
class field. When you generated code, these selections resulted in the definitions and
declarations shown in the table below.

Simulink Data Object with Auto Simulink Data Object with mpt Data Object with Global
Storage Class Default (Custom) Storage Class | (Custom) Storage Class

and Definition File Named
mydefinitionfile

In rtwdemo_mpf.c: In global.c: In mydefinitionfile.c:
/* For signal A */ real T A; real T A;
External Inputs rtu; real T F1 = 2.0; real T F1 = 2.0;
/* For parameter F1 */ In global .h: In global .h:
if(rtU.A * 2.0 > 10.0) {.-.
extern real T A; extern real T A;
In rtwdemo_mpf_h: extern real_T F1; extern real_T F1;

/* For signal A */

typedef struct {
real T A;

} Externallnputs;

extern Externallnputs rtu;

The results shown in the second and third columns of the preceding table require the
following configuration parameter adjustments on the Code Generation > Code
Placement pane:

+ Set Data definition to Data defined in single separate source file.

+ Set Data definition filename to global .c

+ Set Data declaration to Data declared in single separate source file.
* Set Data definition filename to global _.h

See the left column of the table, which shows generated code for Simulink signal and
parameter data objects, whose Storage class field is Auto. The input A is defined as

7-14

Create Simulink and mpt Data Obijects

part of the structure rtU as shown above. In the case of the Simulink parameter data
object F1, since the StorageClass was set to auto, the code generator chose to include
the literal value of F1 in the generated code. F1 is a constant in the Stateflow diagram
whose value is initialized as 2.0:

if(rtU.A * 2.0 > 10.0) { ...

For more details, see “Introduction to Custom Storage Classes” and “Summary of Signal
Storage Class Options” in the Simulink Coder documentation.

See the middle column of the table. The Simulink data objects whose Storage class is
not Auto are defined in a definition statement in the global source file (global . c) and
declared in a declaration statement in the global header file (global _h).

In the right column, Simulink data objects whose Storage class is not Auto are defined

in mydefinitionfile, as you specified. The declarations for those objects are in the
global header file.

Create Data Obijects from External Data Source

This procedure creates data objects based on an external data source (such as a
Microsoft® Excel® file). You can do this manually or automatically.

7-15

7 Data Definition and Declaration Management

7-16

Create Data Objects Manually

You can create data objects (and their properties) one-by-one, based on an external data
source, as follows:

Open the external file that contains the data (such as a spreadsheet or database file).

Determine the data in this file that correspond to the parameters and signals in the
model. Parameters in the external source belong to the Simulink parameter class
and signals belong to the Simulink signal class.

On the MATLAB command line, type daexplr and press Enter. The Model Explorer
appears.

On the Model Hierarchy (left) pane, expand Simulink Root, and select Base
Workspace.

On the Add menu, select Add Custom for an mpt data object or Simulink
Parameter for a Simulink data object. The default name Param appears in the
Contents of (middle) pane.

Double-click Param and rename this data object as desired.

Repeat steps 5 and 6 for each additional data item in the external file that belongs to
the mpt.Parameter class or Simul ink.Parameter class.

Now you will add data items in the external file that belong to the mpt.Signal class
or Simulink._Signal class.

On the Add menu, select Add Custom to add an mpt data object or Simulink
Signal to add a Simulink data object. The default name Sig appears in the
Contents of pane.

Double-click Sig and rename the data object as desired.

Repeat steps 8 and 9 for each additional data item in the external file that belongs to
the mpt.Signal class or Simulink.Signal class.

External data items for the mpt.Parameter or Simul ink.Parameter class, and
the mpt.Signal or Simulink.Signal class now appear in the Contents of pane
and in the MATLAB workspace.

Note The property values for these data objects are supplied by default.

Create Simulink and mpt Data Obijects

Create Data Objects Automatically

You can create data objects (and their properties) based on an external data source by
creating and running a .m file. This file contains the same MATLAB commands you could
use for creating data objects one-by-one on the command line, as explained in “ Data
Objects” in the Simulink documentation. But instead of using the command line, you
place the MATLAB commands in the .m file for the desired data in the external file:

1 Create a new .mfile.

2 Place information in the file that describes the data in the external file that you
want to be data objects. For example, the following information creates two mpt data
objects with the indicated properties. The first is for a parameter and the second is
for a signal:

% Parameters

mptParCon = mpt.Parameter;
mptParCon.CoderInfo.CustomStorageClass ="Const”;
mptParCon.value = 3;

% Signals

mptSigGlb = mpt.Signal;

mptSigGlb._DataType = "int8";

3 Run the .mfile. The data objects appear in the MATLAB workspace.

Note: If you want to import data from an external data source, you can write functions
that read the information, convert these to data objects, and load them into the MATLAB
workspace. Among available MATLAB functions that you can use for this process

are xmlread, xmlwrite, xIsread, xIswrite, csvread, csvwrite, dlmread, and
dimwrite.

7-17

7 Data Definition and Declaration Management

Create Data Objects for a Model

In this procedure, you create data objects for a model using the Data Object Wizard,
inspect the data objects, and generate code. Definitions for the data objects are generated
in the model source file (nodel . c).

Use Data Object Wizard

1 Open the model rtwdemo_mpf by clicking the link or by typing rtwdemo_mp¥ in the

MATLAB Command Window.

out

@

trig_2()

g_1(}

Chart

—A]

Goto

D

Data Store

Trigger()

Read1 s
[A]

ubsystem1

i

From

Data Store
G

Read2

Data Store

Write
Data Store
Memory

Trigger()

Subsystem2

In this model,

A, B, and C are input signals, and L and Final are output signals.

* Subsystem1 receives inputs A and E and contains constants G1 and G2. Signal E is
an output from Data Store Read1.

Subsystem?2 receives inputs C and D. Signal D is an output from Data Store
Read2. There is a constant in Subsystem2 named G3. Also, this subsystem has a

Merge

Invoke Data
Object Wizard
(Double click.}

Invoke Model Explorer
(Double click.)

D

Final

Unit Delay block whose state name is SS.

2 Double-click the Stateflow chart and notice it has constants F1, Gainl, and Gain2,

as shown below:

7-18

Create Data Obijects for a Model

)
y, 271 \
4 N\ [iF1=10
'I jut - | out=in*Gain1 * Gainz;
I. ‘ a_<, | 3o ;:_.-.
‘x'} /" 1
\TJ‘

Change to a work folder that is not on an installation path and save the model in
that work folder. The code generation software does not allow you to generate code
from an installation folder.

Double-click the Invoke Data Object Wizard button on the model. Or, type
dataobjectwizard("rtwdemo_mpf") in the MATLAB Command Window. Data
Object Wizard opens and rtwdemo_mp¥ appears in the Model name field, as shown
below.

7-19

7 Data Definition and Declaration Management

Data Object Wizard EI [=) @
Find model data that are not associated with data objects and create objects for these
data.

‘ Object Name | Class ‘ Package
Choose package for selected data objects: Simulink Apply Package
Model name: rtwdemo_mpf Browse...

Find opti
| Root inputs V| States V| Block outputs V| Alias types
/| Root outputs /| Data stores /| Parameters
Find Create Cancel Help

5 Click Find on Data Object Wizard. After a moment, the model's parameters and
signals appear in Data Object Wizard.

6 Click Select All.

7 Inthe Choose package for selected objects field, select mpt. For an explanation
of “package,” see “Overview of Data Objects” on page 7-2.

8 Click Apply Package. Data Object Wizard associates the selected data objects with
the mpt package, as shown below.

7-20

Create Data Obijects for a Model

B Data Object Wizard [o] @ ==

The following model data are not associated with data objects.
Select data objects you want to create.

| Object Hame | Class Package
mE Signal Simulink
[Ms Signal Simulink
[[Signal Simulink
[[1] Signal Simulink
[os Signal Simulink
[ClE Signal Simulink
(|| Final Signal Simulink
ML Signal Simulink
Iss Signal Simulink
arameter imulin
F1 P; 4 Simulink
[Parameter Simulink
[[Parameter Simulink
[Fle3 Parameter Simulink
| Gain1 Parameter Simulink
ain arameter imulin
Gain2 P; + Simulink

Select Al | [Deselect Al

Choose package for selected data objects: Simulink v. Apply Package
Model name: rtwdemo_mpf

Find options
Root inputs States Block outputs Alias types
Root outputs Data stores Parameters

[Create] [Cancel][Help]

9 Click Create. Data Object Wizard creates data objects for the selected parameters
and signals. Data Object Wizard removes the objects from its object view. Also, the
objects are added to the MATLAB workspace, as shown below.

7-21

7 Data Definition and Declaration Management

7-22

| Workspace H» X

Eﬁ@%ﬁg\a|%| '|5tacl5:|B:‘|se vl
Mame 2 IVaIue |Min |Max I
A <1x1 mpt.Signal=

Culs] <1x1 mpt.Signal=

& C <1x1 mpt.Signal=

&0 <1x1 mpt.Signal>

&) DS <1x1 mpt.Signal=

I E <1x1 mpt.Signal>

ﬁ F1 <1x1 mpt.Parameter>

&) Final <1x1 mpt.Signal=

i) G <1x1 mpt.Parameter=

fJ G2 <1x1 mpt.Parameter>

&) G3 <1x1 mpt.Parameter=

D) Gainl <1x1 mpt.Parameter=

ﬁ Gain2 <1x1 mpt.Parameter>

&L <1x1 mpt.Signal>

&) S5 <1x1 mpt.Signal>

ab| ans ‘o \workB'

10 Close Data Object Wizard.

Inspect Data Obijects

You can inspect each data object you selected in the Data Object Wizard using the Model
Explorer:

1 If you have not already done so, complete the steps in “Use Data Object Wizard” on
page 7-18.

2 Open the Model Explorer.

In the left pane, select Base Workspace. Notice that data objects appear in the
middle pane.

4 In the middle pane, select data objects one at a time, and notice their property values
in the right pane. The figure below shows this for signal A. The data objects have
default property values. Note that for an mpt data object, the default in the Storage
class field is Global (Custom). For descriptions of the properties on the Model
Explorer, see “Set Property Values for Data Objects” on page 7-6.

Create Data Obijects for a Model

= Model Explorer [E=H Ech =
File Edit View Tools Add Help
EOl 420X EHHEOS @@ 2=
Search: by Name - Name: &A, Search
Mode! Higrarchy @ = Contentsof: .Workspace (only) Filter Contents mpt.Signak A
4 P Simulink Root _ . a
ba Nk oo Column View: |Data Object | Show Details 15 object(s Vi Data type: auto -
E Base Workspace
E:o: Configuration Preferences Mame - Value DataType Min Max Dime Complexity:
» [Pa] rtwdemo_mpf
A o 00 | omemos: ErersrE
=e auto o -
He ute oo - Sample time: -1 Sample mode: auta -
s auto SN SR Minimum:— [] Masimum: 3]
[a=f auto o 1
=13 auto nn 1 Initial value: Units: E
Lwef F1 2 auto 0o Code generation options
o il auta U 1 giorage dass: [clobal (Custom) -]
|se) G1 6 auto 1 0
] 2 26 auto 0o Custom attributes
|mef G3 9 auto o MemorySection: [Defau\t ']
| Gain1 5 auto
el U HeaderFile:
[41] Gain2 53 aut nn
=] auto mon - Owner:
T ss auto -1
= oo DefinitionFile:
Persistencelevel: 1
Alizs:
Alignment: -1
« m r
« m r
Contents Search Results

Generate and Inspect Code

1 If you have not already done so, complete the steps in “Use Data Object Wizard” on
page 7-18 and “Inspect Data Objects” on page 7-22.

2 In the left pane of the Model Explorer, expand the rtwdemo_mpf node.

3 In the left pane, click Configuration (Active).

4 In the center pane, click Code Generation. The active configuration parameters
appear in the right pane.

5 Inthe Report tab, select Create code generation report

6 Select the General tab. Select Generate code only, and then click Generate
Code. After a few moments, the names of the generated files are listed on the Code
Generation Report on the left pane.

7-23

7 Data Definition and Declaration Management

W Code Generation Report

Back Forvard

Contents

=@][=]

Code Generation Report
for rtwdemo_mpf

Summary
Subsystem Report s
Code Interface Report ummary

Traceability Report Code generation for model “"rtwdema_mpf.mdl”.

Generated Files Model version 1 1.80
L Simulink Coder version : 8.0 (R2011a Prerelease) 01-Nov-2010
[-1 Main file C source code generated on : Tue Nov 09 14:30:14 2010
ert_main.c
. Configuration settings at the time of code generation: click to open
[-] Model files Code generation objectives:
rtwdemo mpf.c Validation result: Not run

rtwdemo mpf.h

[+] utility files {1)

7 Open and inspect the content of the model source file rtwdemo_mpf.c. The following
data objects are initialized in this file.

real_T F1 = 2.0;
real _T G1 6.0;
real _T G2 -2.6;
real _T G3 = 9.0;
real_T Gainl = 5.0;

real_T Gain2 = -3.0;

Related Examples
. “Define Global Data Objects in Separate File” on page 7-25

7-24

Define Global Data Objects in Separate File

Define Global Data Obijects in Separate File

In “Create Data Objects for a Model” on page 7-18, you can place a model's data objects in
the model source file. In this example, you can place global data objects in a file separate
from the model source file:

1 Configure the model's generated code to include Simulink data objects (signal and
parameter) in a separate definition file. Set Diagnostics > Data Validity > Signal
resolution to Explicit and implicit.

2 Specify that data be defined in a separate file. Set Code Generation > Code
Placement > Data definition to Data defined in single separate source
file. Accept the default for Data definition filename, global .c

% Configuration Parameters: iwdemo_mpf/Configuration (Active)

Select: Global data placement (custom storage classes only)
;Solver Data definition: |Data defined in a single separate source file
i~ Data Import/Export
+-Optimization Data definition filename: global.c
—--D!agnostlcs] Data declaration: |Auto
- Sample Time

i~ Data Validity #include file delimiter: |Aut0
T G
vpe nr“.rersmn Use owner from data object for data definition placement
i~ Connectivity
- Compatibility Global data placement (MPT data objects only)
i Model Referencing
E-"-Savlng Signal display level: 10 Parameter tune level: 10
- Stateflow
-Hardware Implementat... ~ Code Packaging

--Model Referencing
~Simulation Target
-I-Code Generation

- Report

- Comments

- Symbols

- Custom Code

- Debug

- Interface

- SIL and PIL Verificat...
- Code Style

- Templates

- Code Placement

- Data Type Replace...

File packaging format: |Modular

T

3 Specify that data be declared in a separate file. Set Data declaration to Data
declared in a single separate header file and accept the default for
Data declaration filename, global .h. Then, click Apply.

4 Click Generate Code. Notice that the code generation report lists global .c and
global _h files.

7-25

7 Data Definition and Declaration Management

5 Inspect the code generation report. Notice that

The data objects formerly initialized in rtwdemo_mpT.c now are initialized in
global .c.

+ The file rtwdemo_mpf.c includes rtwdemo_mpf._h.
The file rtwdemo_mp¥.h includes global . h.

Related Examples
. “Define Global Data Objects in Separate Files” on page 7-27

7-26

Define Global Data Obijects in Separate Files

Define Global Data Obijects in Separate Files

In “Define Global Data Objects in Separate File” on page 7-25, you placed global data
objects in a separate definition file. You named that file global . c and the corresponding
declaration file global . h. You can override this and place a specific data object in its
own definition file. In the following example, you move the Final signal to a file called
finalsig.c, and keep the other data objects defined in global .c:

1 In the Model Explorer, display the base workspace and select the Final signal
object. The mpt.Signal properties appear in the right pane.

2 Inthe Code generation options section, type Finalsig.h in the Header file text
box, type Finalsig.c in the Definition file text box, and click Apply.

3 Onthe Code Generation > General pane, click Generate Code. The code
generation report still lists global .c and global . h, but adds finalsig.c and
finalsig.h.

4 Open the files to inspect them. Notice that the Final signal is defined in
finalsig.c. Other data objects are defined in global . c.

7-27

7 Data Definition and Declaration Management

Save and Load Data Obijects

In a .mat file, you can save the set of data objects (and their properties) that you have
created and load this information for later use or exchange it with another user. You can
save data objects in the workspace.

7-28

Data Types

+ “What Are User-Defined Data Types?” on page 8-2

* “Control File Placement of User-Defined Types” on page 8-4

* “Create and Apply User-Defined Data Types” on page 8-7

* “Create Data Type Alias in Generated Code” on page 8-10

+ “Create a Fixed-Point Data Type” on page 8-14

+ “Use single Data Type as Default for Underspecified Types” on page 8-16
+ “Specify Persistence Level for Signals and Parameters” on page 8-19
+ “Buses” on page 8-22

* “Rename Built-In Data Types” on page 8-40

* “Register mpt User Object Types” on page 8-42

* “Data Type Replacement” on page 8-46

+ “Replace Names of Built-In Types in Code” on page 8-52

+ “Data Type Replacement Limitations” on page 8-56

* “Specify Boolean and Data Type Limit Identifiers” on page 8-58

8 Data Types

What Are User-Defined Data Types?

8-2

User-defined data types are objects of the following data type classes.

+ Simulink.AliasType
* Simulink.Bus
* Simulink_NumericType

You can apply user-defined data types to achieve the following objectives in generated
code.

+ Specify custom data type names for individual block parameters and signals by
creating aliases of the built-in Simulink types. The aliases appear in the model
diagram and in generated code. For more information, see “Create Data Type Alias in
Generated Code”.

* Map your own data type definitions to the built-in data types, and specify that your
data types are to be used in generated code. For more information, see “Data Type
Replacement”.

* Optionally, generate #include directives to import header files that contain your
data type definitions. This technique allows you to use legacy data types in generated
code.

In general, code generated from user-defined data objects conforms to the properties and
attributes of the objects as defined for use in simulation. When generating code from
user-defined data objects, the name of the object is the name of the data type that is used
in the generated code. For Simulink_NumericType objects whose IsAlias property is
false, the name of the functionally equivalent built-in or fixed-point Simulink data type is
used instead.

To define and name your own fixed-point data type, create an object of the class
Simulink_NumericType. To create your own data type as an alias of a built-in data
type or an enumerated data type, use an object of the class Simulink.AliasType.

See Also
“Data Objects”

Related Examples
. “Create Data Type Alias in Generated Code”

What Are User-Defined Data Types?

“Data Type Replacement”

8 Data Types

Control File Placement of User-Defined Types

8-4

In this section...

“Data Scope and Header File” on page 8-4

“Macro Guards” on page 8-5

When you use data type objects such as Simulink.AliasType to specify data types for
signals and block parameters, the code generated from the model defines the types with
typedeT statements. To ease integration of the generated code with other existing code,
you can control the file placement of the typedef statements by adjusting the properties
of the objects.

Data Scope and Header File

To control the file placement of a typedef statement in generated code, set the
DataScope and HeaderFi le properties of the data type object according to the table.

+ typename is the name of the custom data type.
+ filename is the name of a header file.
+ model is the name of the model.

Goal Specify DataScope as Specify HeaderFile as

Export type definition to Auto Empty
model types.h

Import type definition Auto or Imported filename.h
from a header file that you
create, filename .h

Export type definition to Exported filename .h
a generated header file,

filename .h

Import type definition Imported Empty

from a header file that you
create, typename .h

Export type definition to Exported Empty
a generated header file,
typename .h

Control File Placement of User-Defined Types

When you import a data type definition, the generated model code creates an #include
directive for your header file in place of a typedeT statement. You must supply the
header file that contains the typedef statement.

By default, the generated #include directives use the preprocessor delimiter " instead
of < and >. To generate the directive #include <myTypes.h>, specify the HeaderFile
property as <myTypes_h>.

Data Type Replacement

If you use Data Type Replacement to replace a built-in Simulink data type with your own
data type in generated code, typedef statements and #include directives appear in
rtwtypes.h instead of model types.h.

Macro Guards

When you export one or more data type definitions to a generated header file, the file
contains a file-level macro guard of the form RTW_HEADER_ filename_ h.

Suppose you use several Simul ink.Ali1asType objects: mySingleAlias,
myDoubleAlias, and myIntAlias with these properties:

+ DataScope set to Exported

* HeaderFile set to myTypes.h

When you generate code, the guarded file myTypes.h contains the typedef statements:
#ifndef RTW_HEADER_myTypes_h_

#define RTW_HEADER_myTypes_h_

#include "rtwtypes.h"

typedef real_T myDoubleAlias;

typedef real32_T mySingleAlias;

typedef intl6_T mylntAlias;

#endif

When you export data type definitions to model_types.h, the file contains a macro
guard of the form DEFINED _TYPEDEF FOR_typename_ for each typedef statement.
Suppose you use a Simulink.AliasType object mySingleAlias with these properties:

+ DataScope set to Auto

8-5

8 Data Types

* HeaderFile not specified

When you generate code, the file model types.h contains the guarded typedef
statement:

#ifndef DEFINED_TYPEDEF_FOR_mySingleAlias_
#define DEFINED_TYPEDEF_FOR_mySingleAlias_

typedef real32_T mySingleAlias;
#endif

See Also
Simulink_AliasType | Simulink.Bus | Simulink_NumericType

Related Examples

. “Create Data Type Alias in Generated Code”
. “Data Type Replacement”

More About
. “What Are User-Defined Data Types?”

8-6

Create and Apply User-Defined Data Types

Create and Apply User-Defined Data Types

This example shows how to create user-defined data types and specify them for data

objects.

1

objects in the base workspace.

Open the Model Explorer and create Simul ink.Signal and Simul ink.Parameter

% Model Explorer

File Edit View Tools Add Help
= H
Bk 3 EEE Ch
Search: by Name + MName: @i Search
Model Hierarchy & = Contents of: .. (andbelow) Filter Contents
4 ¥ simulink Root —
Column View: |Data Obje w | Show Details 3 object(s) A
E Base Workspace WV
Mame Value DataType Min Max Dimensions StorageCla:
|ss] @ 10 auto [1 11 Auto
't sig1 auto [1 11 -1 Auto
't sig2 auto [1 11 -1 Auto
Il 1 k
Contents | Search Results |

Base Workspace

The base (MATLAB) workspace contains variables that are visible
to all Simulink models, These variables can be used to
parameterize certain model, block and signal parameters.

Rewvert Apply

2 Click Add > Simulink.AliasType to create a data type object.
3 Name the object and set its Base type to int32 and Header file to

myDataTypes.h.

8-7

8 Data Types

Model Explorer
File Edit View Tools Add Help

EO 4 B0 EHNODS
Search: by Name ¥ Name:

Model Higrarchy

4 L simulink Root
E Base Workspace

E Contents of: .2 (and below)
Column View: Show Details 4 object(s) \l?'

(@) « 2=

Filter Contents

G4 Search

Simulink.AliasType: myDataType
Base type: int32

Code generation options

Mame
[g
sigl
sig2

Value DataType Min

10 auto [1
auto [1
auto [1

Max Dimensions Stor

=5 =)

Data scope: | Auto

myDataType

[1 Auto
1 -1 Auto) Header file: myDataTypes.h
! Auto

Description:

<

I

Revert

Contents

| Search Results

8-8

4 Select the data object for which you want to specify the user-defined data type. Click
its Data Type field and from the drop down select Refresh data types.

This action updates the data type list with the user-defined data type you created.
5 Select the user-defined data type.

Create and Apply User-Defined Data Types

Model Explorer o= =]
File Edit View Tools Add Help

O s &R EHNEDS @ « 28

Search: by Name ¥ Name: G4 Search

Model Hierarchy = Contents of: .. (andbelow) Filter Contents Simulink.Parameter: g

»

4 L simulink Root

= ’ - = Value: 10 —
Column View: |Data Obje « | Show Details 4 object(s) -
E Base Workspace Z \Lf

Mame Value Datafl'ype Min Max Dimensions Stor Eatalpesy auin

ot

el @ 10 . T AUt Dimensions: | [1 1] Complexity: | real

[sig1 uint16 & Auto
int32 . , : .

sig2 Lint32 Autg Minimum: [1 Maximum: [1
boolean

myDataType fedt(1,16,0) r Units: 1
findt(1,16,20,0) £
Enum: <dass name> E Code generation options
Bus: <object name >
- Refresh data Storage dass: |Auto

Alignment: -1

Description:

4 T | +

< | n | + .

Contents Search Results

See Also
Simulink.AliasType

Related Examples

. “Create Data Type Alias in Generated Code”

. “ Data Objects”

. “Create Simulink and mpt Data Objects” on page 7-3
. “Data Type Replacement”

. “Create a Fixed-Point Data Type” on page 8-14

8-9

8 Data Types

Create Data Type Alias in Generated Code

8-10

In this section...

“Export Type Definition” on page 8-10

“Import Type Definition” on page 8-11

You can create your own data type in code that a model generates by using an alias
of an existing type. You can use the alias to specify parameter and signal data types
throughout a model diagram and in generated code.

You can use an alias for the built-in Simulink data types, custom enumerated types that
you create, and fixed-point data types that you create. To create a data type alias, you
use an object of the class Simulink._AliasType.

You can also rename a built-in Simulink type in code generated from a model without
using a data type alias in the model diagram. For more information, see “Data Type
Replacement”.

Export Type Definition

When you integrate code generated from a model with code from other sources, your
model code can create an exported typedef statement. Therefore, all of the integrated
code can use the type. This example shows how to export the definition of a data type to a
generated header file.

1 Create a Simulink_AliasType object named mySingleAlias that acts as an alias
for the built-in data type single.

mySingleAlias = Simulink.AliasType(“single®)

mySingleAlias =

AlilasType with properties:
Description: **
DataScope: "Auto”
HeaderFile: ="
BaseType: “single~

2 Configure the object to export its definition to a header file called myHdrFile.h.

Create Data Type Alias in Generated Code

mySingleAlias._DataScope = "Exported®;
mySingleAlias_HeaderFile = "myHdrFile_h";

Open the model rtwdemo_paramdt.

The model creates a Simul ink.Parameter object Kuser in the base workspace. The
model uses Kuser as a parameter in a Gain block.

Set the data type of Kuser to the alias mySingleAlias.

Kuser.DataType = "mySingleAlias”;

At the model root, double-click the blue button labeled Generate Code Using
Embedded Coder.

In the code generation report, view the file rtwdemo_paramdt.h. The code creates a
#include directive for the generated file myHdrFile.h.
#include "myHdrFile_h"

View the file myHdrFile.h. The code uses the identifier mySingleAlias as an alias
for the data type real32_T. By default, generated code represents the Simulink
data type single using the identifier real32_T.

The code also provides a macro guard of the form
_DEFINED_TYPEDEF_FOR_alias_. When you export a data type definition to
integrate generated code with code from other sources, you can use macro guards of
this form to prevent identifier clashes.

#ifndef _DEFINED_TYPEDEF_FOR_mySingleAlias_
#define _DEFINED_TYPEDEF_FOR_mySingleAlias_

typedef real32_T mySingleAlias;

#endi f

View the file rtwdemo_paramdt.c. The code uses the data type alias
mySingleAlias to define the variable Kuser.

mySingleAlias Kuser = 8.0F;

Import Type Definition

When you integrate code generated from a model with code from other sources, to avoid
redundant typedef statements, you can import a data type definition to the model code.

8-11

8 Data Types

This example shows how to import your own definition of a data type from a header file
that you create.

1 Use a text editor to create a header file to import. Name the file myHdrFile.h. Place
it in your working folder. Copy the following code into the file.

#ifndef HEADER_myHdrFile_h_
#define HEADER_myHdrFile_h_

typedef float myTypeAlias;

#endif
The code uses the identifier myTypeAl ias to create an alias for the data type Float.

The code also uses a macro guard of the form HEADER_filename_h. When you
import a data type definition to integrate generated code with code from other
sources, you can use macro guards of this form to prevent identifier clashes.

2 At the command prompt, create a Simulink_AliasType object named
myTypeAl ias that creates an alias for the built-in type single. The Simulink data
type single corresponds to the data type float in generated code.

myTypeAlias = Simulink.AliasType(“single”)
myTypeAlias =
AliasType with properties:

Description: ="
DataScope: "Auto”
HeaderFile: ="
BaseType: "single~

3 Configure the object so that generated code imports the type definition from the
header file myHdrFile_h.
myTypeAlias.DataScope = "Imported”;
myTypeAlias.HeaderFile = "myHdrFile.h";

4 Open the model rtwdemo_paramdt.

The model creates a Simul ink.Parameter object Kuser in the base workspace. The
model uses Kuser as a parameter in a Gain block.

5 Set the data type of Kuser to the alias myTypeAlias.

8-12

Create Data Type Alias in Generated Code

Kuser .DataType = "myTypeAlias”®;

At the model root, double-click the blue button labeled Generate Code Using
Embedded Coder.

In the code generation report, view the file rtwdemo_paramdt.h. The code creates a
#include directive for your header file myHdrFile_h.

#include "myHdrFile._h"

View the file rtwdemo_paramdt.c. The code uses the data type alias myTypeAlias
to define the variable Kuser.

myTypeAlias Kuser = 8.0F;

See Also
Simulink.AliasType | Simulink_NumericType

Related Examples

“Create and Apply User-Defined Data Types” on page 8-7

“Data Type Replacement” on page 8-46

“Use single Data Type as Default for Underspecified Types” on page 8-16
“Create a Fixed-Point Data Type”

More About

“What Are User-Defined Data Types?” on page 8-2
“Data Objects”

8-13

8 Data Types

Create a Fixed-Point Data Type

8-14

This example shows how to create and name a fixed-point data type in generated code.
You can use the name of the type to specify parameter and signal data types throughout
a model and in generated code.

1 Create a Simulink.NumericType object that defines a fixed-point data type. Name
the object myFixType.

myFixType = fixdt(1,16,3)

myFixType
NumericType with properties:

DataTypeMode: “Fixed-point: binary point scaling”
Signedness: "Signed*
WordLength: 16
FractionLength: 3
IsAlias: O
DataScope: "Auto”

HeaderFile: **
Description: **

2 Use the name of the object as an alias for the fixed-point type in models and in
generated code.
myFixType.lIsAlias = true;

3 Open the model rtwdemo_paramdyt.

The model creates a Simul ink.Parameter object Kuser with value 8 in the base
workspace. The model uses Kuser as a parameter in a Gain block.

4 Set the data type of Kuser to the fixed-point data type.

Kuser .DataType = "myFixType~;

5 At the top level of the model, set the output data type of the Inport block labeled 7 to
myFixType.

6 Open the subsystem.
7 Set the output data type of the Inport block labeled 7 to myFixType.

8 At the top level of the model, double-click the blue button labeled Generate Code
Using Embedded Coder.

Create a Fixed-Point Data Type

9 In the code generation report, view the file rtwdemo_paramdt.h. The code defines
the type myFixType based on an integer type of the specified word length.
#ifndef _DEFINED_TYPEDEF_FOR_myFixType_
#define _DEFINED_TYPEDEF_FOR_myFixType_
typedef intl6_T myFixType;
#endi T

10 View the file rtwdemo_paramdt.c. The code uses the type myFixType, which is an
alias of the integer type intl6, to define the variable Kuser.
myFixType Kuser = 64;
Note: The stored integer value 64 of Kuser is not the same as the real-world value 8
because of the scaling that the fixed-point data type myFixType specifies. For more
information, see “Scaling” in the Fixed-Point Designer documentation.
The line of code that represents the Gain block applies a right bit shift corresponding
to the fraction length specified by myFixType.
rey._out7 = (myFixType)(Kuser * rtU.In7 >> 3);

See Also

fixdt | Simulink.NumericType

Related Examples

“Create and Apply User-Defined Data Types” on page 8-7

More About

“What Are User-Defined Data Types?” on page 8-2
“Data Objects”

8-15

8 Data Types

Use single Data Type as Default for Underspecified Types

This example shows how to avoid introducing a double-precision data type in code
generated for a single-precision hardware target.

If you specify an inherited data type for signals, but data type propagation rules cannot
determine data types for the signals, the signal data types default to double. You can
use a model configuration parameter to specify the default data type as single.

Explore Example Model

Open the example model rtwdemo_underspecified_datatype.

model = "rtwdemo_underspecified_datatype”;
open_system(model) ;

h 4

¥
+

¥
-

. Cut1

¥

[
* - o2 a "
>
Product Relaticnal
Multiport Oper ator
Switch

In4

8-16

Copyright 2014 The MathWorks, Inc.

The root inports In2, In3, and In4 specify Inherit: Auto for the Data type block
parameter. The downstream blocks also use inherited data types.

Use single Data Type as Default for Underspecified Types

Generate Code with double as Default Data Type

Create a temporary folder to contain the build files and folders.

currentDir = pwd;
[~,cgDir] = rtwdemodir();

Build the model using Embedded Coder.

rtwbuild(model)

Starting build procedure for model: rtwdemo underspecified datatype
Successful completion of build procedure for model: rtwdemo underspecified datatype

In the code generation report, view the file rtwdemo_underspecified datatype.h.
The code uses the double data type to define the variables In2, In3, and 1n4 because
the Inport data types are underspecified in the model.

cfile = fullfile(cgDir, "rtwdemo_underspecified _datatype ert_rtw",...
"rtwdemo_underspecified_datatype.h®);

rtwdemodbtype(cfile, ...
"/* External inputs (root inport signals with auto storage) */-,...
"/* External outputs (root outports fed by signals with auto storage) */°, 1, 0);

/* External inputs (root inport signals with auto storage) */
typedef struct {

int8 T Inl; /* "<Root>/Inl" */
real T In2; /* "<Root>/In2" */
real_T In3; /* "<Root>/1In3" */
real T In4; /* "<Root>/In4" */

} ExtU_rtwdemo_underspeciftied_d_T;
Generate Code with single as Default Data Type

Open the Configuration Parameters dialog box. On the Optimization pane, select
single in the Default for underspecified data type drop-down list.

Alternatively, enable the optimization at the command prompt.

set_param(model, "DefaultUnderspecifiedDataType®, "single®);

Build the model using Embedded Coder.

rtwbuild(model)

8-17

8 Data Types

Starting build procedure for model: rtwdemo_underspecified_datatype
Successful completion of build procedure for model: rtwdemo_underspecified_datatype

In the code generation report, view the file rtwdemo_underspecified_datatype.h.
The code uses the single data type to define the variables In2, In3, and In4.

rtwdemodbtype(cfile, ...
/ External inputs (root inport signals with auto storage) */",...
"/* External outputs (root outports fed by signals with auto storage) */°, 1, 0);

/* External inputs (root inport signals with auto storage) */
typedef struct {

int8 T Inl; /* "<Root>/Inl" */
real32_ T In2; /* "<Root>/In2" */
real32_ T In3; /* "<Root>/In3" */
real32_ T In4; /* "<Root>/In4" */

} ExtU_rtwdemo_underspecified_d_T;

Close the model and delete build files.
bdclose(model)

rtwdemoclean;
cd(currentDir)

8-18

Specify Persistence Level for Signals and Parameters

Specify Persistence Level for Signals and Parameters

With this procedure, you can control the persistence level of signal and parameter objects
associated with a model. Persistence level allows you to make intermediate variables or
parameters global during initial development. At the later stages of development, you
can use this procedure to remove these signals and parameters for efficiency. Notice the
Persistence Level field on the Model Explorer, as illustrated in the figure below. For
descriptions of the properties on the Model Explorer, see “MPT Data Object Properties”.

[& Medel Explorer
File Edit View Tools Add Help
EO s X BENES

Search: by Name v Name:

Model Hierarchy [=)

4 P smulink Root
[t Base Workspace
@ Configuration Preferences

rtwdemo_mpf

+ &
B, Sesrch

== Contentsof: .Workspace {only) Filter Contents
Column View: |Data Object v | showDetails 15object(s) f'~

Name Value DataType Min Max Dim
a auto nmin -
s auto mamn 1
©c auto mamn 1
o auto nmin -
[dos auto mun 1
e auto mamn 1
Lse] F1 2 auto nan
= Final auto nman -
Lol G1 6 auto mn
L] &2 26 auto mn
Lse] &3 9 auto mn
sl Gain1 5 auto mn
Lsie] Gain2 3 aute mn
=)8 auto mamn 1
[l ss auto mamn 1
« '

Contents Search Results

mpt.Signak: Final
Data type: auto
Complexity: [auto ¥
Dimensions: -1
Sampie time: -1
Mnimum: (]
Initial value:

Code generation options

Dimensions mode: [auto -

Sample mode:

Maximum:

Units:

[=e=

-

auto

Storage dass: Giobal (Custom)

Custom attributes

MemorySection: [Default

HeaderFie:
Owner:
DefinitionFile finalsig.c

Persistencelevel: 1

Alias: Final_Signal
Aignment: -1

«

Notice also the Signal display level and Parameter tune level fields on the Code
Placement pane of the Configuration Parameters dialog box, as illustrated in the next

figure.

8-19

8 Data Types

8-20

2 Configuration Parameters: rtwdemo_mpf/Configuration [Active)

Select: Global data placement (custom storage classes only)

~Solver Data definition: [Data defined in a single separate source file
- Data Import/Export

+-Optimization Data definition filename: global.c

—I-Diagnostics

Data declaration: |Data declared in a single separate header file

i~ Sample Time

‘Data Validity
“Type Conversion
- Connectivity

Data declaration filename: global.h

#include file delimiter: |Aut0

- Compatibility

-Model Referencing

-Saving Global data placement (MPT data objects only)
- Stateflow

- Hardware Implementat...

-~ Model Referencing

-Simulation Target

Use owner from data object for data definition placement

Signal display level: 10 Parameter tune level: 10

Code Packaging

-

—-Code Generation File packaging format: |Compact (with separate data file)

- Report
- Comments

- Symbols

- Custom Code

- Interface

- SIL and PIL Verificat...
- Code Style

- Templates

- Code Placement

- Data Type Replace...

The Signal display level field allows you to specify whether or not the code generator
defines a signal data object as global data in the generated code. The number you specify
in this field is relative to the number you specify in the Persistence level field. The
Signal display level number is for mpt (module packaging tool) signal data objects in
the model. The Persistence level number is for a particular mpt signal data object. If
the data object's Persistence level is equal to or less than the Signal display level,
the signal appears in the generated code as global data with the properties (custom
attributes) specified in “Create mpt Data Objects with Data Object Wizard” on page 7-10.
For example, this would occur if Persistence level is 2 and Signal display level is 5.

Otherwise, the code generator automatically determines how the particular signal data
object appears in the generated code. Depending on the settings on the Optimization
pane of the Configuration Parameters dialog box, the signal data object could appear in
the code as local data without the custom attributes you specified for that data object. Or,
based on expression folding, the code generator could remove the data object so that it
does not appear in the code. For more information, see “Code Optimization Basics”.

Specify Persistence Level for Signals and Parameters

The Parameter tune level field allows you to specify whether or not the code generator
declares a parameter data object as tunable global data in the generated code.

The number you specify in this field is relative to the number you specify in the
Persistence level field. The Parameter tune level number is for mpt parameter

data objects in the model. The Persistence level number is for a particular mpt
parameter data object. If the data object's Persistence level is equal to or less than the
Parameter tune level, the parameter appears in the generated code with the properties
(custom attributes) specified in “Create mpt Data Objects with Data Object Wizard” on
page 7-10, and thus is tunable. For example, this would occur if Persistence level is 2
and Parameter tune level is 5.

Otherwise, the parameter is inlined in the generated code, and the code generation
settings determine its exact form.

Note that, in the initial stages of development, you might be more concerned about
debugging than code size. Or, you might want one or more particular data objects to
appear in the code so that you can analyze intermediate calculations of an equation. In
this case, you might want to specify the Parameter tune level (Signal display level
for signals) to be higher than Persistence level for some mpt parameter (or signal) data
objects. This results in larger code size, because the code generator defines the parameter
(or signal) data objects as global data, which have the custom properties you specified. As
you approach production code generation, however, you might have more concern about
reducing the size of the code and less need for debugging or intermediate analyses. In
this stage of the tradeoff, you could make the Parameter tune level (Signal display
level for signals) greater than Persistence level for one or more data objects, generate
code and observe the results. Repeat until satisfied.

1 With the model open, in the Configuration Parameters dialog box, click Code
Generation > Code Placement.

2 Type the desired number in the Signal display level or Parameter tune level
field, and click Apply.

3 In the Model Explorer, type the desired number in the Persistence field for the
selected signal or parameter, and click Apply.

4 Save the model and generate code.

8-21

8 Data Types

Buses

8-22

In this section...

“About Buses and Code Generation” on page 8-22

“Set Bus Diagnostics” on page 8-23

“Optimize Virtual and Nonvirtual Buses” on page 8-23
“Use Single-Rate and Multi-Rate Buses” on page 8-26
“Set Bus Signal Initial Values” on page 8-31

“Use Buses with Atomic Subsystems” on page 8-35

About Buses and Code Generation
When you use buses in a model for which you intend to generate code:

+ Setting diagnostic configuration parameters can add to the ease of development.

* The bus implementation techniques used can influence the speed, size, and clarity of
that code.

* Some bus implementation techniques that can be useful are not immediately obvious.

This chapter contains guidelines that you can use to improve the results when you work
with buses. The guidelines describe techniques for:

+ Simplifying the layout of the model
* Increasing the efficiency of generated code
* Defining data structures for function/subsystem interfaces

* Defining data structures that match existing data structures in external C code

Some trade-offs inevitably exist among speed, size, and clarity. For example, the code for
nonvirtual buses is easier to read because the buses appear in the code as structures, but
the code for virtual buses is faster because virtual buses do not require copying signal
data. The applicability of some guidelines can therefore depend on where you are in the
application development process.

This chapter focuses on optimizations that are useful for final production code. Before
you read this chapter, read “Composite Signals”. This topic assumes that you understand
the concepts and procedures described in that one, including the blocks used for creating
and manipulating buses.

Buses

Set Bus Diagnostics

Simulink provides diagnostics that you can use to optimize bus usage. Set the following
values on the Configuration Parameters > Diagnostics > Connectivity pane:

Buses

Unspecified bus object at root Outport block: [warning 'J
Element name mismatch: [warning 'J
Mux blocks used to create bus signals: [error 'J
Bus signal treated as vector: [warning 'J
Mon-bus signals treated as bus signals: [none 'J
Repair bus selections: lwarn and repair 'J

Bus signal treated as vector is enabled only when Mux blocks used to create bus
signals is set to error. See “Prevent Bus and Mux Mixtures” for more information.

Optimize Virtual and Nonvirtual Buses

+ “Use Virtual Buses Wherever Possible” on page 8-23

+ “Avoid Nonlocal Nested Buses in Nonvirtual Buses” on page 8-25
Use Virtual Buses Wherever Possible

Virtual buses are graphical conveniences that do not affect generated code. As a result,
the code generation engine is able to fully optimize the signals in the bus. You should
therefore use virtual rather than nonvirtual buses wherever possible. You can convert
between virtual and nonvirtual buses using Signal Conversion blocks. In many cases,
Simulink automatically converts a virtual bus to a nonvirtual bus when required. For
example, a virtual bus input to a Model block becomes a nonvirtual bus without the need
for explicit conversion. See for more information.

When are Virtual and Nonvirtual Buses Required?
In some cases, Simulink requires the use of nonvirtual buses:

* For non-auto storage classes
+ Inports and Outports of Model blocks

8-23

8 Data Types

+ To generate a specific structure from the bus

* Root level Inport or Outport blocks when the bus has mixed data types
In one case, Simulink requires the use of virtual buses:

* Only virtual buses can be used for bundling function call signals.

8-24

Buses

Avoid Nonlocal Nested Buses in Nonvirtual Buses

Buses can contain subordinate buses. The storage class of a subordinate bus should be
auto, which results in a local signal. Setting a subordinate bus to a non-auto storage
class has two undesirable results:

+ Allocation of redundant memory (memory for the subordinate bus object and memory
for the final bus object)

+ Additional copy operations (first copying to the subordinate bus and then copying
from the subordinate bus to the final bus)

In the following example, the final bus is created from local scoped subordinate elements.
The resulting assignment operations are relatively efficient:

double
1
-I - Al SimpleBus 1

doubke

n

Ad SimpleBus 2 BusOfBi=es ExporedGlobal

Il e e >
double Monirtusl_in_Cne @
5

J4 vold bus in steps a step(vold)

35 {

Nonvirtual In One.5imp 1.enableFlag =
Nonvirtual In One.S5imp 1.calValues|
38 Nonvirtual In Cne.5imp 1.calValues[1]
39 Honvirtual .Simp 2
40 Nonvirtual «Simp 2 ;
41 Nonvirtual .Simp 2 ;
4z Nonvirtual ‘B Vectaor
43 Nonvirtual In Cne.lA Vector
Nonvirtual In One.id Vector

8-25

8 Data Types

By contrast in the next example the subordinate elements Sub_Bus_1 and Sub_Bus_2
are global in scope. First the assignment to the subordinate bus occurs (lines 54 — 59)
then the copy of the subordinate bus to the main bus (lines 60 — 61). In most cases, this is
not an efficient implementation:

double ExporedGiobal
et A1 SimpleBus_1 ExporiedGiokal

double ExporiedGiobal TR
Az

Ti_L
]

In2

doubke ExporedGlobal
Al SimpleBus_2 ExporiedGlobal BusDfBuses ExporedGlobal

double ExporedGiobal T T Mo urtislinone
ot

Ind

double ExporedGlobal
Cos

In5

h

h2 void bus_in steps b step(void)

{

(I R R

-]

=

(o]
Ne
o
o

|
L

Use Single-Rate and Multi-Rate Buses

* “Introduction” on page 8-27

+ “Techniques for Combining Multiple Rates” on page 8-27
+ “Larger Buses and Multiple Rates” on page 8-29

+ “Specify Sample Time Rates” on page 8-31

8-26

Buses

Introduction

Nonvirtual buses do not support multiple rates. Virtual buses support multiple rates
as long as the bus does not cross a root level inport or outport. The best techniques for
optimizing a bus that contains signals that initially have different rates can depend on
the type of the bus and the number of signals.

Techniques for Combining Multiple Rates
The simplest bus contains only two signals. The next figure shows two examples of two-
element buses. The first example shows a virtual bus created from two signals that have

different rates. The second example shows a nonvirtual bus created from the same two
signals. The Sample Time Legend shows the different signal rates:

intd D

¥
=

1 o1

0

int32 02 = —
@ > m 1 SimpleBus_ ot
In2 Rate Transition
intd 01
= g
SimpleBus 1 1
In3 = (T
32 D2 I iirtE.Z T = S
Co—>-H - Guz

[&
Ind [[m

R ate Transitizon2

8-27

8 Data Types

8-28

P o)

EﬂampfeTime Legend @

ex_bus_multirate

Sample Times for 'ex_bus_multirate’

Annotation Description Value

D1 Discrete 1 1
D2 Discrete 2 2
H Hybrid Mot Applicable

The signals with different rates in the first example can be combined into a virtual bus,
because virtual buses support multiple rates. However, a multirate virtual bus cannot
connect to a root-level output port. The bus therefore passes through a Rate Transition
block that converts it to a single-rate bus, then connects to the Outport. This technique is
preferable only for virtual buses that contain one or two signals. See “Larger Buses and
Multiple Rates” on page 8-29.

The signals with different rates in the second example cannot initially be combined
into a nonvirtual bus, because nonvirtual buses do not support multiple rates. One of
the signals therefore passes through a Rate Transition block, which converts it to have
the same rate as the other signal, then connects to the Bus Creator block. The signals
can then combine into a single-rate nonvirtual bus, which can connect to the root-level
outport without further conversion.

Buses

Larger Buses and Multiple Rates

When you create a multirate virtual bus that contains more than two signals, you can
convert the bus to single-rate by applying a Rate Transition block to the output of the
Bus Creator block. Use a Rate Transition block on each input signal to give full control
over the output rate. As the next figure shows, when a single Rate Transition block is
used, the block sets the signals to the fastest rate (D1):

D1
o "
I
Im1
oz
- -
e s A
|
= 03 > [[Out1
Al it
(:In.?. RateTransition
D1
4 >
24
Ind
D.' D."
@ o H - >
il fm
In5 ~ RateTransiicni
e} . >
o2
L - > 2
D3 b2
CO—am— > o
il fm
In? RateTrans ticn2
D1 2
CO—* g >
il fm
In8 RateTransiton2

8-29

8 Data Types

8-30

-

B Sample Time Legend S

ex_large_bus_multirate

Sample Times for "ex_large_bus_multirate'

Annotation Description Value

D1 Discrete 1 1
D2 Discrete 2 2
D3 Discrete 3 4
H Hybrid Mot Applicable

Note that the preferred techniques for a virtual bus with more than two signals, and the
required technique for a nonvirtual bus with one or more signals, are the same. Note also
that, in the preceding figure, the blocks that perform rate transition are not actual Rate
Transition blocks, but other blocks that can change the signal rate as part of some other
operation. The identity of the blocks that perform rate transition is not as significant;
what matters is that the signal rates match when required.

Buses

Specify Sample Time Rates

The sample time for buses should be specified through the signals that define the bus.
If the sample times do not match, use Rate Transition (or equivalent) blocks to create

a uniform rate, as shown in the previous figures. The signal rates should not be set by
specifying Sample Time values in a Bus Creator block's bus object. Instead, set the
sample time for each signal before inputting it to the Bus Creator, and set each Sample
Time in the corresponding bus object to —1, which indicates the value is inherited.

Set Bus Signal Initial Values

* “Introduction” on page 8-31
+ “Initialize Bus Signals in Simulink” on page 8-31
* “Bus Initialization in Stateflow” on page 8-32

+ “Create a Bus of Constants” on page 8-34
Introduction

Unlike scalar and vector signals, buses do not provide a direct way to initialize signals.
This section describes techniques for initializing bus signals using Simulink, Stateflow,
and MATLAB functions.

Initialize Bus Signals in Simulink

In Simulink, you can set initial values on a bus by using a set of conditionally executed
subsystems, such as Function-Call subsystems, and a Merge block, as shown in this
example:

InitTrig}

Oy

E‘Qpﬁig{}

SimpleSched

triggen{)

Out1

InitBus [CounterBus
Merge e —— -@
boakean trigger() Globalounter

O ¥ outt
[CounterBus

In Out1
2

Standardll pdate

Merge

8-31

8 Data Types

8-32

Both subsystems (InitBus and StandardUpdate) create a bus signal of type
CounterBus. However, the assignment to the variable GlobalCounter is controlled by
the Merge block. See “Create a Function-Call Subsystem” for more information.

This technique is limited because the StandardUpdate subsystem does not use

the initial values from the InitBus subsystem. If the calculations depend on past
information from the bus, consider using Stateflow or MATLAB functions to initialize bus
signals.

Bus Initialization in Stateflow
Stateflow and MATLAB functions allow for conditional execution internally. In the

following example, the init and update code are Functions in the Stateflow diagram.
This technique simplifies the presentation in the generated code:

nit/ R . Periodic/
en:Initval(); [MODE==INIT] du: UpdateCni();
[MODE ~= INIT]
A
function Initval function UpdateCnt
GlobalCounter. cnt[0] = uint8(100);
GlobalCounter. cnt[1] = uint8(50); [GlobalCounter. cntf0]==uint8(255)]
GlobalCounter. reset = boolean(0}); .-"\,1 =)
GlobalCounter. Other = 20; \{ T,
i‘u} { : EBI-J:aIC-Jurﬁer.cnt[Dj = uint&(0);
O S e GlobalCourterreset = boolean(1);
GlobalCounter.reset = boolean(0}); 1
H
s p
Lo \)
.fg
.

In the generated code, you can see that the UpdateCnt function uses the past value of
GlobalCounter.cnt:

Buses

static void initBus 4 Stateflow Arr initVal (void)

i
GlobalCounter.cnt[0] = 1000U;
GlobalCounter.cntfl] = 50U;
GlobalCounter.reast = falam:
GlobalCounter.Other = 20.0;

sratic wvoid ini:E:s_@_Statefl:w_A_UpdateCnL:void]

{
if (GlobalCounter.cnt[0] == 255) {
GlobalCounter.cnt[0] = 0U;
GlokalCounter.reser = true;
} else {
GlobalCounter.cnt[0] = (uint8 TX(GlocbalCounter.cnt[0] + 1):
GlobalCounter.reset = false; .
}
}

The previous example used Stateflow Graphical functions to initialize and update the
buses. Alternatively, you can use MATLAB functions or Simulink subsystems embedded
in a Stateflow diagram. The next figure illustrates this technique:

Initi
en:GlobalCounter = initVal();

Periodic/
du:GlobalCounter = UpdateCni(GlobalCounter);

[MODE==INIT]
" [MODE ~=INITI

Simulink Function Simulink Function
BusOut = initval BusOut = UpdateCnt(Businy

The Simulink subsystems are the same as those used in the earlier Simulink-only
example.

8-33

8 Data Types

8-34

Create a Bus of Constants

The code for specifying a bus of constant values will appear in either the Init or the
Step function of the model. The code location depends on the configuration of the bus.
In most cases the code appears in the Step function. However if the following conditions
hold the code will be placed in the Init function:

The bus is a virtual bus

The signals in the bus have the same data type

The signals in the bus are constants

In the next figure, only the bus named Bus_2 meets the requirements:

Virtusl Bus

intS Muttiple Data Types (mibed)

int32

Virtusl Bus
doube LH Single Data Type (all double)

double Bus 2 @
€ 7} > Out2
Nomvirtual Bus
s Muttiple DataTypes (mied)
[SimpleBus._
- P -@
Out3
Menvirtual Bus
double Single Data Type (all double)

h

doubl:

™

0 G0 60 A

h 4

The code for Bus_2 therefore appears in the Init function. The code for the other buses
appears in the Step function:

Buses

ExternalQutputs busOfConstants busOfConstants A ¥

MODEL busOfConstants A busOfConstants A M ;

MODEL busOfConstants A *busOfConstants A M = gbusOfConstants A M ;
void busOfConstan:s_A_s:Ep[vcid]

{

busOfConstants A Y.Outr l.enableFlag =

e

Bus 3.enableFlag 2 b

Bus_4.Entry 1 0.0;

bus0fConstants A Y.Cut l.calValues[0] = 2;
] = 2;

B 0] = 6.0

b:saf:cns:ants_”_Y.O::_l.cal?a;uesjl: = 3;

Bus_3.calValues[l] = 3;

Bus 4.Entry 2 Array[l] = 7.0

}

{

busOfConstants A = 0.0;
busOfConstants_A = &8.0;
busOfConstants A = 7.0;

}

To avoid repeatedly updating a bus of constants, place the bus code into a function-call
subsystem, as described in “Initialize Bus Signals in Simulink” on page 8-31. When
you use this technique, make sure the function-call subsystem is called at the start of
execution. See “Create a Function-Call Subsystem” for more information.

Use Buses with Atomic Subsystems

+ “Extract Nonvirtual Bus Signals from Atomic Subsystems” on page 8-35
* “Virtual Bus Signals Crossing Atomic Boundaries” on page 8-37

+ “Atomic Subsystems and Buses of Constants” on page 8-39
Extract Nonvirtual Bus Signals from Atomic Subsystems
Selecting signals from a nonvirtual bus can result in unnecessary data copies when those

signals cross an atomic boundary. In the following example the same code, a simple
multiplication of two elements in a vector, is executed three times:

8-35

8 Data Types

8-36

SimpleBus_2 ExporedGlobal |co|.bb 2

Refarence Example
—MNo extra copies--

I <Entry 2>

SimpleBus 2 ExporedGlobal lcoLbE (ri]

ﬂcmbb L@

@ I <Entry >

SimpleBus 2 ExporiedGiobal
_
Input Bus 3

In3

Outl

Product1
Selecied Cutside
—Exira copies—

idouble
Int Cutl
Select Cukide
Seleced Inside
—MNo extra copies--
idouble
Int Dutl

Select_Imside

Buses

In the second instance when the bus signals are selected outside of the atomic subsystem
an unnecessary copy of the bus data is created.

Although this example shows only signals with global scope, both global and local signals
show the same behavior: the selection of the signals outside of the model results in an
unnecessary copy, while the internal selection does not.

Virtual Bus Signals Crossing Atomic Boundaries
Virtual buses that cross atomic boundaries can result in the creation of unnecessary data

copies. The following example shows the data copy that occurs when a virtual bus crosses
an atomic boundary:

Virtual Aoross Atomic Boundary
—Exra Data Copy--

ExportedGlobal doubk ExporedGlobal

In1 Out1 1
@ Wirtual " g Wirtual Result D

In1 Outl

Virtus|_Case

Momvirtusl Across Alomic Boundary
—Mo Extra Data Copy--

SimpleBus 2 ExporedGlobal doubke ExporedGlobal
e e e] 1 Out1 . JED'
Monirtus] MonVirteal_Resut "—

Monvirtusl_Case

12 void virtuallcrossBo_Nonvirtual Case (void)
13 |
14 Nonvirtual Result = Nonvirtual.Entry 2 Array(0] * Nonvirtual.Entry 2 Array([l]:

15 }

17 void virtualfcrossBound Vircual Case(vold)
{

a

1 Result = wirtualAcrossBoundary B.Entry 2 Array[0] *

tualAcrossBoundary B.Entry 2 Array{l

1

void virtuallcrossBoundary step (void)

{

1 Case():

8-37

8 Data Types

Lines 25-26 show the signals being selected out of the bus before they are used in the
function on lines 19-20. By comparison the nonvirtual bus does not require the use of
temporary variables.

8-38

Buses

Atomic Subsystems and Buses of Constants

If the bus passed into an atomic subsystem consists exclusively of constants, using a

virtual bus is more efficient, because Simulink is able to inline the constant values into
the code:

I

doubie TR Int
z a) -
ouble Expori=dGiobal
Outl e ————» (1)
Virt_For_BOC
doubl ExporiedGiobal ot
C n2
In_

In1

Virtual Cese_ With BOC

double
lI' SimpleBus 2

doutie == Int
2 3 -
double ExporiedGlobal
outt————»(Z)
MonVirt_For_BOC
doubk ExporiedGlobal Out2
2 In2
n_2
In2

Virbual_Cese_With BOC1

void vircnalhc‘?irtualﬂCase_WickhBOCcvcid]
{

Virt For BOC = 6.0 * In 1;

void virtualh Virtual Case With BOCI (void)
{
NonVirt For BOC = wvirtualAcrossBoundaryBOC B.Bus 2.Entry 2 Array[0] *
virtualﬁcros53:undary30C_3.Bus_z.En:ry_E_Axray:lj w I

void virtualAcrossBoundaryBOC step (void)
{

virtualic Virtual Case Wich BOC():

virtualﬂcrcssBaundaryEOCvS.3;3“2.Entry_l = 1.0;
virtualAcrossBoundaryBOC B.Bus 2.Entry 2 Array[0] = 2.0;
vlrt:ali:rcssﬂo:nda:yBOC_S.3:3_2.Entrywz Arrayfl] = 3.0:

yirtuall Virtual Case With BOC1():

8-39

8 Data Types

Rename Built-In Data Types

You can replace built-in data type names with user-defined replacement data type names
in the generated code for a model.

To configure replacement data types,

1 In the Configuration Parameters dialog box, click Code Generation > Data Type
Replacement > Replace data type names in the generated code. A Data type
names table appears. The table lists each Simulink built-in data type name with its
corresponding code generation data type name.

/| Replace data bype names in the generated cade

Data bype names

Sirulink. Code Gereration Replacement

Mame Mame Mame

double real _T
single real3z_T
int32 ink32_T
intle inkl6_T
inta3 inkd_T
uink3z uink3z2_T
uink1é uink16_T
uink uinkd_T
boalean boolean_T
int ink_T
uink uink_T

char char_T

2 Fill in fields in the third column with your replacement data types. Each
replacement data type should be the name of a Simul ink.Al1asType object
that exists in the base workspace. Replacements may be specified or not for each
individual built-in type.

For each replacement data type you enter, the BaseType property of the associated
Simulink.AliasType object must be consistent with the built-in data type it
replaces.

+ For double, single, int32, intl6, int8, uint32, uintl6, and uint8, the
replacement data type's BaseType must match the data type.

8-40

Rename Built-In Data Types

+ For boolean, the replacement data type's BaseType must be either an 8-
bit integer or an integer of the size displayed for Number of bits: int on the
Hardware Implementation pane of the Configuration Parameters dialog box.

+ For Int, uint, and char, the replacement data type's size must match the size
displayed for Number of bits: int or Number of bits: char on the Hardware
Implementation pane of the Configuration Parameters dialog box.

An error occurs, if

* A replacement data type specification is inconsistent.

+ The Simulink.AliasType object has the DataScope parameter set to
Exported.

8-41

8 Data Types

Register mpt User Object Types

8-42

In this section...

“Introduction” on page 8-42

“Register mpt User Object Types Using sl_customization.m” on page 8-42

“mpt User Object Type Customization Using sl_customization.m” on page 8-44

Introduction

Embedded Coder software allows you to create custom mpt object types and specify
properties and property values to be associated with them (see “Create mpt Data Objects
with Data Object Wizard” on page 7-10). Once created, a user object type can be applied
to data objects displayed in Model Explorer. When you apply a user object type to a

data object, by selecting a type name in the User object type pull-down list in Model
Explorer, the data object is automatically populated with the properties and property
values that you specified for the user object type.

To register mpt user object type customizations, use the Simulink customization file
sl_customization.m. This file is a mechanism that allows you to use MATLAB code to
perform customizations of the standard Simulink user interface. The Simulink software
reads the sl_customization.m file, if present on the MATLAB path, when it starts
and the customizations specified in the file are applied to the Simulink session. For

more information on the sl_customization.m customization file, see “Registering
Customizations”.

Register mpt User Object Types Using sl_customization.m

To register mpt user object type customizations, you create an instance of
sl_customization.m and include it on the MATLAB path of the Simulink installation
that you want to customize. The sl _customization function accepts one argument: a
handle to a customization manager object. For example,

function sl_customization(cm)

As a starting point for your customizations, the sl _customization function must first
get the default (factory) customizations, using the following assignment statement:

Register mpt User Object Types

hObj = cm._slDataObjectCustomizer;

You then invoke methods to register your customizations. The customization manager
object includes the following methods for registering mpt user object type customizations:

+ addMPTObjectType(hObj, objectTypeName, classtype, propNamel,
propValuel, propName2, propValue2, ...)

addMPTObjectType(hObj, objectTypeName, classtype, {propNamel,
propName2, ...}, {propVvaluel, propValue2, ...})

Registers the specified user object type, along with specified values for object
properties, and adds the object type to the top of the user object type list, as displayed
in the User object type pull-down list in the Model Explorer.

+ objectTypeName — Name of the user object type

classType — Class to which the user object type applies: "Signal ",
"Parameter”, or "Both*”

+ propName — Name of a property of an mpt or mpt-derived data object to be
populated with a corresponding propValue when the registered user object type is
selected

propValue — Specifies the value for a corresponding propName
* moveMPTObjectTypeToTop(hObj, objectTypeName)

Moves the specified user object type to the top of the user object type list, as displayed
in the User object type pull-down list in the Model Explorer.

+ moveMPTObjectTypeToEnd(hObj, objectTypeName)

Moves the specified user object type to the end of the user object type list, as displayed
in the User object type pull-down list in the Model Explorer.

* removeMPTObjectType(hObj, objectTypeName)
Removes the specified user object type from the user object type list.

Your instance of the sl_customization function should use these methods to register
mpt object type customizations for your Simulink installation.

The Simulink software reads the sl_customization.m file when it starts. If you
subsequently change the file, to use the changes, you must restart your MATLAB
session.

8-43

8 Data Types

8-44

mpt User Object Type Customization Using sl_customization.m

The sl_customization.m file shown in sl_customization.m for mpt Object Type
Customizations uses the addMPTObjectType method to register the user signal types
EngineType and Fuel Type for mpt objects.

sl_customization.m for mpt Object Type Customizations

function sl_customization(cm)
% Register user customizations

% Get default (factory) customizations
hObj = cm.slDataObjectCustomizer;

% Add commonly used signal types
hObj .addMPTObjectType(. .- -
"EngineType”, "Signal”, ...
"DataType”™, "uint8",...
“*Min®, 0,...
"Max®, 255,...
"DocUnits™,"m/sec");

hObj .addMPTObjectType(. .- -
"FuelType®,"Signal”, ...
"DataType”™, "intl6",...
*Min®, -12,...
"Max®, 3000,...
"DocUnits™, "mg/hr");

end

If you include the above file on the MATLAB path of the Simulink installation that
you want to customize, the specified customizations will appear in Model Explorer. For
example, you could view the customizations as follows:

Start a MATLAB session.

Open Model Explorer, for example, by entering the MATLAB command daexplr.
Select Base Workspace.

Add an mpt signal, for example, by selecting Add > Add Custom.

O b ON —

In the right-hand pane display for the added mpt signal, examine the User
object type drop-down list, noting the impact of the changes specified in
sl_customization.m for mpt Object Type Customizations.

Register mpt User Object Types

From the User object type drop-down list, select one of the registered user
signal types, for example, Fuel Type, and verify that the displayed settings are
consistent with the arguments specified to the addMPTObjectType method in
sl_customization.m.

8-45

8 Data Types

Data Type Replacement

In this section...

“Replace Built-In Data Types” on page 8-46

“Programmatically Replace Built-In Data Types” on page 8-50

When you generate code for a model, you can replace the default Simulink Coder data
type names, such as real_T and boolean_T, with your own custom names. The model
code creates typedef statements to define your replacement names. It uses your
replacement names instead of the default type names to, for example, define variables
and functions.

You can specify many-to-one data type replacement to replace multiple built-in data
types with one name in the generated code. For example, you can replace the built-in
data types uint8 and boolean with a single data type name that you specify.

In generated code, data type replacement uses the replacements that you specify instead
of the default Simulink Coder data type names. If you want to create custom data type
names for individual block parameters and signals in generated code and in a model
diagram, see “Create Data Type Alias in Generated Code”.

Replace Built-In Data Types

To configure replacement data type names:

1 In the Configuration Parameters dialog box, select Code Generation > Data
Type Replacement and Replace data type names in the generated code.
The Data type names table lists each Simulink built-in data type name with the
corresponding code generation name.

8-46

Data Type Replacement

/| Replace data bype names in the generated cade

Data bype names

Sirulink. Code Gereration Replacement

Tam

e Mame Mame

double real _T

singl

& real3z_T

int32 int32_T

intia intla_T

inta3

int&_T

uink3z uink3z2_T

uink1é uink16_T

uink uinkd_T

boalean boolean_T

int
uink

char

ink_T
uink_T

char_T

Specify the Replacement Name column with values that replace the default names
in the Code Generation Name column. Specify one of these options:

The name of a Simulink_.Al1asType object that is in the base workspace or a
data dictionary. When you use a Simulink.AliasType object, you can replace a
data type name with the name of the object.

Set the BaseType property of the object to the corresponding Simulink

Name data type. Set the DataScope property of the object to Auto (default)

or Imported. If you want to use your own header file to define replacement
names, set the HeaderFi le property of the object to the header file name and set
DataScope to Imported.

The data type name from the Simulink Name column. This name replaces
the data type name in the generated code. Using the Simulink Name, you
can replace all of the data types except real T and real32_T. To specify
replacement names for boolean_T, int_T, uint_T, and char_T, see the
following table.

The name of a Simul ink.NumericType object that is in the base workspace or a
data dictionary. When you use a Simul ink.NumericType object, you can define
replacement names for real T, real32_T, and boolean_T.

8-47

8 Data Types

Set the DataTypeMode property of the object to the corresponding data type
name from the Simulink Name column.

Specify the Replacement Name for a Data Type

To replace the Code Specify a Specify the Specify a

Generation Name Simulink.AliasType |corresponding Simulink |Simulink.NumericTyp
object with BaseType |Name object with

DataTypeMode

real T double - Double

real32_T single - Single

int32. T int32 int32 -

intle_ T intl6 intl6 -

int8_T int8 int8 -

uint32_T uint32 uint32 —

uintle T uintlé uintl6 -

uint8_T uints8 uint8 -

boolean_T uint8or int8 or uint8 or int8 or Boolean
intn* intn*

int. T intn* intn* -

uint_ T uintn* uintn* -

char_T intn* intn* -

* Replace n with the number of bits displayed in the Configuration Parameters
dialog box Hardware Implementation pane in either Number of bits: int or
Number of bits: char, depending on the data type that you want to replace.

Suppose that in the base workspace you define these replacement data types as
Simulink_AliasType objects.

Replacement Name

Description

FLOAT64

64-bit floating point

FLOAT32

32-bit floating point

S32

32-bit integer

8-48

Data Type Replacement

Replacement Name Description

S16 16-bit integer

S8 8-bit integer

u32 Unsigned 32-bit integer
ulie Unsigned 16-bit integer
us Unsigned 8-bit integer
CHAR Character data

You can specify data type replacements with a one-to-one replacement mapping as
shown.

Replace data type names in the generated code

Data type names

Simulink Code Generation Replacement

Name Name Name
double real_T FLOAT 64
single real32_T FLOAT32
int32 int32_T 532
intlg intle_T 516

intd intd_T S8
uint32 uint32_T u3z
uintlG uintl6_T uie
uint8 uint8_T us

boolean boolean_T

int int_T
uint uint_T
char char_T CHAR

You can also apply a many-to-one data type replacement mapping. For example, you can
replace these data types:

* Int32 and int with the name S32.
*+ uint32 and uint with the name U32.
* uint8 and boolean with the name US8.

8-49

8 Data Types

Note: Many-to-one data type replacement does not support the char (char_T) built-in
data type. Use char only in one-to-one data type replacements.

Data type names

Simulink Code Generation Replacement

Name Name Name
double real_T

single real32_T

int32 int32_T 532
intl6 intl6_T

int8 int8_T

uint32 uint32_T U3z

uintle uintle_T
uints uinté_T us
boolean boolean_T us

int int_T 532

uint uint_T u32

char char_T

Programmatically Replace Built-In Data Types

To programmatically replace the built-in data type names for your model, adjust the
ReplacementTypes model parameter, which is a structure. This example code shows
how to modify the ReplacementTypes parameter to replace the built-in data type
names Int8, uint8, and boolean with the custom data type namesmy T S8, my T US,
and my T _BOOL.

model = bdroot;
cs = getActiveConfigSet(model);
set_param(cs, "EnableUserReplacementTypes”®, “on");

struc = get_param(cs, "ReplacementTypes®);
struc.int8 = "my T S8%;

struc.uint8 = "my T U8";

struc.boolean = "my T BOOL";

set_param(cs, "ReplacementTypes”,struc);

8-50

Data Type Replacement

See Also

Simulink.AliasType | Simulink.NumericType

Related Examples

. “Replace Names of Built-In Types in Code”

. “Replace boolean with Specific Integer Data Type”
. “Create Data Type Alias in Generated Code”

More About
. “What Are User-Defined Data Types?”
. “Data Type Replacement Limitations”

8-51

8 Data Types

Replace Names of Built-In Types in Code

8-52

In this section...

“Explore Example Model” on page 8-52
“Replace Data Type Names” on page 8-53
“Replace Data Type Limit Identifiers” on page 8-54

“Generate Code with Replacement Names” on page 8-55

This example shows how to replace the built-in Simulink data type names in the code
that you generate from a model.

When you integrate the code that you generate from a model with existing code from
another source, you can control the data type identifiers that the model code uses.

For ERT-based hardware targets, you can replace the built-in data type names in the
generated code. To avoid generating typedef statements in the model code, configure
the code to import the type names from a header file that you create.

You can also specify custom names for the numeric data type limits that the generated

code uses. For example, the code might use the limits to handle data type saturation as a

result of a math operation.

Explore Example Model

1 Open the example model ex_data_type_replacement.
2 Generate code for the example model.

3 In the code generation report, view the shared file rewtypes.h. The code uses
typedeT statements to rename the basic C data types using standard Simulink
Coder identifiers. For example, the code renames the basic type double using the
identifier real T.

The code also creates identifiers to represent the numeric limits of the data types,
such as MAX_intl6 T and MIN_intl6_T.

#define MAX_iIntl6_T ((intl16_T)(32767))
#define MIN_intl6_T ((intl16_T)(-32768))

4 View the file ex_data_type_ replacement.c. The code uses the Simulink Coder
data type identifiers to declare and define variables. For example, the code uses
the data types real T, intl6_ T, and boolean_T to declare the variables Flowln,
temp, and intlk.

Replace Names of Built-In Types in Code

The code also uses the data type limit identifiers MAX_Int16 T and MIN_intl6 T
to handle a potential division by zero.

if (denominator == 0) {

quotient = numerator >= 0 ? (Iint32_T)MAX_intl6_T : (int32_T)MIN_intl6_T;
¥
Close the code generation report. Delete the generated files and folders from your
current folder.

Suppose that you want to interface the code that you generate from the example model
with existing code from another source. If the existing code uses typedef statements
to define several custom data type names and data type limit identifiers, use data type
replacement to generate code with the custom names.

Replace Data Type Names

1

Save the following C code into a text file named my_types.h in your current folder.
This file represents a header file in your existing code that defines custom data
type names using typedef statements. The file uses a macro guard of the form
HEADER_filename_h.

#ifndef HEADER_my_types _h_
#define HEADER_my_types_h_

typedef double my_dblPrecision;
typedef short my_intl6;
typedef unsigned char my_bool;

#endif

At the command prompt, create a Simul ink_AliasType object for each data type
that you want to replace. Name the objects using the data type names that you want
to appear in the generated code.

my_dblPrecision = Simulink_AliasType;
my_intl6é = Simulink_AliasType;
my_bool = Simulink_AliasType;

Set the BaseType property of each object to the data type that you want to replace.
my_dblPrecision.BaseType = "double”;

my_intl6.BaseType = "intl6";
my_bool .BaseType = "boolean”;

8-53

8 Data Types

4 Set the DataScope property of each object to Imported. Set the HeaderFile
property of each object to the name of your header file.

my_dblPrecision._DataScope = "Imported”;
my_dblPrecision._HeaderFile = "my_types.h-";

my_intl6._DataScope = "Imported-;
my_intl6.HeaderFile = "my_types.h-";

my_bool .DataScope = "Imported”;
my_bool .HeaderFile = "my_types.h";

5 In the Configuration Parameters dialog box, on the Code Generation > Data Type
Replacement pane, select Replace data type names in the generated code.

6 Specify the fields in the Replacement Name column according to the table.

Simulink Name Repalcement Name
double my_dblPrecision
intl6 my_ intlé
boolean my_bool

Replace Data Type Limit Identifiers

1 Save the following C code into a text file named my_type_limits.h in your current
folder. This file represents a header file in your existing code. The file defines custom
data type limit identifiers using #define directives.

#ifndef MAX_my_ intl6

#define MAX_my_intl6 ((int16_T)(32767))
#endif

#ifndef MIN_my_intl6

#define MIN_my_intl6 ((int16_T)(-32768))
#endif

2 At the command prompt, point the example model to the new header file that
contains the custom limit identifiers.

set_param(gcs, "TypeLimitldReplacementHeaderFile®,"my_type limits.h");

3 Specify the minimum and maximum identifiers for the data type intl16 as the
custom names MIN_my_intl16 and MAX_my_intl6.

8-54

Replace Names of Built-In Types in Code

set_param(gcs, "MinldInt16®,"MIN_my intl6");
set_param(gcs, "MaxldIntl16®, "MAX_my intl6");

Generate Code with Replacement Names

1 Generate code for the example model.

2 In the code generation report, view the shared file rtwtypes.h. The code creates an
#include directive for the header file my_types.h, which contains the data type
names. The code imports the custom type definitions from the header file instead of
generating typedef statements.

The code also creates an #include directive for the header file my_type_limits._h,
which contains the data type limit identifiers. The code imports the definitions of the
intl6 numeric limits from the header file instead of generating #define directives.

3 View the file ex_data_type_replacement.c. The code uses the custom data type
names my_dblPrecision, my_ intl6, and my_ bool to declare and define variables
such as Flowln, temp, and intlk.

The code uses the custom data type limit identifiers MIN_my_intl6 and
MAX_my_intl6 to handle a potential division by zero.

if (denominator == 0) {
quotient = numerator >= 0 ? (int32_T)MAX_my_intl6 : (int32_T)MIN_my_intl6;
}

See Also
Simulink.AliasType

Related Examples
. “Data Type Replacement”
. “Specify Boolean and Data Type Limit Identifiers”

More About
. “What Are User-Defined Data Types?”
. “Data Type Replacement Limitations”

8-55

8 Data Types

Data Type Replacement Limitations

When you select the model configuration parameter Replace data type names in the
generated code on the Code Generation > Data Type Replacement pane of the
Configuration Parameters dialog box, these limitations apply.

+ Data type replacement does not support multiple levels of mapping. Each replacement
data type name maps directly to one or more built-in data types.

+ Data type replacement is not supported for simulation target code generation for
referenced models.

+ If you select the Classic call interface configuration parameter for your model, data
type replacement is not supported.

* Code generation performs data type replacements while generating .c, .cpp, and -h
files. Code generation places these files in build folders (including top and referenced
model build folders) and in the _shareduti Is folder. Exceptions are as follows:

rtwtypes.h

multiword_types.h

model_reference_types.h
builtin_typeid_types.h

model_sf.c or .cpp (ERT S-function wrapper)
model_dt.h (C header file supporting external mode)
model _capi.cor .cpp

model_capi.h

+ Data type replacement is not supported for complex data types.

* Many-to-one data type replacement is not supported for the char data type.
Attempting to use char as part of a many-to-one mapping to a custom data type
represents a violation of the MISRA C specification. For example, if you map char
(char_T) and either int8 (int8_T) or uint8 (uint8_T) to the same replacement
type, the result is a MISRA C violation. If you try to generate C++ code, the code
generator makes invalid implicit type casts, resulting in compile-time errors. Use
char only in one-to-one data type replacements.

* For ERT S-functions, replace the boolean data type with only an 8-bit integer, int8,
or uints.

+ Set the DataScope property of a Simul ink.Al1asType object to Auto (default) or
Imported.

8-56

Data Type Replacement Limitations

More About

. “Data Type Replacement”

8-57

8 Data Types

Specify Boolean and Data Type Limit Identifiers

You can use command-line parameters to replace the default Boolean and data type
limit identifiers. If you want to associate the data type limit identifiers with the data
type names, consider replacing the default identifiers. You can also use command-
line parameters to import a header file with the Boolean and data type limit identifier
definitions.

Data Type Limit Identifiers

You can control the data type limit identifiers in the generated code by using the
command-line parameters in this table.

Data Type Limit Default Identifier Command-Line Parameter
8-bit integer maximum MAX_Int8_ T Max1dInt8
16-bit integer maximum MAX_intl6_ T Max1dIntl6
32-bit integer maximum MAX_ Int32_ T Max1dInt32
8-bit unsigned integer MAX uint8 T Max1dUInt8
maximum

16-bit unsigned integer MAX uintl6 T MaxIdUIntl16
maximum

32-bit unsigned integer MAX uint32_T Max1dUInt32
maximum

8-bit integer minimum MIN_int8_T MinldInt8
16-bit integer minimum MIN_intl6 T MinldIntl6
32-bit integer minimum MIN_int32_T MIinldInt32

For example, to change the default identifiers for the 8-bit integer data limit minimum
and maximum to s4g_S4MIN and s4g_S4MAX, respectively:

set_param(gcs, "MinldInt8", "s4g_S4MIN™);
set_param(gcs, "Max1dInt8", "s4g_S4MAX")

If you do not import a header file, the generated file rtwtypes.h defines the 8-bit
integer data minimum and maximum identifiers:

#define s4g_S4MAX ((int8_T)(127))

8-58

Specify Boolean and Data Type Limit Identifiers

#define s4g_S4AMIN ((int8_T)(-128))
If you do import a header file defining the data type limit identifiers, the header file is

included in rtwtypes.h.

Boolean Identifiers

You can control the Boolean identifiers in the generated code by using the command-line
parameters in this table.

Boolean Default Identifier Command-Line Parameter
True true BooleanTrueld
False false BooleanFalseld

For example, to change the default Boolean true and false identifiers:

set_param(gcs, "BooleanTrueld®, "bTrue®);
set_param(gcs, "BooleanFalseld”, "bFalse®)

If you do not import a header file, the generated file rtwtypes.h defines the Boolean
identifiers:

#define bFalse ov)
#define bTrue (@1Y))
If you do import a header file defining the Boolean identifiers, the header file is included

in rtwtypes.h.

Boolean and Data Type Limit Identifier Header Files

You can import a header file that defines Boolean and data type limit identifiers using
the command-line parameter TypeLimitldReplacementHeaderFile. The header file
1s included in rtwtypes.h. You must use the command-line parameters to specify the
Boolean and data type limit identifiers that are included in the imported header file.

For example, if you have a header file myfile.h with data type limit definitions, use
TypeLimitldReplacementHeaderFile to include the definitions in the generated
code:

set_param(gcs, "TypeLimitldReplacementHeaderFile", "myfile.h");

The generated file rtwtypes.h includes myfile._h.

8-59

8 Data Types

/* Import type limit identifier replacement definitions. */
#include "myfile.h"

More About

. “Data Type Replacement”

8-60

Module Packaging Tool (MPT) Data
Obijects

Q Module Packaging Tool (MPT) Data Objects

MPT Data Object Properties

The following table describes the properties and property values for mpt.Parameter and
mpt.Signal data objects that appear in the Model Explorer.

Note: You can create mpt.Signal and mpt.Parameter objects in the base MATLAB
or model workspace. However, if you create the object in a model workspace, the object's
storage class must be set to auto.

The figure below shows an example of the Model Explorer. When you select an
mpt.Parameter or mpt.Signal data object in the middle pane, its properties and
property values display in the rightmost pane.

In the Properties column, the table lists the properties in the order in which they appear
on the Model Explorer.

(2} Model Explorer (E=5 E=R 5
File Edit View Tools Add Help
S hEmEx HE S (@ 4 &
Search: by Name - Mame: 2 Search
Model Hierarchy ¥ . | Contents of: Base Werkspace Filter Contents | mpt.Signak A
- Simulink Root] = En
@ |mulink Roo Column View: |Data Objects | Show Details 7 obiject(s! \Thd Data type: auto M =
1 Base workspace
s Configuration Preferences Name Value DataType Min Max Dimend Complexity: |auto -
> W rtwdemo_mpt Hr 5 I
Dimensions: -1 Dimensions mode: | auto -
H Gaim 5
H Gain2 3 Sample time: -1 Sample mode: auto -
H et 6 Minimum: — [] Masimum: 3 L
H a2 26 3
M s g Initial value: Units:
Ea auto non 1 Code generation options
Storage dass: |Global (Custom) -]
Custom attributes
Memary section: |Dafau\t "
Header file:
Owner:
Definition file:
Persistence level: 1
Alias:
] i b
] i b —
Revert Help Apply
Contents Search Results

Parameter and Signal Property Values

9-2

MPT Data Object Properties

Class:
Parameter,
Signal, or Both

Property

Available Property
Values
(* Indicates Default)

Description

Both

User object type

*auto

Prenamed and predefined property

sets that are registered in the
sl_customization.m file. (See “Register
mpt User Object Types”.) This field

is active when a user object type is
registered.

Select auto if this field is available but
you do not want to apply the properties
of a user object type to a selected data
object. The fields on the Model Explorer
are populated with default values.

Listed user object
type name

Select a user object type name to

apply the properties and values that
you associated with this name in the
sl_customization.m file. The fields
on the Model Explorer are automatically
populated with those values.

Parameter

Value

*0

The data type and numeric value of

the data object. For example, int8(5).
The numeric value is used as an initial
parameter value in the generated code.

Both

Data type

Used to specify the data type for an
mpt.Signal data object, but not for

an mpt.Parameter data object. The
data type for an mpt.Parameter data
object is specified in the Value field
above. See “Data Types” in the Simulink
documentation.

Both

Units

*null

Units of measurement of the signal or
parameter. (Enter text in this field.)

Both

Dimensions

The dimension of the signal or parameter.
For a parameter, the dimension is derived
from its value.

Q Module Packaging Tool (MPT) Data Objects

Class: Property Available Property Description

Parameter, Values

Signal, or Both (* Indicates Default)

Both Complexity *auto Complexity specifies whether the signal
or parameter is a real or complex number.

real Select auto for the code generator to
decide. For a parameter, the complexity is
complex derived from its value.

Signal Sample time *-1 Model or block execution rate.

Signal Sample mode *auto Determines how the signal propagates
through the model. Select auto for the
code generator to decide.

Sample based The signal propagates through the model
one sample at a time.

Frame based The signal propagates through the model
in batches of samples.

Both Minimum *0.0 The minimum value to which the
parameter or signal is expected to be
bound.

Number within the
minimum range of
the parameter or
signal. (Based on
the data type and
resolution of the
parameter or signal.)
Both Maximum *0.0 Maximum value to which the parameter

or signal is expected to be bound. (Enter
information using a dialog box.)

Code generation
options

Storage class

Note that an auto selection for a storage
class tells the build process to decide
how to declare and store the selected
parameter or signal.

9-4

MPT Data Object Properties

Class:
Parameter,
Signal, or Both

Property

Available Property
Values
(* Indicates Default)

Description

Both

Default
(Custom)

Code generation decides how to declare
the data object.

Both

Global (Custom)

Global (Custom)
1s the default storage
class for mpt data
objects.

Specifies that a code generator not place a
qualifier in the data object's declaration.

Both

Memory section

*Default

Memory section allows you to specify
storage directives for the data object.
Defaul t specifies that the code generator
not place a type qualifier and pragma
statement with the data object's
declaration.

Parameter

MemConst

Places the const type qualifier in the
declaration.

Both

MemVolatile

Places the volati le type qualifier in the
declaration.

Parameter

MemConstVolatile

Places the const volatile type
qualifier in the declaration.

Both

Header file

Name of the file used to import or export
the data object. This file contains the
declaration (extern) to the data object.

Also, you can specify this header
filename between the double-quotation
or angle-bracket delimiter. You can
specify the delimiter with or without
the .h extension. For example, specify
"object.h" or "object". For the
selected data object, this overrides

the general delimiter selection in the
#include file delimiter field on the
Configuration Parameters dialog box.

Both

Owner

*Blank

The name of the module that owns this
signal or parameter. This is used to help

9-5

Q Module Packaging Tool (MPT) Data Objects

Class: Property Available Property Description
Parameter, Values
Signal, or Both (* Indicates Default)
determine the ownership of a definition.
For details, see “Ownership Settings” and
the table “Ownership Settings”.
Both Definition file *Blank Name of the file that defines the data
object.
Valid string
Both Persistence level The number you specify is relative to
Signal display level or Parameter tune
level on the Code Placement pane of the
Configuration Parameters dialog box. For
a signal, allows you to specify whether or
not the code generator declares the data
object as global data. For a parameter,
allows you to specify whether or not the
code generator declares the data object as
tunable global data. See Signal display
level and Parameter tune level in
“Code Generation Pane: Code Placement”.
Both Bitfield Embeds Boolean data in a named bit field.
(Custom)
Struct name Name of the struct into which the
object's data will be packed.
Parameter Const (Custom) Places the const type qualifier in the
declaration.
Parameter Header file See above.
Parameter Owner See above.
Parameter Definition file See above.
Parameter Persistence See above.
level
Both Volatile Places the volati le type qualifier in the
(Custom) declaration.
Both Header file See above.

9-6

MPT Data Object Properties

Class: Property Available Property Description
Parameter, Values
Signal, or Both (* Indicates Default)
Both Owner See above.
Both Definition file See above.
Both Persistence See above.
level
Parameter ConstVolatile Places the const volatile type
(Custom) qualifier in declaration.
Parameter Header file See above.
Parameter Owner See above.
Parameter Definition file See above.
Parameter Persistence See above.
level
Parameter Define (Custom) Represents parameters with a #define
macro.
Parameter Header file See above.
Both ExportToFile Generates global variable definition, and
(Custom) generates a user-specified header (.h) file
that contains the declaration (extern) to
that variable.
Both Memory section See above.
Both Header file See above.
Both Definition file See above.
Both ImportFromFile Includes predefined header files
(Custom) containing global variable declarations,
and places the #include in a
corresponding file. Assumes external code
defines (allocates memory) for the global
variable.
Both Data access *Direct Allows you to specify whether the

identifier that corresponds to the selected
data object stores data of a data type

9-7

Q Module Packaging Tool (MPT) Data Objects

Class: Property Available Property Description

Parameter, Values

Signal, or Both (* Indicates Default)

(Direct) or stores the address of the data
(a pointer).

Both Pointer If you select Pointer, the code generator
places * before the identifier in the
generated code.

Header file See above.

Both Struct (Custom) Embeds data in a named struct to
encapsulate sets of data.

Both Struct name See above.

Signal GetSet (Custom) Reads (gets) and writes (sets) data using
functions.

Signal Header file See above.

Signal Get function Specify the Get function.

Signal Set function Specify the Set function.

Both Alias *null As explained in detail in “Override Data
Object Naming Rules”, for a Simulink or
mpt data object (identifier), specifying
a name in the Alias field overrides the
global naming rule selection you make on
the Configuration Parameters dialog box.

Valid ANSI® C/C++
variable name

Both Description |*null Text description of the parameter or
signal. Appears as a comment beside the
signal or parameter's identifier in the
generated code.

String
Signal Reusable Allows the code generator to reuse a pair
(Custom) of root I/O signals when you specify the

9-8

same name and the same custom storage
class for both. The custom storage class is

MPT Data Object Properties

Class:
Parameter,
Signal, or Both

Property

Available Property
Values
(* Indicates Default)

Description

either Reusable (Custom) or derived
from Reusable (Custom).

Signal

Data Scope

*Auto

You can specify the scope of symbols

code generation generates for a data
object of this class by selecting a value for
DataScope. When you take the default
of Auto, code generation determines

the symbol scope internally. If possible,
symbols have Fi le scope. Otherwise, they
have Exported scope.

Code generation defines the scope of
each symbol as the file that defines it.
File scope requires each symbol to be
used in a single file. If the same symbol
is referenced in multiple files, code
generation reports an error.

Exported

Code generation exports symbols to
external code in the header file specified
by the HeaderFile field. If a HeaderFile
1s not specified, symbols are exported to
external code in model . h.

Imported

Code generation imports symbols from
external code in the header file specified
by the HeaderFile field. If you do not
specify a header file, code generation
generates an extern directive in
model_private.h.

Signal

Header file

See above.

Signal

Owner

See above.

Signal

Definition file

See above.

a. ANSI is a registered trademark of the American National Standards Institute, Inc.

9-9

Q Module Packaging Tool (MPT) Data Objects

9-10

mpt Package Custom Storage Classes

CSC Name

Purpose

Signals?

Parameters?

BitField

Generate a struct declaration
that embeds Boolean data in
named bit fields.

Y

Y

CompilerFlag

Supports preprocessor
conditionals defined via compiler
flag. See “Generate Preprocessor
Conditionals for Variant Systems”.

Const

Generate a constant declaration
with the const type qualifier.

ConstVolatile

Generate declaration of volatile
constant with the const
volati le type qualifier.

N

Default

The default custom storage class
for the Simul ink package. Export
the declaration of all data objects
to a default generated header file.

Define

Generate #define directive.

ExportToFile

Generate header (. h) file, with
user-specified name, containing
global variable declarations.

FileScope

Generate a static qualifier suffix
for a variable declaration so that
the scope of the variable is limited
to the current file.

Y

GetSet

Supports specialized function calls
to read and write the memory
associated with a Data Store
Memory block. See “GetSet
Custom Storage Class” on page
10-61.

Y

Global

The default custom storage class
for the mpt package. Generate
the declaration and definition of a

MPT Data Object Properties

CSC Name

Purpose

Signals?

Parameters?

data object in specified files, and
use the specified memory section.

ImportedDefing

Supports preprocessor
conditionals defined via legacy
header file. See “Generate
Preprocessor Conditionals for
Variant Systems”.

ImportFromFi l¢

Generate directives to include
predefined header files containing
global variable declarations.

Reusable

Allows the code generator to reuse
a pair of root I/O signals when
you specify the same name and
the same custom storage class for
both. The custom storage class

is either Reusable (Custom)

or derived from Reusable
(Custom).

Struct

Generate a struct declaration
encapsulating parameter or signal
object data.

Y

StructConst

Generate a struct declaration,
with a const type qualifier,
encapsulating parameter object
data.

StructVolati l¢

Generate a struct declaration,
with a volati le type qualifier,
encapsulating parameter or signal
object data.

Volatile

Use volati le type qualifier in
declaration.

Y

9-11

Q9 Module Packaging Tool (MPT) Data Objects

Examples of Property Value Changes on Generated Code

What | noticed when inspecting
the .c/.cpp file

Change | made to property value
settings

What | noticed after
regenerating and reinspecting
the file

Example 1:

Parameter data objects can

be declared or defined as
constants. I know that the data
object GAIN is a parameter.

I want this to be declared

or defined in the .c file as a
variable. But I notice that GAIN
is declared as a constant by
the statement const real_T
GAIN = 5.0;. Also, this
statement is in the constant
section of the file.

In the Model Explorer, I clicked
the data object GAIN. I noticed
that the property value for its
Memory section property is set
at MemConst. I changed this to
Default.

I notice two differences. One is
that now GAIN is declared as
a variable with the statement
real T GAIN = 5.0;. The
second difference is that the
declaration now is located in
the MemConst memory section
in the .c or .cpp file.

Example 2:

I notice again the declaration of
GAIN in the . c file mentioned
in Example 1. It appears as
real T GAIN = 5.0;. But

I have changed my mind. I
want data object GAIN to be
#define.

I changed the Storage class
selection to Define (Custom).

GAIN is not declared in the .c
file as a MemConst parameter.
Rather, it is defined as a
#define macro by the code
#define GAIN 5.0, and

this is located near the top

of the .c file with the other
preprocessor directives.

Example 3:

I changed my mind again

after doing Example 2. I do
want GAIN defined using

the #define preprocessor
directive. But I do not want to
include the #define in this
file. I know it exists in another
file and I want to reference that
file.

On the Model Explorer, I notice
that the property value for

the Header file property

is blank. I changed this to
filename.h. (I chose the ANSI
C/C++ double quote mechanism
for the #include, but could
have chosen the angle bracket
mechanism.) Also, I must make
the user-defined filename.h
available to the compiler, placing
it either in the system path or
local directory.

#define GAIN 5.01is not
present in this . c file. Instead,
the #include filename.h
code appears as a preprocessor
directive at the top of the file.

9-12

MPT Data Object Properties

What | noticed when inspecting
the .c/.cpp file

Change | made to property value
settings

What | noticed after
regenerating and reinspecting
the file

Example 4:

I have one more change I

want to make. Let us say that
we have declared the data
object data_in, and that its
declaration statement in the .c
file reads

real T data_in = 0.0;.1
want to replace this statement
with an alias in the .c file.

In the Model Explorer, I selected
the data object data_in. I
noticed that the Alias field

is blank. I changed this to
data_in_alias, which I know
1s a valid ANSI C/C++ variable

name.

The identifier
data_in_alias now appears
in the .c file everywhere
data_in appeared.

9-13

Custom Storage Classes

* “Introduction to Custom Storage Classes” on page 10-2

+ “Resources for Defining Custom Storage Classes” on page 10-5

+ “Simulink Package Custom Storage Classes” on page 10-6

* “Design Custom Storage Classes and Memory Sections” on page 10-9
* “Apply Custom Storage Classes” on page 10-31

* “Control Data Code by Creating Custom Storage Class” on page 10-48
* “Generate Code with Custom Storage Classes” on page 10-53

+ “Define Advanced Custom Storage Classes Types” on page 10-57

+ “GetSet Custom Storage Class” on page 10-61

* “Custom Storage Class Implementation” on page 10-65

+ “Custom Storage Class Limitations” on page 10-66

10 Custom Storage Classes

Introduction to Custom Storage Classes

10-2

In this section...

“Custom Storage Class Memory Sections” on page 10-3
“Custom Storage Classes and Data Class Packages” on page 10-3
“Custom Storage Class Examples” on page 10-3

During the build process, the storage class specification of a signal, tunable parameter,
block state, or data object specifies how that entity is declared, stored, and represented in
generated code. Note that in the context of the build process, the term “storage class” is
not synonymous with the term “storage class specifier”, as used in the C language.

The Simulink Coder software defines four built-in storage classes for use with targets:
Auto, ExportedGlobal, ImportedExtern, and ImportedExternPointer. These
storage classes provide limited control over the form of the code generated for references
to the data. For example, data of storage class Auto is typically declared and accessed as
an element of a structure, while data of storage class ExportedGlobal is declared and
accessed as unstructured global variables. For information about built-in storage classes,
see “Signal Representation in Generated Code” in the Simulink Coder documentation.

If the built-in storage classes do not provide data representation required by your
application, you can define custom storage classes (CSCs). Embedded Coder (CSCs)
extend the built-in storage classes provided by the Simulink Coder software. CSCs can
provide application-specific control over the constructs required to represent data in an
embedded algorithm. For example, you can use CSCs to:

+ Define structures for storage of parameter or signal data.
* Conserve memory by storing Boolean data in bit fields.

+ Integrate generated code with legacy software whose interfaces cannot be modified.

* Generate data structures and definitions that comply with your organization's
software engineering guidelines for safety-critical code.

Custom storage classes affect only code generated for ERT targets. When Configuration
Parameters > Code Generation > Target Selection > System target file specifies

a GRT target, the names of custom storage classes sometimes appear in dialog boxes,

but selecting a CSC is functionally the same as selecting Auto. See “Targets and Code
Formats” for information about ERT and GRT targets.

Introduction to Custom Storage Classes

Custom Storage Class Memory Sections

Every custom storage class has an associated memory section definition. A memory
section is a named collection of properties related to placement of an object in memory;
for example, in RAM, ROM, or flash memory. Memory section properties let you specify
storage directives for data objects. For example, you can specify const declarations, or
compiler-specific #pragma statements for allocation of storage in ROM or flash memory
sections.

See “Create and Edit Memory Section Definitions” on page 10-25 for details about
using the Custom Storage Class designer to define memory sections. While memory
sections are often used with data in custom storage classes, they can also be used with
various other constructs. See “Memory Sections” for more information about using
memory sections with custom storage classes, and complete information about using
memory sections with other constructs.

Custom Storage Classes and Data Class Packages

CSCs are associated with Simulink data class packages (such as the Simulink
package) and with classes within packages (such as the Simul ink.Parameter and
Simulink.Signal classes). A custom storage class is available only to data classes that
are defined by the associated package.

You cannot add or change CSCs associated with built-in packages and classes, but you
can create your own packages and subclasses, then associate customized CSCs with those
packages. To create your own packages and custom storage classes, see “Design Custom
Storage Classes and Memory Sections”.

Custom Storage Class Examples
Three examples show Custom Storage Class capabilities:

rtwdemo_cscpredef — Shows predefined custom storage classes and embedded signal
objects

rtwdemo_importstruct — Shows custom storage classes used to access imported data
efficiently

rtwdemo_advsc — Shows how custom storage classes can support data-object-driven
modeling

10-3

10 Custom Storage Classes

Click the links above, or type the name in the MATLAB Command Window.

10-4

Resources for Defining Custom Storage Classes

Resources for Defining Custom Storage Classes

The resources for working with custom storage class definitions are:

Use MATLAB class syntax to create a data class in a package. You can assign
properties to the data class and add initialization code to enable custom storage
class definition. For complete instructions, see “Define Data Classes” in Simulink
documentation.

A set of ready-to-use CSCs. These CSCs are designed to be useful in code generation
for embedded systems development. CSC functionality is integrated into the
Simulink_Signal and Simulink.Parameter classes; you do not need to use special
object classes to generate code with CSCs.

The Custom Storage Class Designer (cscdesigner) tool, which is described in this
chapter. This tool lets you define CSCs that are tailored to your code generation
requirements. The Custom Storage Class Designer provides a graphical user interface
that you can use to implement CSCs. You can use your CSCs in code generation
immediately, without a Target Language Compiler (TLC) or other programming. See
“Design Custom Storage Classes and Memory Sections” on page 10-9 for details.

10-5

10 Custom Storage Classes

Simulink Package Custom Storage Classes

The Simulink package includes a set of built-in custom storage classes. These are
categorized as custom storage classes, even though they are built-in, because they:

+ Extend the storage classes provided by the Simulink Coder software

* Are functionally the same as if you had defined them yourself using the CSC Designer

You cannot change the CSCs built into the Simul ink package, but you can subclass the
package and add CSCs to the subclass, following the steps in “Resources for Defining
Custom Storage Classes” on page 10-5.

Some CSCs in the Simul ink package are valid for parameter objects but not signal
objects and vice versa. For example, you can assign the storage class Const to a
parameter but not to a signal, because signal data is not constant. The next table defines
the CSCs built into the Simul ink package and shows where each of the CSCs can be

used.

CSC Name

Purpose

Signals?

Parameters?

BitField

Generate a struct declaration that

embeds Boolean data in named bit
fields.

Y

Y

CompilerFlag

Supports preprocessor conditionals
defined via compiler flag. See
“Generate Preprocessor Conditionals
for Variant Systems”.

Const

Generate a constant declaration with
the const type qualifier.

ConstVolatile

Generate declaration of volatile
constant with the const volatile
type qualifier.

Default

Default is a placeholder CSC that
the code generator assigns to the
CoderlInfo.CustomStorageClass
property of signal and parameter
objects when they are created.

You cannot edit the Default CSC
definition.

10-6

Simulink Package Custom Storage Classes

CSC Name Purpose Signals? Parameters?
Define Generate #define directive. Y Y
ExportToFile Generate header (.h) file, with user- |Y Y

specified name, containing global
variable declarations.

FileScope Generate a static qualifier suffix fora |Y Y
variable declaration so that the scope

of the variable is limited to the current
file.

GetSet Supports specialized function calls to |Y Y
read and write the memory associated
with a Data Store Memory block. See
“GetSet Custom Storage Class” on
page 10-61.

ImportedDefine |Supports preprocessor conditionals N Y
defined via legacy header file. See
“Generate Preprocessor Conditionals
for Variant Systems”.

ImportFromFile |Generate directives to include Y Y
predefined header files containing
global variable declarations.

Reusable Allows the code generator to reuse Y N
a pair of root I/O signals when you
specify the same name and the

same custom storage class for both.
The custom storage class is either
Reusable (Custom) or derived from
Reusable (Custom).

Struct Generate a struct declaration Y Y
encapsulating parameter or signal
object data.

Volatile Use volati le type qualifier in Y Y
declaration.

10-7

10 Custom Storage Classes

Related Examples

. “Control Data Code by Creating Custom Storage Class”
. “Apply Custom Storage Classes”

. “Generate Code with Custom Storage Classes”
. “Design Custom Storage Classes and Memory Sections”
More About

. “Data Objects”
. “Define Advanced Custom Storage Classes Types”

10-8

Design Custom Storage Classes and Memory Sections

Design Custom Storage Classes and Memory Sections

In this section...

“Create Packages for Custom Storage Class Definitions” on page 10-9
“Use Custom Storage Class Designer” on page 10-9

“Edit Custom Storage Class Properties” on page 10-15

“Use Custom Storage Class References” on page 10-20

“Protect Custom Storage Class Definitions” on page 10-24

“Create and Edit Memory Section Definitions” on page 10-25

“Use Memory Section References” on page 10-28

Create Packages for Custom Storage Class Definitions

Use MATLAB class syntax to create a data class in a package. You can assign properties
to the data class and add initialization code to enable custom storage class definition. For
complete instructions, see “Define Data Classes” in the Simulink documentation.

Use Custom Storage Class Designer

The Custom Storage Class Designer (cscdesigner) is a tool for creating and managing
custom storage classes and memory sections. You can use the Custom Storage Class
Designer to:

* Load existing custom storage classes and memory sections and view and edit their
properties

+ Create new custom storage classes and memory sections

* Create references to custom storage classes and memory sections defined in other
packages

+ Copy and modify existing custom storage class and memory section definitions
* Check a custom storage class and memory section definitions

* Preview pseudocode generated from custom storage class and memory section
definitions

+ Save custom storage class and memory section definitions

To open the Custom Storage Class Designer for a particular package, type the following
command at the MATLAB prompt:

10-9

10 Custom Storage Classes

cscdesigner (“mypkg™)

When first opened, the Custom Storage Class Designer scans data class packages on

the MATLAB path to detect packages that have a CSC registration file. A message is
displayed while scanning proceeds. When the scan is complete, the Custom Storage Class
Designer window appears:

& Custom Storage Class Designer @
Validation result e
Select package: (Read Only)
Last validation succeeded.
Custom Storage Class ‘ Memory Section ‘
Custom storage class definitions:
Default | (N
BitField -
Const Copy
Volatile g
Constvolatile Up
Define Down
ImportedDefine Pseudocode preview
ExportToFile Remove
ImportFromFile -
i Validate
EilaScone - Header file:
General Comments Structure Attributes No header file is specified. By default, data
is -
Name: |BitField exported via the generated model.h file. 1
Type: |FlatStructure For parameters For signals
Memory section: | Default Data scope: | Exported Type definition:
Data initialization: | Auto Data access: |Direct /* CSC type comment generated by default =/
- - typedef struct INSTANCE SPECIFIC STRUCTINRME tag
Header file: | Specify 1 - - -
Defintion file: [Speoily unsigned int varNamel:1:
- . } INSTANCE_SPECIFIC STRUCINAME type:
Owner: | Specify = = -
Declaration:
[* C5C declaration comment generated by default
extern INSTANCE_SPECIFIC STRUCTNAME type
INSTANCE_SPECIFIC_ STRUCINAME: [

Definition:

I oK H Cancel ” Help H Apply I

The Custom Storage Class Designer window is divided into several panels:

+ Select package: Lets you select from a menu of data class packages that have CSC
definitions associated with them. See “Select Data Class Package” on page 10-11
for details.

+ Custom Storage Class / Memory Section properties: Lets you select, view, edit,
copy, verify, and perform other operations on CSC definitions or memory section

10-10

Design Custom Storage Classes and Memory Sections

definitions. The common controls in the Custom Storage Class / Memory Section
properties panel are described in “Manipulate Custom Storage Classes and Memory
Sections” on page 10-12.

* When the Custom Storage Class tab is selected, you can select a CSC definition
or reference from a list and edit its properties. See “Edit Custom Storage Class
Properties” on page 10-15 for details.

When the Memory Section tab is selected, you can select a memory section
definition or reference from a list and edit its properties. See “Create and Edit
Memory Section Definitions” on page 10-25 for details.

* Filename: Displays the filename and location of the current CSC registration file,
and lets you save your CSC definition to that file. See “Save Definitions” on page
10-14 for details.

+ Pseudocode preview: Displays a preview of code that is generated from objects of
the given class. The preview is pseudocode, since the actual symbolic representation of
data objects is not available until code generation time. See “Preview Generated Code”
on page 10-27 for details.

* Validation result: Displays errors encountered when the currently selected CSC
definition is validated. See “Validate Definitions Category” on page 10-20 for
details.

Select Data Class Package

A CSC or memory section definition or reference is uniquely associated with a Simulink
data class package. The link between the definition/reference and the package is formed
when a CSC registration file (csc_registration.m) is located in the package directory.

You need not search for or edit a CSC registration file directly: the Custom Storage Class
Designer locates available CSC registration files. The Select package menu contains
names of data class packages that have a CSC registration file on the MATLAB search
path.

When you select a package, the CSCs and memory section definitions belonging to the
package are loaded into memory and their names are displayed in the scrolling list in the
Custom storage class panel. The name and location of the CSC registration file for the
package is displayed in the Filename panel.

If you select a user-defined package, by default you can use the Custom Storage Class
Designer to edit its custom storage classes and memory sections. If you select a built-in
package, you cannot edit its custom storage classes or memory sections.

10-11

10 Custom Storage Classes

10-12

Manipulate Custom Storage Classes and Memory Sections

The Custom Storage Class / Memory Section panel lets you select, view, and (if the
CSC is writable) edit CSC and memory section definitions and references. In the next
figure and the subsequent examples, the selected package is mypkg. Instructions for
creating a user-defined package like mypkg appear in “Design Custom Storage Classes

and Memory Sections”.

Select package: | mypkg -

Custom Storage Class | Memory Section |

Custom storage class definitions:
BitField

Const
Volatile E

Const\olatile Up

:
ImportedDefine

ExportToFile
ImportFromFile

FilaSrnnea 7 Validate

General | Comments | Structure Attributes |

Mame: BitField

Type: [FIatStructure *] For parameters For signals

Memory section: Data scope: |Exported
Data initialization: Data access: |Direct
Header file:

Definition file:

Owner: | Specify

I

The list at the top of the panel displays the definitions/references for the currently
selected package. To select a definition/reference for viewing and editing, click on the
desired list entry. The properties of the selected definition/reference appear in the area
below the list. The number and type of properties vary for different types of CSC and

memory section definitions. See:

Design Custom Storage Classes and Memory Sections

+ “Edit Custom Storage Class Properties” on page 10-15 for information about the
properties of the predefined CSCs.

+ “Create and Edit Memory Section Definitions” on page 10-25 for information about
the properties of the predefined memory section definitions.

The buttons to the right of the list perform these functions, which are common to both
custom storage classes and memory definitions:
* New: Creates a new CSC or memory section with default values.

* New Reference: Creates a reference to a CSC or memory section definition in
another package. The default initially has a default name and properties. See “Use
Custom Storage Class References” on page 10-20 and “Use Memory Section
References” on page 10-28.

* Copy: Creates a copy of the selected definition / reference. The copy initially has a
default name using the convention:
definition_name_n
where definition_name is the name of the original definition, and n is an integer
indicating successive copy numbers (for example: BitField_1, BitField 2, ..)

* Up: Moves the selected definition one position up in the list.

* Down: Moves the selected definition one position down in the list

* Remove: Removes the selected definition from the list.

* Validate: Performs a consistency check on the currently selected definition. Errors
are reported in the Validation result panel.

For example, if you click New, a new custom storage class is created with a default
name:

10-13

10 Custom Storage Classes

10-14

Select package: | mypkg -

Custom Storage Class | Memory Section |

Custom storage class definitions:
Default
NewCSC_1

BitField
Const E

Vaolatile Up
Constvolatile .
Define

ImportedDefine
ExportToFile

TrmnnrtErnmEils S Validate

General Comments

Mame: MNewCSC_1

Type: [Unstructured '] For parameters For signals

Memory section: | Default ~ | Data scope: |Auto
Data initialization: Data access: |Direct
Hesder il

Definition file: | Specify

I

Owner: | Specify

You can now rename the new class by typing the desired name into the Name field, and
specify other fields.

Note: The class name must be a valid MATLAB variable name. See “Variable Names”

Click Apply or OK.
Save Definitions

After you have created or edited a CSC or memory section definition or reference,

you must save the changes to the CSC registration file. To do this, click Save in the
Filename panel. When you click Save, the current CSC and memory section definitions
that are in memory are validated, and the definitions are written out.

Design Custom Storage Classes and Memory Sections

If errors occur, they are reported in the Validation result panel. The definitions are
saved whether or not errors exist. However, you should resolve validation errors and
resave your definitions. Trying to use definitions that were saved with validation errors
can cause additional errors. Such problems can occur even it you do not try to use the
specific parts of the definition that contain the validation errors, making the problems
difficult to diagnose.

Restart MATLAB After Changing Definitions

If you add, change, or delete custom storage class or memory section definitions for a
user-defined class, and objects of that class already exist, you must restart MATLAB to
use the changed definitions and to eliminate obsolete objects. When you save the changed
definitions, a message appears indicating that you must restart MATLAB.

Edit Custom Storage Class Properties

To view and edit the properties of a CSC, click the Custom Storage Class tab in the
Custom Storage Class / Memory Section panel. Then, select a CSC name from the
Custom storage class definitions list.

The CSC properties are divided into several categories, selected by tabs. Selecting

a class, and setting property values for that class, can change the available tabs,
properties, and values. As you change property values, the changes in the generated code
is immediately displayed in the Pseudocode preview panel. In most cases, you can
define your CSCs quickly and easily by selecting the Pseudocode preview panel and
using the Validate button frequently.

The property categories and corresponding tabs are as follows:

General Category

Properties in the General category are common to CSCs. In the next figure and the
subsequent examples, the selected custom storage class is ByteField. Instructions for

creating a user-defined custom storage class like ByteField appear in “Manipulate
Custom Storage Classes and Memory Sections” on page 10-12.

10-15

10 Custom Storage Classes

10-16

General Comments

Name: ByteField

Type: IUnstructured "I For parameters For signals
Memory section: IDefauIt "I Data scope: [Auto -
Data initialization: |Auto = | Data access: Direct

Header file: \Speciﬁ_.r "I

Definition file: | Specify

Owner: | Specify

Properties in the General category, and the possible values for each property, are as
follows:

Name: The CSC name, selected from the Custom storage class definitions list.
The name cannot be a TLC keyword. Violating this rule causes an error.

Type: Specifies how objects of this class are stored. Values:

Unstructured: Objects of this class generate unstructured storage declarations
(for example, scalar or array variables), for example:

datatype dataname[dimension];

* FlatStructure: Objects of this class are stored as members of a struct. A
Structure Attributes tab is also displayed, allowing you to specify additional
properties such as the struct name. See “Structure Attributes Category” on page
10-19.

Other: Used for certain data layouts, such as nested structures, that cannot

be generated using the standard Unstructured and FlatStructure custom
storage class types. If you want to generate other types of data, you can create a
new custom storage class from scratch by writing TLC code. See “Define Advanced
Custom Storage Classes Types” on page 10-57 for more information.

For parameters and For signals: These options let you enable a CSC for use with
only certain classes of data objects. For example, it does not make sense to assign
storage class Const to a Simulink.Signal object. Accordingly, the For signals
option for the Const class is deselected, while the For parameters is selected.

Design Custom Storage Classes and Memory Sections

Memory section: Selects one of the memory sections defined in the Memory
Section panel. See “Create and Edit Memory Section Definitions” on page 10-25.

Data scope: Controls the scope of symbols generated for data objects of this class.
Values:
Auto: Symbol scope is determined internally by code generation. If possible,
symbols have File scope. Otherwise, they have Exported scope.

Exported: Symbols are exported to external code in the header file specified by
the Header File field. If a Header File is not specified, symbols are exported to
external code in model .h.

+ Imported: Symbols are imported from external code in the header file specified
by the Header File field. If you do not specify a header file, an extern directive
is generated in model private.h. For imported data, if the Data initialization
value is Macro, a header file must be specified.

+ File: The scope of each symbol is the file that defines it. File scope requires each
symbol to be used in a single file. If the same symbol is referenced in multiple files,
an error occurs at code generation time.

Instance specific: Symbol scope is defined by the Data scope field of the
CoderlInfo.CustomAttributes property of each data object.

Data initialization: Controls how storage is initialized in generated code. Values:
Auto: Storage initialization is determined internally by the code generation.
Parameters have Static initialization, and signals have Dynamic initialization.
None: Initialization code is not generated.

+ Static: A static initializer of the following form is generated:

datatype datanamel[dimension] = {...};

Dynamic: Variable storage is initialized at runtime, in the model_initialize
function.

* Macro: A macro definition of the following form is generated:

#define data numeric_value

The Macro initialization option is available only for use with unstructured
parameters. It is not available when the class is configured for generation of
structured data, or for signals. If the Data scope value is Imported, a header file
must be specified.

10-17

10 Custom Storage Classes

10-18

+ Instance specific: Initialization is defined by the Data initialization
property of each data object.

Note: The code generator might include dynamic initialization code for signals
and states even if the CSC has Data initialization set to None or Static, if the
Initialization is required.

Data access: Controls whether imported symbols are declared as variables
or pointers. This field is enabled only when Data scope is set to Imported or
Instance-specific. Values:

+ Direct: Symbols are declared as simple variables, such as

extern myType myVariable;

+ Pointer: Symbols are declared as pointer variables, such as

extern myType *myVariable;

+ Instance specific: Data access is defined by the Data access property of each
data object.

Header file: Defines the name of a header file that contains exported or imported
variable declarations for objects of this class. Values:

+ Specify: An edit field is displayed to the right of the property. This lets you
specify a header file for exported or imported storage declarations. Specify the full
filename, including the filename extension (such as .h). Use quotes or brackets as
in C code to specify the location of the header file. Leave the edit field empty to not
specify a header file.

+ Instance specific: The header file for each data object is defined by the
Header file property of the object. Leave the property undefined to not specify a
header file for that object.

If the Data scope is Exported, specifying a header file is optional. If you specify

a header file name, the custom storage class generates a header file containing the
storage declarations to be exported. Otherwise, the storage declarations are exported
in model .h.

If the Data scope of the class is Imported, and Data initialization is Macro,
you must specify a header file name. A #include directive for the header file is
generated.

Design Custom Storage Classes and Memory Sections

Comments Category

Comments

The Comments panel lets you specify comments to be generated with definitions and
declarations.

Comments must conform to the ANSI C standard (/*. . .*/). Use \n to specify a new
line.

Properties in the Comments tab are as follows:

+ Comment rules: If Specify is selected, edit fields are displayed for entering
comments. If Default is selected, comments are generated under control of the code
generation software.

+ Type comment: The comment entered in this field precedes the typedef or struct
definition for structured data.

* Declaration comment: Comment that precedes the storage declaration.

+ Definition comment: Comment that precedes the storage definition.
Structure Attributes Category

The Structure Attributes panel gives you detailed control over code generation for
structs (including bitfields). The Structure Attributes tab is displayed for CSCs whose
Type parameter is set to FlatStructure. The following figure shows the Structure
Attributes panel.

The Structure Attributes properties are as follows:

* Struct name: If you select Instance specific, specify the struct name when
configuring each instance of the class.

If you select Specify, an edit field appears for entry of the name of the structure to
be used in the struct definition. Edit fields Type tag, Type token, and Type name
are also displayed.

+ Is typedef: When this option is selected a typedeT is generated for the struct
definition, for example:

typedef struct {

} SignalDataStruct;

10-19

10 Custom Storage Classes

10-20

Otherwise, a simple struct definition is generated.

+ Bit-pack booleans: When this option is selected, signals and/or parameters that
have Boolean data type are packed into bit fields in the generated struct.

+ Type tag: Specifies a tag to be generated after the struct keyword in the struct
definition.

+ Type name: Specifies the string to be used in typedef definitions. This field is
visible if Is typedef is selected.

+ Type token: Some compilers support an additional token (which is simply another
string) after the type tag. To generate such a token, enter the string in this field.

Validate Definitions Category

To validate a CSC definition, select the definition on the Custom Storage Class panel
and click Validate. The Custom Storage Class Designer then checks the definition

for consistency. The Validation result panel displays a errors encountered when the
selected CSC definition is validated. The next figure shows the Validation result panel
with a typical error message:

— “alidation result

Invalid Custom®torageClass: "ByteField"
Parameter can not be dynamically initialized.

Validation is also performed whenever CSC definitions are saved. In this case, all CSC
definitions are validated. (See “Save Definitions” on page 10-14.)

Use Custom Storage Class References

Packages can access and use custom storage classes that are defined in other packages,
including both user-defined packages and predefined packages such as Simul ink
and mpt. Only one copy of the storage class exists, in the package that first defined

Design Custom Storage Classes and Memory Sections

it. Other packages refer to it by pointing to it in its original location. Changes to the
class, including changes to a predefined class in later MathWorks product releases, are
immediately available in every referencing package.

To configure a package to use a custom storage class that is defined in another package:

1 Type cscdesigner to launch the Custom Storage Class Designer.

Select package: [Simulink '] (Read Only)

Custom Storage Class | Memory Section |

Custom storage class definitions: New

Default -
BitField

Const Copy
Volatile
ConstVolatile Up
Define

ImportedDefine £
ExportToFile Remove
ImportFromFile

FileSrnne

General Comments

Mame: | Default

New Reference

m

Down

- Validate

Type: |Unstructured For parameters For signals
Memory section: | Default Data scope: | Exported

Data initialization: | Auto Data access: |Direct

Header file: | Specify

Owner: | Specify

Definition file: | Specify

2 Select the Custom Storage Class tab.

3 Use Select Package to select the package in which you want to reference a class or
section defined in some other package. The selected package must be writable.

10-21

10 custom Storage Classes

4 In the Custom storage class definitions pane, select the existing definition below
which you want to insert the reference. For example:

Select package: |mypkg -

Custom Storage Class | Memory Section |

Custom storage class definitions:
Default o
BitField
Const
Volatile E
ConstValatile Up
ImportedDefine
ExportToFile
ImportFromFile
FileSrnne S Validate

General | Comments | Structurehttributes|

Mame: BitField

Type: lFIatStructure V] For parameters For signals

Memory section: | Default - | Data scope: ’Exported -
Data initialization: Data access: Direct

Header file: [Specify V]

Definition file: [Specify V]

Owner: | Specify

5 Click New Reference.
A new reference with a default name and properties appears below the previously

selected definition. The new reference is selected, and a Reference tab appears that
shows the reference's initial properties. A typical appearance is:

10-22

Design Custom Storage Classes and Memory Sections

Custom Storage Class Memaory Section |

Custom storage dass definitions: New

Default
ByteField
MewCSCRef_1

Mew Reference
Copy
L
Down

Remove

Validate

Reference | General Comments I

Mame: I MewCSCRef_1

J | g

Refer to custom storage dass in package: ISimuIink
Location: E:matlabltoolbox\simulink\simulink\@Simulink:

L]

Custom storage dass to reference: IDefauIt

6 Use the Name field to enter a name for the new reference. The name must be unique
in the importing package, but can duplicate the name in the source package. The
name cannot be a TLC keyword. Violating this rule causes an error.

7 Set Refer to custom storage class in package to specify the package that
contains the custom storage class you want to reference.

8 Set Custom storage class to reference to specify the custom storage class to be
referenced. Trying to create a circular reference generates an error and leaves the
package unchanged.

9 Click OK or Apply to save the changes to memory. See “Save Definitions” on page
10-14 for information about saving changes permanently.

For example, the next figure shows the custom storage class ConstVolatile imported
from the Simul ink package into mypkg, and given the same name that it has in the
source package. Other names could have been used without affecting the properties of
the storage class.

10-23

10 Custom Storage Classes

10-24

Select package: Im\,rpkg - I

Custom Storage Class | Memory Section I

Custom storage dass definitions: New |
Default o
BiyteFicld Mew Reference
ConstVolatile

Copy
]
Diorn

Remove

Validate

| General | Comments I

Mame: I Constolatile

J | e

Refer to custom storage dass in package: ISimuIink
Location: E:\matlab\toolbox\simulink\simulink\@Simulink

Custom storage dass to reference: ICDnstII'DIah'Ie j

You can use Custom Storage Class Designer capabilities to copy, reorder, validate, and
otherwise manage classes that have been added to a class by reference. However, you
cannot change the underlying definitions. You can change a custom storage class only in
the package where it was originally defined.

Change Existing Custom Storage Class References

To change an existing CSC reference, select it in the Custom storage class definitions
pane. The Reference tab appears, showing the current properties of the reference. Make
changes, then click OK or Apply to save the changes to memory. See “Save Definitions”
on page 10-14 for information about saving changes permanently.

Protect Custom Storage Class Definitions

You can prevent changes to the custom storage class definitions of an entire data class
package by converting the package CSC registration file from a MATLAB file to a P-file.
To learn more about CSC registration files, see “Custom Storage Class Implementation”.

Design Custom Storage Classes and Memory Sections

Create and Edit Memory Section Definitions

Memory section definitions add comments, qualifiers, and #pragma directives to
generated symbol declarations. The Memory Section tab lets you create, view, edit, and
verify memory section definitions. The steps for creating a memory section definition are
essentially the same as for creating a custom storage class definition:

Select a writable package in the Select package field.

2 Select the Memory Section tab. In a new package, only a Default memory section
initially appears.

3 Select the existing memory section below which you want to create a new memory
section.

4 Click New.

A new memory section definition with a default name appears below the selected
memory section.

5 Set the name and other properties of the memory section.
6 Click OK or Apply.

The next figure shows mypkg with a memory section called MyMemSect:

10-25

10 custom Storage Classes

10-26

Select package: Imypkg vl

Custom Storage Class Memory Section |

Memory section definitions:

Mew

Default
MyMemSect Mew Reference

Copy

Dawn

Remove

Validate

Pk

Memary Section I

MName: IMyMemSect
¥ Is const W 1s volatile Qualifier: I

Comment:

Pragma surrounds: IAII variabl 'l

Pre-memory-section pragma:

Post-memory-section pragma:

The Memory section definitions list lets you select a memory section definition to
view or edit. The available memory section definitions also appear in the Memory

section name menu in the Custom Storage Class panel. The properties of a memory
section definition are as follows:

Memory section name: Name of the memory section (displayed in Memory section
definitions list).

+ Is const: If selected, a const qualifier is added to the symbol declarations.

Design Custom Storage Classes and Memory Sections

+ Is volatile: If selected, a volati le qualifier is added to the symbol declarations.

* Qualifier: The string entered into this field is added to the symbol declarations as a
further qualifier. Note that verification is not performed on this qualifier.

* Memory section comment: Comment inserted before declarations belonging to this
memory section. Comments must conform to the ANSI C standard (/*...*/). Use \n
to specify a new line.

* Pragma surrounds: Specifies whether the pragma should surround Al'l
variables or Each variable. When Pragma surrounds is set to Each
variable, the %<identifier> token is allowed in pragmas and will be replaced by
the variable or function name.

+ Pre-memory section pragma: pragma directive that precedes the storage definition
of data belonging to this memory section. The directive must begin with #pragma.

+ Post-memory section pragma: pragma directive that follows the storage definition
of data belonging to this memory section. The directive must begin with #pragma.

Preview Generated Code

If you click Validate on the Memory Section panel, the Pseudocode preview panel
displays a preview of code that is generated from objects of the given class. The panel
also displays messages (in blue) to highlight changes as they are made. The code preview
changes dynamically as you edit the class properties. The next figure shows a code
preview for the MemConstVolatile memory section.

—Pzeudocode preview

Header file: Not applicable.

Type definition: Not applicable.

Declaration:

extern const wolatile DATATYFE DATANAME

Definition:

S* ConstWolatile memory section *F
const wolatile DATATYPE DATANMLME;

10-27

10 Custom Storage Classes

10-28

Use Memory Section References

Packages can access and use memory sections that are defined in other packages,
including both user-defined packages and predefined packages such as Simulink
and mpt. Only one copy of the section exists, in the package that first defined it; other
packages refer to it by pointing to it in its original location. Changes to the section,
including changes to a predefined section in later MathWorks product releases, are
immediately available in every referencing package.

To configure a package to use a memory section that is defined in another package:

Type cscdesigner to launch the Custom Storage Class Designer.
2 Select the Memory Section tab.

Use Select Package to select the package in which you want to reference a class or
section defined in some other package.

4 In the Memory section definitions pane, select the existing definition below which
you want to insert the reference.

5 Click New Reference.

A new reference with a default name and properties appears below the previously
selected definition. The new reference is selected, and a Reference tab appears that
shows the reference's initial properties.

6 Use the Name field to enter a name for the new reference. The name must be unique
in the importing package, but can duplicate the name in the source package.

7 Set Refer to memory section in package to specify the package that contains the
memory section you want to reference.

8 Set Memory section to reference to specify the memory section to be referenced.
Trying to create a circular reference generates an error and leaves the package
unchanged.

9 Click OK or Apply to save the changes to memory. See “Save Definitions” on page
10-14 for information about saving changes permanently.

For example, the next figure shows the memory section MemConstVolatile imported
from the Simul ink package into mypkg, and given the same name that it has in the
source package. Other names could have been used without affecting the properties of
the memory section.

Design Custom Storage Classes and Memory Sections

Select package: Imypkg vl

Custom Storage Class Memaory Section |

Memory section definitions: New |
Default

MyMemSect Mew Reference
MemConstiolatie

Copy
U
Down
Remove

Validate

Reference | Memary Section I

Mame: I MemConstiolatile

J | [l

Refer to memory section in package: ISimuIink
Location: E:'\matab\toolbox \simulink\simulink \@Simulink

Memaory section to reference: IMemConstl-'olatile :I

You can use Custom Storage Class Designer capabilities to copy, reorder, validate,
and otherwise manage memory sections that have been added to a class by reference.
However, you cannot change the underlying definitions. You can change a memory
section only in the package where it was originally defined.

Change Existing Memory Section References

To change an existing memory section reference, select it in the Memory section
definitions pane. The Reference tab appears, showing the current properties of the
reference. Make changes, then click OK or Apply to save the changes to memory. See
“Save Definitions” on page 10-14 for information about saving changes permanently.

Related Examples

. “Control Data Code by Creating Custom Storage Class”
. “Apply Custom Storage Classes”

. “Generate Code with Custom Storage Classes”

10-29

10 Custom Storage Classes

More About

. “Data Objects”

“Introduction to Custom Storage Classes”

“Define Advanced Custom Storage Classes Types”

10-30

Apply Custom Storage Classes

Apply Custom Storage Classes

In this section...

“About Applying Custom Storage Classes” on page 10-31

“Apply Custom Storage Classes to Parameters” on page 10-32

“Apply Custom Storage Classes to Signals” on page 10-33

“Custom Storage Classes Using Signal Objects” on page 10-34

“Custom Storage Classes Using Embedded Signal Objects” on page 10-35
“Specify Custom Storage Classes Using GUI” on page 10-42

“Specify Custom Storages Classes Using API” on page 10-44

About Applying Custom Storage Classes

You can apply a custom storage class to a parameter or a signal using the GUI or the
APL

+ To apply a custom storage class to a parameter, you specify the storage class in the
Simulink.Parameter object that defines the parameter in the base workspace.

+ To apply a custom storage class to a signal, you specify the storage class in a
Simulink.Signal object that is bound to the signal. You can provide this object in
two ways:

Create the object in the base workspace, then bind it to the signal as described
in “Symbol Resolution”. When you save the model, you must save the object in a
separate file, as with base workspace objects.

+ Use the Signal Properties dialog box to embed the object in the model on the port
where the signal originates. When you save the model, Simulink automatically
saves the embedded signal object as part of the model file.

Most of the GUI techniques, and most of the API techniques, are the same for parameter
and signal objects, and for base workspace and embedded signal objects. Only the initial
steps differ, after which you apply the same GUI or API instructions within the context
that you established in the initial steps.

The following instructions assume that you have already created packages, custom
storage classes, and memory sections, as described in “Design Custom Storage Classes
and Memory Sections” on page 10-9.

10-31

10 Custom Storage Classes

10-32

Apply Custom Storage Classes to Parameters

To apply a custom storage class to a parameter, you specify the storage class in the
Simulink.Parameter object that defines the parameter in the base workspace. The
instructions that begin in this section show you how to create that object using the GUI
or API. Later instructions show you how to specify a custom storage class and custom
attributes.

For information about using parameter objects to specify block parameter values, see
“Use Parameter Objects to Specify Parameter Values”. For information about parameter
storage in generated code, see “Parameters”.

Create Parameter Objects Using GUI

1 In the Model window, choose View > Model Explorer.

2 Inthe Model Hierarchy pane, select the Base Workspace.

3 it
Click the Add Parameter tool [] or choose Add > Simulink Parameter.

Simulink creates a Simul ink.Parameter object in the base workspace with the
default name, Param.

4 Change the parameter name by editing it in the Contents pane. Example: MyParam.

(8}

Set parameter attributes other than Code generation options in the Dialog pane.

6 Follow the instructions in “Specify Custom Storage Classes Using GUI” on page
10-42.

Create Parameter Objects Using API
1 Inthe MATLAB Command Window, enter:

ParamName=ParamClass

where ParamClass is Simulink.Parameter or a subclass of it that you have
defined.

2 Simulink creates a ParamClass object with the specified name:
MyParam =

Simulink_Parameter (handle)
Value: []

Apply Custom Storage Classes

CoderiInfo: [1x1 Simulink.Coderinfo]

Description: *
DataType: "auto”
Min: []
Max: []
DocUnits: =~

Complexity: "real”
Dimensions: [0 0]

3 Set parameter attributes other than Coder Info, which controls custom storage
classes.

4 Follow the instructions in “Specify Custom Storages Classes Using API” on page
10-44.

Apply Custom Storage Classes to Signals

To apply a custom storage class to a signal, you specify the storage class in a
Simulink.Signal object. This object can exist in either of two locations:

* In the MATLAB base workspace

* On the port where the signal originates

The object itself is the same in either case; only its location and some of the techniques
for managing it differ. The instructions that begin in this section show you how to create
a signal object in either location using the GUI or API. Later instructions show you how
to specify the custom storage class and custom attributes.

A given signal can be associated with at most one signal object. The signal can refer to
the object more than once, but every reference must resolve to exactly the same object. A
different signal object that has exactly the same properties will not meet the requirement
for uniqueness. A compile-time error occurs if a model associates more than one signal
object with a signal.

Assigning a signal to a non-Auto storage class automatically makes the signal a test
point, overriding the setting of Signal Properties > Logging and accessibility > Test
point. See “Test Points”for more information.

For information about using signal objects to specify signal attributes, see “Using Signal

Objects to Initialize Signals and Discrete States”. For information about signal storage in
generated code, see “Signal Representation in Generated Code”.

10-33

10 Custom Storage Classes

Custom Storage Classes Using Signal Obijects

The first step is to create the signal object in the base workspace, after which you specify
signal attributes and the custom storage class and attributes.

Create Signal Objects in Base Workspace Using GUI

In the Simulink Editor, select View > Model Explorer.
2 Inthe Model Hierarchy pane, select the Base Workspace.

Click the Add Signal tool £ or choose Add > Simulink Signal.

Simulink creates a Simul ink.Signal object in the base workspace, with a default
name, Sig.

Change the signal name by editing it in the Contents pane. Example: MySig.
Set signal attributes other than Code generation options in the Dialog pane.
Give the signal the same name as the signal object, as described in “Signal Names”.

Arrange for the signal to resolve to the object, as described in “Symbol Resolution”.

© N O O

Follow the instructions in “Specify Custom Storage Classes Using GUI” on page
10-42.

Create Signal Objects in Base Workspace Using API
1 Inthe MATLAB Command Window, enter:

SignalName=SignalClass

where SignalClass is Simulink.Signal or a subclass of it that you have defined.
2 Simulink creates a SignalClass object with the specified name:

MySig =

Simulink_Signal (handle)
CoderiInfo: [1x1 Simulink.CoderliInfo]

Description: "~
DataType: "auto”

Min: []

Max: [1

DocUnits: **

Dimensions: -1

10-34

Apply Custom Storage Classes

Complexity: "auto”
SampleTime: -1
SamplingMode: “auto”

Initialvalue: **
3 Set parameter attributes other than Coder Info, which controls custom storage
classes.
4 Give the signal the same name as the signal object, as described in “Signal Names”.
5 Arrange for the signal to resolve to the object, as described in “Symbol Resolution”.
6 Follow the instructions in “Specify Custom Storages Classes Using API” on page

10-44.

Custom Storage Classes Using Embedded Signal Obijects

You can use the GUI or the API to apply a CSC using an embedded signal object.

If you use the GUI, you use the Signal Properties dialog box to specify the attributes
you want. The software then creates a Simul ink.Signal object and assigns it to the
output port where the signal originates.

If you use the API, you instantiate Simulink.Signal or a subclass of it, set the
attribute values that you want, and assign the object to the output port where the
signal originates.

In either case, the generated code is the same as if you had created a base workspace
signal object that specified the same name, CSC, and custom attributes as the embedded
signal object. For more information, see “Custom Storage Classes Using Signal Objects”
on page 10-34.

The advantages of using embedded signal objects are that they do not clutter the

base workspace, and they do not need to be saved separately from the model, as base
workspace objects do. When you save a model, Simulink saves embedded signal objects in
the model file, and reloads the objects when you later reload the model.

The disadvantage of embedded signal objects is that you can use such an object only

to specify a custom storage class, custom attributes, and an alias; you must accept the
default values for other signal attributes. You cannot work around this restriction by
providing additional information in a base workspace signal object on the same signal,
because a signal object can have at most one associated signal object, as described in
“Multiple Signal Objects”.

10-35

10 Custom Storage Classes

Create Embedded Signal Objects Using GUI

1 Give the signal a name, which must be a valid ANSI C identifier. Example: MySig.

2 Right-click the signal and choose Properties from the context menu.

The Signal Properties dialog box opens:

E Signal Properties: My5ig @
Signal name: MySig

[7] signal name must resolve to Simulink signal object

Logging and accessibility | Code Generation | Documentation

[Log signal data [] Test point
Logging name
Use signal name
MySig
Data
Limit data points to last: | 5000

Decimation: 2

[0K][Cancel ” Help] Apply

3 Do not select Signal name must resolve to Simulink signal object. Selecting
it would require a base workspace signal object, which would conflict with the
embedded signal object.

4 Click the Code Generation tab.

5 The Package is initially —-—-None---. When a package is not specified, only the
non-custom built-in storage classes defined for both GRT and ERT targets are
available:

10-36

Apply Custom Storage Classes

Signal name: MySig

[T] signal name must resolve to Simulink signal object

| Logging and accessibility | Code Generation | Documentation |

E Signal Properties: MySig

Package: [--- None -—- 'l [Refresh l
Storage class: |Auto
ExportedGlobal
ImportedExtern
ImportedExternPointer
[0K] l Cancel] [Help] l Apply]
Applying a storage class when the package is —-——-None--- sets internal storage

class attributes rather than creating an embedded signal object. For information
about built-in storage classes, see “Signal Representation in Generated Code” in the

Simulink Coder documentation.

To apply a custom storage class, you must first specify the package where it is
defined. Initially, viewing the Package menu displays only the built-in Simul ink

and mpt packages:

10-37

10 custom Storage Classes

W Signal Properties: MySig
Signal name: MySig

[T] signal name must resolve to Simulink signal object

| Logging and accessibility | Code Generation | Documentation |

Package: Refresh

Storage class:

E OK ” Cancel H Help ” Apply]

7 Click Refresh to load other available packages, including user-defined packages,
available on the MATLAB path. After a brief delay, a timer box tracks the progress

of the package search. After the search completes, viewing the Package menu
displays available packages:

10-38

Apply Custom Storage Classes

E Signal Properties: MySig @
Signal name: MySig
[T] signal name must resolve to Simulink signal object
| Logging and accessibility | Code Generation | Documentation |
Package: --- None -—- - Refresh
Storage class: | g ulink

mpt

AUTOSAR

ECoderDemos

SimOnly

TgtMemCtrl

canlib

tic6000demospkg

[0K] l Cancel] [Help] l Apply]

Once you have used Refresh in the Signal Properties dialog, Simulink saves the
information for later use, so you do not have to click Refresh again during the
current MATLAB session.

Select the package that contains the custom storage class you want to apply, e.g.
Simulink:

10-39

10 Custom Storage Classes

E Signal Properties: MySig
Signal name: MySig

[T] signal name must resolve to Simulink signal object

=3

| Logging and accessibility | Code Generation | Documentation |

Package: [Simulink

'” Refresh l

Storage class: ’Auto

)

Alias:

Alignment: -1

[OK H Cancel H

Help

|| apply |

9 Follow the instructions in “Specify Custom Storage Classes Using GUI” on page

10-42.

Delete Embedded Signal Objects Using GUI

To delete an embedded signal object with the Model Explorer, delete the name of the
signal to which the object applies, by editing the name in the graphical model or in the
Signal Properties dialog box. Simulink automatically deletes the embedded signal object

as soon as its signal does not have a name.

Create Embedded Signal Objects Using API

To provide an embedded signal object using the API, you create the object, set its custom
storage class and custom attributes, then assign the object to the output port on which it

will be embedded.

1 Name the signal if it does not already have a name. The name must be a valid ANSI

C identifier.

10-40

Apply Custom Storage Classes

In the MATLAB Command Window, enter:

SignalName=SignalClass

where SignalClass is Simulink.Signal or a subclass of it that you have defined.
The name of the signal object does not need to match the name of the signal to which
the object will be applied.

Simulink creates a SignalClass object with the specified name. Example:
MySig =

Simulink.Signal (handle)
CoderiInfo: [1x1 Simulink.CoderliInfo]
Description: "~
DataType: “auto”

Min: []
Max: [1
DocUnits: **

Dimensions: -1

Complexity: "auto”

SampleTime: -1
SamplingMode: "auto”
Initialvalue: **

Do not set attributes. An embedded signal object can specify only custom storage
class information.

Follow the instructions in “Specify Custom Storages Classes Using API” on page
10-44. After specifying the custom storage class, be sure to assign the signal
object to its output port, as described under “Assign Embedded Signal Objects to
Output Ports” on page 10-47.

Change Embedded Signal Objects Using API

To change an embedded signal object using the API, you obtain a copy of the object from
the output port on which it is embedded, change the object, then assign the changed
object back to the port.

1

Obtain a copy of the signal object using a handle to the output port. Example:
hps=get_param(gcb, "PortHandles™)

hp=hps.Outport(l)
MySig=get_param(hp, "SignalObject®)

10-41

10 Custom Storage Classes

10-42

2 Change the signal object using the techniques described in “Specify Custom Storages
Classes Using API” on page 10-44. After making the changes, be sure to copy the
signal object to its output port, as described in “Assign Embedded Signal Objects to
Output Ports” on page 10-47.

Delete Embedded Signal Objects Using API

To delete an embedded signal object with the API, obtain a handle to the output port
where the signal object is embedded, then set the port's SignalObject parameter to []:

hps=get_param(gcb, "PortHandles™)
hp=hps.Outport(1)
set_param(hp, "SignalObject”,[])

Resolve Signal Names to Simulink Signal Objects Using API

To set the name of a signal to resolve to a Simulink signal object using the API, obtain
the handle to the output port and then set the port's MustResolveToSignalObject
property to on:

hps=get_param(gcb, "PortHandles®)
hp=hps.Outport(1)
set_param(hp, "MustResolveToSignalObject®, "on")

Specify Custom Storage Classes Using GUI

The initial steps for applying a CSC with the GUI differ depending on whether you are
applying the CSC to a parameter using a base workspace object, to a signal using a base
workspace object, or to a signal using an embedded object. The initial steps for each of
these three cases appear in:

+ “Create Parameter Objects Using GUI” on page 10-32

+ “Create Signal Objects in Base Workspace Using GUI” on page 10-34
+ “Create Embedded Signal Objects Using GUI” on page 10-36

After the initial steps, applying a CSC with the GUI is the same for the three cases.

The following instructions show you how to finish applying a CSC with the GUI. The
instructions assume that you have completed one of the previous sets of instructions, and
that the dialog you used to execute those instructions is still open.

The available custom storage classes and custom attributes depend on the package
that you select. The examples in this section assume that you are using the Simul ink

Apply Custom Storage Classes

package. To use a package that you define, you must first create the data object from
your package.

The dialog that you used to begin the process of applying a CSC with the GUI by
providing an object contains two fields: one for specifying a custom storage class and one
for optionally specifying an alias.

Storage class is Auto because that is the default storage class in the Simul ink
package. Other packages may have different defaults. You can specify an Alias whenever
the Storage class is not Auto. If Storage class is Auto, Simulink deletes aliases you
try to specify, leaving the field blank. If you specify an alias, it appears in generated code
instead of the name of the object.

To specify a custom storage class and its custom attributes:

1 View the Storage Class menu, which looks like this for the Simul ink package:

Storage dass: I.ﬁ.ub:u |Z|
Alizs: SimulinkGlobal

ExportedGlobal

ImportedExtern

ImportedExternPainter

Default (Custom)
BitField (Custom)

Const (Custom)

Violatile (Custom)
Constvolatile (Custom)
Define {Custom)
ImportedDefine (Custom)
ExportToFile {Custom)
ImportFromFile (Custom)
Struct (Custom)

GetSet (Custom)
CompilerFlag (Custom)

Each custom storage class has (custom) suffixed to its name. The storage

classes SimulinkGlobal, ExportedGlobal, ImportedExtern, and
ImportedExternPointer are the built-in non-custom storage classes described in
“Signal Representation in Generated Code” in the Simulink Coder documentation.

2 Choose the desired custom storage class from Storage class, for example, Struct.

3 Provide values for custom attributes. Struct has only one, Struct name. For
example, set Struct name to MyStruct:

10-43

10 Custom Storage Classes

10-44

Shorage dass: IS::.:: {Custom) ;I

Custom atiributes
’75ln.|ct name: I MyShuct

Afzs: I
4 Click Apply.

In generated code, data whose storage is controlled by this custom storage class
specification will appear in a structure named MyStruct. See “Generate Code with
Custom Storage Classes” on page 10-53 for an example.

Specify Custom Storages Classes Using API

The initial steps for applying a CSC with the API differ depending on whether you are
applying the CSC to a parameter using a base workspace object, to a signal using a base
workspace object, or to a signal using an embedded object. The initial steps for each of
these three cases appear in:

* “Create Parameter Objects Using API” on page 10-32
+ “Create Signal Objects in Base Workspace Using API” on page 10-34
+ “Create Embedded Signal Objects Using API” on page 10-40

After the initial steps, applying a CSC with the API is the same for the three cases,
except for the case of an assignment for an embedded signal object. The following
instructions show you how to finish applying a CSC with the API. The instructions
assume that you have completed one of the previous sets of instructions, and that the
resulting objects an attributes are unchanged.

The available custom storage classes and custom attributes depend on the package

that you select. The examples in this section assume that you are using the Simul ink
package. The examples also assume that the object for which you want to specify a
custom storage class is named MyObj, which is a parameter or signal object that exists in
the base workspace, or a signal object that will be assigned to an output port.

The rest of this section provides information that is specific to custom storage classes
in Embedded Coder. See “Simulink Package Custom Storage Classes” on page 10-6 for

Apply Custom Storage Classes

a list of the custom storage classes that are built into the Simul ink package for use by
Embedded Coder software.

Coderlnfo Properties

Each Simulink parameter object or signal object defines properties called Coder Info
properties. Code generation software uses these properties to control storage class
assignment in the generated code. The Coder Info properties and their default values
are as follows:
StorageClass: "Auto”
Alias: *"

CustomStorageClass: "Default*
CustomAttributes: [1x1 SimulinkCSC.AttribClass_Simulink_Default]

For more information about Coder Info properties, see “Signal Representation in
Generated Code” in the Simulink Coder documentation.

Specify a Custom Storage Class
To specify a custom storage class using Coder Info properties:

1 Set StorageClass to "Custom”.
2 Set CustomStorageClass to the name of the storage class.

For example, to specify the Struct custom storage class:

MyObj .CoderInfo.StorageClass="Custom*
MyObj .CoderInfo.CustomStorageClass="Struct”

Whenever you have specified a custom storage class other than Auto, you can specify an
alias by setting the Alias attribute. If you specify an alias, it appears in generated code
instead of the name of the object.

Specify Instance-Specific Atiributes

A custom storage class can have properties that define attributes that are specific to
that CSC. Such properties are called instance-specific attributes. For example, if you
specify the Struct custom storage class, you must specify the name of the C language
structure that will store the data. That name is an instance-specific attribute of the
Struct CSC.

Instance-specific attributes are stored in the Coder Info property CustomAttributes.
This property is initially defined as follows:

10-45

10 Custom Storage Classes

SimulinkCSC._Attr
1x1 struct array

ibClass_Simulink_Default
with no fields

When you specify a custom storage class, Simulink automatically populates
CoderiInfo.CustomAttributes with fields to represent instance-specific attributes of
that CSC. For example, if you set the MySig CSC to Struct, as described in “Specify a
Custom Storage Class” on page 10-45, then enter:

MyObj -CoderInfo.CustomAttributes

MATLAB displays:

SimulinkCSC.Attr
StructName:

ibClass_Simulink_Struct

To specify that StructName is MyStruct, enter:

MyObj .CoderInfo.CustomAttributes.StructName="MyStruct”

MATLAB displays:

SimulinkCSC.Attr

ibClass_Simulink_Struct

StructName: “MyStruct®
Class Name Instance-Specific Property Purpose
BitField CustomAttributes.StructNanName of the bitfield struct into

which the code generator packs the
object's Boolean data.

ExportToFile

CustomAttributes.HeaderFil

Name of header (.h) file that
contains exported variable
declarations and export directives
for the object.

GetSet

CustomAttributes.HeaderFil

Name of header (.h) file to
#include in the generated code.
See “GetSet Custom Storage Class”
on page 10-61.

CustomAttributes.GetFuncti

String that specifies the name of a
function call to read data.

CustomAttributes.SetFuncti

String that specifies the name of a
function call to write data.

10-46

Apply Custom Storage Classes

Class Name Instance-Specific Property Purpose

ImportedDefine CustomAttributes.HeaderFi | The header file that defines the

values of code variant preprocessor
conditionals. See “Generate
Preprocessor Conditionals for
Variant Systems”.

ImportFromFile CustomAttributes.HeaderFi | Name of header (.h) file containing

global variable declarations the
code generator imports for the
object.

Struct

CustomAttributes.StructNanName of the struct into which the
code generator packs the object's
data.

Assign Embedded Signal Objects to Output Ports

If you are operating on an embedded signal object with the API, you must copy the object
to the port after providing or changing its Coder Info properties. For example, if MyObj]
is a signal object that you want to copy to the output port, enter:

hps=get_param(gcb, "PortHandles")

hp=hps.Outport(1)

set_param(hp, "SignalObject”, "MyObj ")

Subsequent changes to the source object in the base workspace have no effect on the
output port copy, and you can delete the source object:

clear ("MyObj*")

Related Examples
. “Control Data Code by Creating Custom Storage Class”

. “Generate Code with Custom Storage Classes”

. “Design Custom Storage Classes and Memory Sections”
More About

. “ Data Objects”

. “Introduction to Custom Storage Classes”

. “Define Advanced Custom Storage Classes Types”

10-47

10 Custom Storage Classes

Control Data Code by Creating Custom Storage Class

10-48

When you integrate code generated from a model with existing code from another source,
you can design custom storage classes to control the declaration and definition of model
signals and block parameters. This example shows how to control code generated from a
model by creating and applying your own custom storage class.

In this section...

“Explore Example Model” on page 10-48
“Create Data Class Package” on page 10-48
“Create Custom Storage Class” on page 10-49
“Apply Custom Storage Class” on page 10-50

“Generate Code” on page 10-51

Explore Example Model

Open the model rtwdemo_cscpredef. You can control code generated from this model by
defining your own data classes and creating your own custom storage classes.

This example shows you how to export the declarations and definitions of multiple
signals and parameters in the model to one declaration header file and one definition file.

Create Data Class Package

To create custom storage classes, you first create a data class package to contain the
custom storage class definitions. Data objects created from your package can use all of
the custom storage classes that the package defines.

1 Create your own data class package by copying the example package folder
+Simul inkDemos. Navigate to the example package folder.

% Remember the current folder path
currentPath = pwd;

% Navigate to the example package folder
demoPath = "\toolbox\simulink\simdemos\dataclasses"”;
cd([matlabroot,demoPath])

2 Copy the +Simul inkDemos folder to your clipboard.

Control Data Code by Creating Custom Storage Class

9

Return to your working folder.

cd(currentPath)

Paste the +Simul inkDemos folder from your clipboard into your working folder.
Rename the copied folder to +myPackage.

Navigate inside the +myPackage folder to the file Signall .m to edit the definition of
the Signal class.

Uncomment the methods section that defines the method setupCoder Info. In the
call to the function useLocalCustomStorageClasses, replace "packageName*"
with "myPackage”. When you finish, the section appears as follows:

methods
function setupCoderinfo(h)
% Use custom storage classes from this package
uselLocalCustomStorageClasses(h, "myPackage®);
end
end % methods

The function useLocalCustomStorageClasses allows you to apply the custom
storage classes that myPackage defines to data objects that you create from
myPackage.

Save and close the file.

Navigate inside the +myPackage folder to the file Parameter .m to edit the
definition of the Parameter class. Uncomment the methods section that defines the
method setupCoder Info and replace "packageName® with "myPackage®.

Save and close the file.

Create Custom Storage Class

You can use the Custom Storage Class Designer to create or to edit the custom storage
classes that a data class package defines.

Set your current folder to the folder that contains the package myPackage.
Open the Custom Storage Class Designer.

cscdesigner("myPackage™)
Select the custom storage class ExportToFile.

In the Name field, rename the custom storage class to ExportToGlobal.

10-49

10 Custom Storage Classes

5 Inthe Header file drop-down list, change the selection from Instance specific
to Specify. In the new field, provide the header file name global . h.

6 In the Definition file drop-down list, change the selection from Instance
specific to Specify. In the new field, provide the definition file name global .c.

7 Click OK. Click Yes to save changes to the data class package myPackage.

Apply Custom Storage Class

To apply your own custom storage class, you create data objects from your package and
configure the objects to use your custom storage class.

1 Create data objects to represent some of the parameters and signals in the example
model. Create the objects using the data class package myPackage.

% Parameters

templimit = myPackage.Parameter(202);
pressurelimit = myPackage.Parameter(45.2);
O2limit = myPackage.Parameter(0.96);
rpmlimit = myPackage.Parameter(7400);

% Signals

tempalarm = myPackage.Signal;
pressurealarm = myPackage.Signal;
O2alarm = myPackage.Signal;
rpmalarm = myPackage.Signal;

2 Set the custom storage class of each object to ExportToGlobal.

% Parameters

templimit.CoderiInfo.StorageClass = "Custom”;
templimit.CoderInfo.CustomStorageClass = "ExportToGlobal”;
pressurelimit.CoderInfo.StorageClass = "Custom”;
pressurelimit.CoderInfo.CustomStorageClass = "ExportToGlobal”;
O2limit.CoderiInfo.StorageClass = "Custom”;
O2limit.CoderlInfo.CustomStorageClass = "ExportToGlobal”;
rpmlimit.CoderInfo.StorageClass = "Custom”;
rpmlimit.CoderiInfo.CustomStorageClass = "ExportToGlobal”;

% Signals

tempalarm.CoderInfo.StorageClass = "Custom”;
tempalarm.CoderInfo.CustomStorageClass = "ExportToGlobal”;
pressurealarm.CoderInfo.StorageClass = "Custom”;
pressurealarm.CoderInfo.CustomStorageClass = "ExportToGlobal”;

10-50

Control Data Code by Creating Custom Storage Class

O2alarm.CoderlInfo.StorageClass = "Custom”;
02alarm.CoderInfo.CustomStorageClass = "ExportToGlobal”;
rpmalarm._CoderInfo.StorageClass = "Custom”;
rpmalarm.CoderInfo.CustomStorageClass = "ExportToGlobal*;

Select the Signal name must resolve to Simulink signal object option for each
of the target signals in the model. You can select the option by using the Signal
Properties dialog box or by using the command prompt.

% Signal tempalarm

portHandles = get_param("rtwdemo_cscpredef/RelOpl®, "PortHandles™);
outputPortHandle = portHandles.Outport;
set_param(outputPortHandle, "MustResolveToSignalObject”, "on™)

% Signal pressurealarm

portHandles = get_param("rtwdemo_cscpredef/RelOp2*, "PortHandles™);
outputPortHandle = portHandles.Outport;
set_param(outputPortHandle, "MustResolveToSignalObject”, "on™)

% Signal O2alarm

portHandles = get_param("rtwdemo_cscpredef/RelOp3*, "PortHandles™);
outputPortHandle = portHandles.Outport;
set_param(outputPortHandle, "MustResolveToSignalObject”, "on™)

% Signal rpmalarm

portHandles = get_param("rtwdemo_cscpredef/RelOp4*, "PortHandles™);
outputPortHandle = portHandles.Outport;
set_param(outputPortHandle, "MustResolveToSignalObject”, "on™)

Generate Code

1

Generate code for the example model.

rtwbui ld(" rtwdemo_cscpredef®)

In the code generation report, view the generated header file global . h. The file
contains the extern declarations of all of the model signals and parameters that use
the custom storage class ExportToGlobal.

/* Declaration for custom storage class: ExportToGlobal */
extern boolean_T O2alarm;

extern real T O02limit;

extern boolean_ T pressurealarm;

extern real T pressurelimit;

extern boolean T rpmalarm;

10-51

10 Custom Storage Classes

extern real_T rpmlimit;
extern boolean_T tempalarm;
extern real_T templimit;

3 View the generated file global . c. The file contains the definitions of the model
signals and parameters that use the custom storage class ExportToGlobal.

/* Definition for custom storage class: ExportToGlobal */
boolean_T O2alarm;

real T O2limit = 0.96;

boolean_T pressurealarm;

real T pressurelimit = 45.2;

boolean_T rpmalarm;

real T rpmlimit = 7400.0;

boolean_T tempalarm;

real T templimit = 202.0;

Related Examples
. “Generate Code with Custom Storage Classes”

. “Apply Custom Storage Classes”

. “Design Custom Storage Classes and Memory Sections”
More About

. “Data Objects”

. “Introduction to Custom Storage Classes”

. “Define Advanced Custom Storage Classes Types”

10-52

Generate Code with Custom Storage Classes

Generate Code with Custom Storage Classes

This example shows code generation with custom storage classes.

Before you generate code for a model that uses custom storage classes, clear the
Configuration Parameters > Code Generation > Data specification override >
Ignore custom storage classes model option. Otherwise, the code generator ignores
custom storage class specifications and treats data objects as if their Storage Class were
Auto.

w
1
A J

Switch

The model above contains three named signals: aa, bb, and cc. Using the predefined
Struct custom storage class, the example generates code that packs these signals into
a struct named mySignals. The struct declaration is then exported to externally
written code.

To specify the struct, you provide Simul ink.Signal objects that specify the Struct
custom storage class, and associate the objects with the signals as described in “Apply
Custom Storage Classes” on page 10-31. The three objects have the same properties. This
figure shows the signal object properties for aa:

10-53

10 custom Storage Classes

10-54

x|
Data type: I auto LI = |

Dimensions: I -1 Complexity: Iaub:u hd l
Sample time: I -1 Sample mode: Iaub:u VI
Minirmum: Inf Maximurm: Inf

Initial value: I Units: I

Code generation options

Storage dass: IStruct (Custom) x|
Custom attributes

’75truct name: I mySignals

Alias: I

Description:

The association between identically named model signals and signal objects is formed as
described in “Symbol Resolution”. In this example, the symbols aa, bb, and cc resolve
to the signal objects aa, bb, and cc, which have custom storage class Struct. In the
generated code, storage for the three signals will be allocated within a struct named
mySignals.

To display the storage class of the signals in the model, select Display > Signals
& Ports > Storage Class in the Simulink editor. The figure below shows the block
diagram with signal data types and signal storage classes displayed.

Generate Code with Custom Storage Classes

wints Struct
1 -
nt
boolean Stuct
€D
bb
In2
uintd Struct
B
- » i
In3
Switch

With the model’s signal objects defined and associated with signals, you can generate
code that uses the custom storage classes to generate the desired data structure for the
signals. After code generation, the relevant definitions and declarations are located in
three files:

+ model_ types.h defines the following struct type for storage of the three signals:

typedef struct MySignals_tag {
boolean_T bb;
uint8_T aa;
uint8_T cc;

} mySignals_type;

+ model.c (or .cpp) defines the variable mySignals, as specified in the object's
instance-specific StructName attribute. The variable is referenced in the code
generated for the Switch block:

/* Definition for Custom Storage Class: Struct */

mySignals_type mySignals = {
/* cc */
FALSE,
/* bb */
0,
/* aa */
0]
};

/* Switch: "<Root>/Switchl® */
if(mySignals.cc) {
rtb_Switchl = mySignals.aa;
} else {

10-55

10 Custom Storage Classes

10-56

rtb_Switchl = mySignals.bb;
}

* model _h exports the mySignals Struct variable:
/* Declaration for Custom Storage Class: Struct */

extern mySignals_type mySignals;

Grouped Custom Storage Classes

A custom storage class that results in multiple data objects being referenced with a
single variable in the generated code, in the previous example, is called a grouped custom
storage class. In the Simul ink package, BitField and Struct (shown in the preceding
example) are grouped CSCs. Data grouped by a CSC is referred to as grouped data.

Note: If you use a grouped custom storage class, you cannot specify its properties on an
instance-specific basis. This is because a grouped custom storage class combines multiple
pieces of data into a single data structure. Data in this structure must have the same
properties such as Header file, Data scope, and Data initialization.

Related Examples
. “Control Data Code by Creating Custom Storage Class”
. “Apply Custom Storage Classes”

. “Design Custom Storage Classes and Memory Sections”

More About
. “Data Objects”
. “Introduction to Custom Storage Classes”

. “Define Advanced Custom Storage Classes Types”

Define Advanced Custom Storage Classes Types

Define Advanced Custom Storage Classes Types

In this section...

“Introduction” on page 10-57

“Create Your Own Parameter and Signal Classes” on page 10-57

“Create Custom Attributes Classes for Custom Storage Classes” on page 10-57
“Write TLC Code for Custom Storage Classes” on page 10-58

“Register Custom Storage Class Definitions” on page 10-58

Introduction

Certain data layouts, such as nested structures, cannot be generated using the standard
Unstructured and FlatStructure custom storage class types. You can define an
advanced custom storage class if you want to generate other types of data. Creating
advanced CSCs requires understanding TLC programming and using a special advanced
mode of the Custom Storage Class Designer. This sections explain how to define
advanced CSC types.

Create Your Own Parameter and Signal Classes

The first step is to create your own package containing classes derived from
Simulink._Parameter or Simulink.Signal. This procedure is described in “Define
Data Classes” in the Simulink documentation.

Create Custom Atiributes Classes for Custom Storage Classes

If you have instance-specific properties that are relevant only to your CSC, you should
create a custom attributes class for the package. A custom attributes class is a subclass
of Simulink.CustomStorageClassAttributes. The name, type, and default value
properties you set for the custom attributes class define the user view of instance-specific
properties. For instructions, see “Define Data Classes” in the Simulink documentation.

For example, the ExportToFile custom storage class requires that you set the
CoderlInfo.CustomAttributes.HeaderFile property to specify a . h file used for
exporting each piece of data. See “Simulink Package Custom Storage Classes” on page
10-6 for further information on instance-specific properties.

10-57

10 Custom Storage Classes

Note: If you rename or remove custom attributes, you may need to manually edit the
csc_registration file for the associated package to remove references to the custom
attributes that you renamed or removed.

Write TLC Code for Custom Storage Classes

The next step is to write TLC code that implements code generation for data of your new
custom storage class. A template TLC file is provided for this purpose. To create your
TLC code, follow these steps:

1 Create a tlc directory inside your package's +directory (if it does not already exist).
The naming convention to follow is

+PackageName/tlc

2 Copy TEMPLATE_vl.tlc (or another CSC template) from matlabroot/toolbox/
rtw/targets/ecoder/csc_templates into your thc directory to use as a starting
point for defining your custom storage class.

3 Write your TLC code, following the comments in the CSC template file. Comments
describe how to specify code generation for data of your custom storage class (for
example, how data structures are to be declared, defined, and whether they are
accessed by value or by reference).

Alternatively, you can copy a custom storage class TLC file from another existing
package as a starting point for defining your custom storage class.

Register Custom Storage Class Definitions

After you have created a package for your new custom storage class and written its
associated TLC code, you must register your class definitions with the Custom Storage
Class Designer, using its advanced mode.

The advanced mode supports selection of an additional storage class Type, designated
Other. The Other type is designed to support special CSC types that cannot be
accommodated by the standard Unstructured and FlatStructure custom storage
class types. The Other type cannot be assigned to a CSC except when the Custom
Storage Class Designer is in advanced mode.

To register your class definitions:

10-58

Define Advanced Custom Storage Classes Types

1 Launch the Custom Storage Class Designer in advanced mode by typing the
following command at the MATLAB prompt:

cscdesigner -advanced
2 Select your package and create a new custom storage class.

3 Set the Type of the custom storage class to Other. Note that when you do this, the

Other Attributes pane is displayed. This pane is visible only for CSCs whose Type
is set to Other.

General I Caomments | Other Attributes

TLLC file narne: I

CSC attributes class name:l

If you specify a customized package, additional options, as defined by the package,
also appear on the Other Attributes pane.

4 Set the properties shown on the Other Attributes pane. The properties are:
+ Is grouped: Select this option if you intend to combine multiple data objects of
this CSC into a single variable in the generated code. (for example, a struct).

+ TLC file name: Enter the name of the TLC file corresponding to this custom
storage class. The location of the file is assumed to be in the /tlc subdirectory
for the package, so you should not enter the path to the file.

CSC attributes class name: (optional) If you created a custom attributes class
corresponding to this custom storage class, enter the full name of the custom
attributes class. (see “Create Custom Attributes Classes for Custom Storage
Classes” on page 10-57).

5 Set the remaining properties on the General and Comments panes based on the
layout of the data that you wish to generate (as defined in your TLC file).

Related Examples

. “Control Data Code by Creating Custom Storage Class”
. “Apply Custom Storage Classes”

10-59

10 Custom Storage Classes

. “Generate Code with Custom Storage Classes”

. “Design Custom Storage Classes and Memory Sections”

10-60

GetSet Custom Storage Class

GetSet Custom Storage Class

In this section...
“About GetSet Custom Storage Class” on page 10-61
“GetSet Custom Storage Class Properties” on page 10-61

“Apply the GetSet Custom Storage” on page 10-62
“GetSet Custom Storage Class Restrictions” on page 10-62
“Increase Code Efficiency With GetSet CSC” on page 10-62

About GetSet Custom Storage Class

GetSet is a built-in advanced custom storage class that generates specialized function
calls to read from (get) and write to (set) the memory associated with a Data Store
Memory block that is read and written many times in a single model. See “Data Stores”
for information about data stores and the Data Store Memory block, and “Define
Advanced Custom Storage Classes Types” on page 10-57 for information about advanced
CSCs.

The GetSet custom storage class is designed primarily for use with the state of the Data
Store Memory block. However, GetSet is capable of handling signals other than data
stores, and is supported for the outputs of most built-in blocks provided by MathWorks.
For more about the definition of the GetSet storage class, look at its associated TLC code
in the file:

matlabroot\toolbox\simulink\simulink\dataclasses\+Simulink\tlc\GetSet.tlc

GetSet Custom Storage Class Properties

The next table summarizes the instance-specific properties of the GetSet storage class:

Property Description

GetFunction String that specifies the name of a function call to read data.
SetFunction String that specifies the name of a function call to write data.
HeaderFile String that specifies the name of a header (. h) file to add as an
(optional) #include in the generated code.

10-61

10 Custom Storage Classes

For example, if the GetFunction of signal X is specified as "get_X" then the generated
code calls get_X() wherever the value of X is used. Similarly, if the SetFunction of
signal X is specified as "set X" then the generated code calls set_X(value) wherever
the value of X is assigned.

Apply the GetSet Custom Storage

The GetSet storage class cannot be represented by the standard Unstructured or
FlatStructure custom storage class types, so it is an advanced CSC, as described in
“Define Advanced Custom Storage Classes Types” on page 10-57. To access the CSC
definition for GetSet, you must launch Custom Storage Class designer in advanced
mode:

cscdesigner -advanced

If you omit the HeaderFi le property for a GetSet data object, you must specify
a header file by an alternative means, such as the Header file field of the Code
Generation > Custom Code pane of the Configuration Parameters dialog box.
Otherwise, the generated code might not compile or might function improperly.

For wide signals, an additional index argument is passed, so the calls to the get and set
functions are get_X(idx) and set_X(idx, value) respectively.
GetSet Custom Storage Class Restrictions

+ The GetSet supports only signals of noncomplex data types.
+ Some built-in blocks do not directly support GetSet.
+ User-written S-functions do not directly support GetSet.

To use GetSet with a nonsupporting built-in block or a user-written S-function:

1 Insert a Signal Conversion block at the outport of the block or function.

2 Select the Signal Conversion Block's Exclude this block from 'Block reduction'
optimization property.

3 Assign the GetSet storage class to the output of the Signal Conversion block.

Increase Code Efficiency With GetSet CSC

The model below contains a Data Store Memory block that resolves to the Simulink
signal object X:

10-62

GetSet Custom Storage Class

In1

x = x ——D
Ot
DS rite: Data Skore DSRead
Memaorny

The following specifications configure the signal object X to use the GetSet custom
storage class:

X X X X X X

.CoderiInfo.CustomAttributes.HeaderFile

= Simulink_Signal;

-CoderiInfo.StorageClass = "Custom”;
-CoderiInfo.CustomStorageClass = "GetSet";
-CoderiInfo.CustomAttributes.GetFunction = "get_X";
-CoderiInfo.CustomAttributes.SetFunction = "set_X";

"user_file.h";

The GetSet CSC appears as follows in the code generated for the model:

/* Includes for objects with custom storage classes. */
#include "user_file.h"

void getset_csc_step(void)

{

}

Note
get_

/* local block i/0 variables */
real T rtb DSRead o;

/* DataStoreWrite: "<Root>/DSWrite" incorporates:
* Inport: "<Root>/Inl-
*/

set_X(getset_csc _U.Inl);

/* DataStoreRead: "<Root>/DSRead® */
rtb_DSRead_o = get_X(Q):

/* Outport: "<Root>/0utl” */
getset_csc_Y.Outl = rtb_DSRead_o;

that the code uses a local variable rtb_DSRead_o rather than multiple calls to the
X function. This technique increases code efficiency and prevents changes to the

value within a simulation step.

Rela

ted Examples
“Control Data Code by Creating Custom Storage Class”

10-63

10 Custom Storage Classes

. “Apply Custom Storage Classes”

. “Generate Code with Custom Storage Classes”

. “Design Custom Storage Classes and Memory Sections”
More About

. “Introduction to Custom Storage Classes”

. “Define Advanced Custom Storage Classes Types”

10-64

Custom Storage Class Implementation

Custom Storage Class Implementation

You can skip this section unless you want to ship custom storage class definitions in an
uneditable format, or you intend to bypass the Custom Storage Class designer and work
directly with files that contain custom storage class definitions.

The file that defines a package's custom storage classes is called a CSC registration

file. The file is named csc_registration and resides in the +package directory that
defines the package. A CSC registration file can be a P-file (csc_registration.p)or a
MATLAB file (csc_registration.m). A built-in package defines custom storage classes
in both a P-file and a functionally equivalent MATLAB file. A user-defined package
initially defines custom storage classes only in a MATLAB file.

P-files take precedence over MATLAB files, so when MATLAB looks for a package's CSC
registration file and finds both a P-file and a MATLAB file, MATLAB loads the P-file
and ignores the MATLAB file. The capabilities and tools, including the Custom Storage
Class Designer, then use the CSC definitions stored in the P-file. P-files cannot be edited,
so CSC Designer editing capabilities are disabled for CSCs stored in a P-file. If a P-file
does not exist, MATLAB loads CSC definitions from the MATLAB file. MATLAB files are
editable, so CSC Designer editing capabilities are enabled for CSCs stored in a MATLAB
file.

Because CSC definitions for a built-in package exist in both a P-file and a MATLAB
file, they are uneditable. You can make the definitions editable by deleting the P-file,
but it is not recommended to modify built-in CSC registration files or other files under
matlabroot. The preferred technique is to create packages, data classes, and custom
storage classes, as described in “Define Data Classes” in the Simulink documentation.

The CSC Designer saves CSC definitions for user-defined packages in a MATLAB file,
so the definitions are editable. You can make the definitions uneditable by using the
pcode function to create an equivalent P-file, which will then shadow the MATLAB
file. However, you should preserve the MATLAB file if you may need to make further
changes, because you cannot modify CSC definitions that exist only in a P-file.

You can also use tools or techniques other than the Custom Storage Class Designer to
create and edit MATLAB files that define CSCs. However, that practice is vulnerable

to syntax errors and can give unexpected results. When MATLAB finds an older P-file
that shadows a newer MATLAB file, it displays a warning in the MATLAB Command
Window.

10-65

10 Custom Storage Classes

Custom Storage Class Limitations

* Data objects cannot have a CSC and a multi-word data type.

* The Fen block does not support parameters with custom storage class in code
generation.

+ For CSCs in models that use referenced models:

+ If data is assigned a grouped CSC, such as Struct or Bitfield, the CSC's Data
scope property must be Imported and the data declaration must be provided in a
user-supplied header file. See “Grouped Custom Storage Classes” on page 10-56 for
more information about grouped CSCs.

+ If data is assigned an ungrouped CSC, such as Const, and the data's Data scope
property is Exported, its Header file property must be unspecified. This results
in the data being exported with the standard header file, model .h. Note that for
ungrouped data, the Data scope and Header file properties are either specified
by the selected CSC, or as one of the data object's instance-specific properties.

Related Examples
. “Apply Custom Storage Classes”

. “Generate Code with Custom Storage Classes”
More About
. “Introduction to Custom Storage Classes”

10-66

User Package Registration

+ “About Data Object Wizard and User Packages” on page 11-2
+ “Register User Packages Using sl_customization.m” on page 11-3

+ “User Package Customization Using sl_customization.m” on page 11-5

11 User Package Registration

About Data Object Wizard and User Packages

11-2

Data Object Wizard (DOW) can be run in connection with a Simulink model to quickly
determine which model data are not associated with data objects and to create and
associate data objects with the data. (For more information about Data Object Wizard,
see “Data Object Wizard” in the Simulink documentation and “Create Data Objects with
Data Object Wizard”.) If you want the wizard to use data object classes from a package
other than the standard Simulink class package to create the data objects, you select
the package from the wizard's Choose package for selected data objects list. You
can customize the package list by adding and removing packages and modifying the list
order.

Note: User-defined packages that you add to the list must contain a Simulink.Signal
subclass named Signal and a Simul ink.Parameter subclass named Parameter.

To register Data Object Wizard user package customizations, use the Simulink
customization file sl_customization.m. This file is a mechanism that allows you to
use MATLAB code to perform customizations of the standard Simulink user interface.
The Simulink software reads the sl _customization.m file, if present on the MATLAB
path, when it starts and the customizations specified in the file are applied to the
Simulink session. For more information on the sl _customization.m customization file,
see “Registering Customizations”.

Register User Packages Using sl_customization.m

Register User Packages Using sl_customization.m

To register Data Object Wizard user package customizations, you create an instance of
sl_customization.m and include it on the MATLAB path of the Simulink installation
that you want to customize. The sl _customization function accepts one argument: a
handle to a customization manager object. For example,

function sl_customization(cm)

As a starting point for your customizations, the sl _customization function must first
get the default (factory) customizations, using the following assignment statement:

hObj = cm.slDataObjectCustomizer;

You then invoke methods to register your customizations. The customization manager
object includes the following methods for registering DOW user package customizations:

+ addUserPackage(hObj, packageName)
addUserPackage(hObj, cellArrayOfStrings)

Adds the specified user package(s) to the top of the package list, as displayed in the
Choose package for selected data objects pull-down list in Data Object Wizard.

+ moveUserPackageToTop(hObj, packageName)

Moves the specified user package to the top of the package list, as displayed in the
Choose package for selected data objects pull-down list in Data Object Wizard.

+ moveUserPackageToEnd(hObj, packageName)

Moves the specified user package to the end of the package list, as displayed in the
Choose package for selected data objects pull-down list in Data Object Wizard.

* removeUserPackage(hObj, packageName)

Removes the specified user package from the package list.

+ setUserPackages(hObj, cellArrayOfStrings)
Replaces the entire package list with a specified list of user packages.

Your instance of the sl_customization function should use these methods to register
DOW user package customizations for your Simulink installation.

11-3

11 User Package Registration

The Simulink software reads the sl_customization.m file when it starts. If you
subsequently change the file, in order to use your changes, you must restart your
Simulink session or enter the following command at the MATLAB command line:

sl_refresh_customizations

11-4

User Package Customization Using sl_customization.m

User Package Customization Using sl_customization.m

The sl_customization.m file shown in sl_customization.m for User Package
Customizations uses the following methods:

+ addUserPackage to add the user packages ECoderDemos and Simul inkDemos
(present by default in the MATLAB path) to the top of the package list, as displayed
in the Choose package for selected data objects pull-down list in Data Object
Wizard

Note: PackagesECoderDemos and Simul inkDemos must contain a
Simulink.Signal subclass named Signal and a Simul ink.Parameter subclass
named Parameter.

+ moveUserPackageToEnd to move Simul inkDemos to the end of the package list

sl_customization.m for User Package Customizations

function sl_customization(cm)
% Register user customizations

% Get default (factory) customizations
hObj = cm._slDataObjectCustomizer;

% Add user packages
hObj .addUserPackage({"ECoderDemos*®, "SimulinkDemos"});

% Move SimulinkDemos to end of list
hObj -moveUserPackageToEnd("Simul inkDemos*®) ;

end

11-5

11 User Package Registration

11-6

If you include the above file on the MATLAB path of the Simulink installation that you
want to customize, the specified customizations will appear in Data Object Wizard. For
example, you could view the customizations as follows:

Start a MATLAB session.

2 Launch a model, such as rtwdemo_udt.

3 Open Data Object Wizard, for example, by selecting Code > Data Objects > Data
Object Wizard in the Simulink window.

4 In the Data Object Wizard dialog box, click the Find button to generate a list of one
or more data objects.

5 Examine the Choose package for selected data objects drop-down list, noting
the impact of the changes specified in sl_customization.m for User Package
Customizations.

=101

The following model data are not associated with data objects.
Select data objects you want to create.

| Object Hame | Class | Package
T | output Sighal ECoderDemos

Check Al | Uncheck Al

Choose package for selected data objects:

Apply Package
Browrse... |

Find options ————————————————— 1y
¥ Roctinputs B States ¥ Bl SimuirkDemas P Aliss types
[Roct outputs [Data stores [Parameters |

Fincd | Createl Cancell Help |

hodel name:

wvclemo_uct

To replace the entire Data Object Wizard package list with a specified list of user
packages, you can use a method invocation similar to the following:

User Package Customization Using sl_customization.m

hObj . setUserPackages({"myPackagel®, “ECoderDemos®, "mpt-});

11-7

Function and Class Interfaces

* “Function Prototype Control” on page 12-2
* “C++ Class Interface Control” on page 12-25
+ “Atomic Subsystem Code” on page 12-55

] 2 Function and Class Inferfaces

Function Prototype Control

12-2

In this section...

“About Function Prototype Control” on page 12-2

“Configure Function Prototypes Using Graphical Interfaces” on page 12-3
“Sample Procedure for Configuring Function Prototypes” on page 12-13
“Configure Function Prototypes Programmatically” on page 12-18
“Sample Script for Configuring Function Prototypes” on page 12-22
“Verify Generated Code for Customized Functions” on page 12-22

“Function Prototype Control Limitations” on page 12-23

About Function Prototype Control

The Embedded Coder software provides a Configure Model Functions button, located
on the Code Generation > Interface pane of the Configuration Parameters dialog box,
that allows you to control the model function prototypes that are generated for ERT-
based Simulink models.

By default, the function prototype of an ERT-based model's generated model_step
function resembles the following:

void model_step(void);
The function prototype of an ERT-based model's generated model initialize function
resembles the following:

void model_initialize(void);

(For more detailed information about the default calling interface for the model_ step
function, see the model _step reference page.)

The Configure Model Functions button on the Interface pane provides you flexible
control over the model function prototypes that are generated for your model. Clicking
Configure Model Functions launches a Model Interface dialog box (see “Configure
Function Prototypes Using Graphical Interfaces” on page 12-3). Based on the

Function specification value you specify for your model function (supported values
include Default model initialize and step functions and Model specific
C prototypes), you can preview and modify the function prototypes. Once you validate
and apply your changes, you can generate code based on your function prototype
modifications.

Function Prototype Control

For more information about using the Configure Model Functions button and the
Model Interface dialog box, see “Sample Procedure for Configuring Function Prototypes”
on page 12-13 and the model rtwdemo_fcnprotoctrl, which is preconfigured to
demonstrate function prototype control.

Alternatively, you can use function prototype control functions to programmatically
control model function prototypes. For more information, see “Configure Function
Prototypes Programmatically” on page 12-18.

You can also control model function prototypes for nonvirtual subsystems, if you generate
subsystem code using right-click build. To launch the Model Interface for subsystem
dialog box, use the RTW.configSubsystemBui Id function.

Right-click building the subsystem generates the step and initialization functions
according to the customizations you make. For more information, see “Configure
Function Prototypes for Nonvirtual Subsystems” on page 12-11.

For limitations that apply, see “Function Prototype Control Limitations” on page
12-23.

Configure Function Prototypes Using Graphical Interfaces

+ “Launch the Model Interface Dialog Boxes” on page 12-3

* “Default Model Initialize and Step Functions View” on page 12-4

+ “Model Specific C Prototypes View” on page 12-5

* “Combine Input and Output Arguments in Model Step Interface” on page 12-8

+ “Configure Function Prototypes for Nonvirtual Subsystems” on page 12-11
Launch the Model Interface Dialog Boxes

Clicking the Configure Model Functions button on the Interface pane of the
Configuration Parameters dialog box launches the Model Interface dialog box. This
dialog box is the starting point for configuring the model function prototypes that

are generated during code generation for ERT-based Simulink models. Based on the
Function specification value you select for your model function (supported values
include Default model initialize and step functions and Model specific
C prototypes), you can preview and modify the function prototype. Once you validate
and apply your changes, you can generate code based on your function prototype
modifications.

12-3

] 2 Function and Class Inferfaces

To configure function prototypes for a right-click build of a nonvirtual subsystem, invoke
the RTW.configSubsystemBui Id function, which launches the Model Interface for
subsystem dialog box. For more information, see “Configure Function Prototypes for
Nonvirtual Subsystems” on page 12-11

Default Model Initialize and Step Functions View

The figure below shows the Model Interface dialog box in the Default model
initialize and step functions view.

“& Model Interface: twdemo_fenprotoctrl @

Description -

Choose an interface for the model. Note: for a subsystem that you build
from the right-click context menu, use the RTW.configSubsystemBuild
function to configure an interface.

Set model interface

Functien specification: | Default model initialize and step functions ~

Generate the default model initialize and step functions for Embedded
Coder.

Step function preview

Press Validate to get the function preview.

Validation
Validate | (Finvokes update diagram)

@ Fress validate to confirm the specification is valid for this
model.

-

| OK || Cancel || Help || Apply |

The Default model initialize and step functions view allows you to validate
and preview the predicted default model step and initialization function prototypes.

To validate the default function prototype configuration against your model, click the
Validate button. If the validation succeeds, the predicted step function prototype
appears in the Step function preview subpane.

Note: You cannot use the Default model initialize and step functions view
to modify the function prototype configuration.

12-4

Function Prototype Control

Model Specific C Prototypes View

Selecting Model specific C prototypes for the Function specification parameter
displays the Model specific C prototypes view of your model function prototypes.
This view provides controls that you can use to customize the function names, the order
of arguments, and argument attributes including name, passing mechanism, and type
qualifier for each of the model's root-level I/O ports.

To begin configuring your function control prototype configuration, click the Get Default
Configuration button. This activates and initializes the function names and properties
in the Configure model initialize and step functions subpane, as shown below.

If you click Get Default Configuration again later, only the properties of the step
function arguments are reset to default values.

12-5

] 2 Function and Class Inferfaces

Description

Choose an interface for the model. Mote: for a subsystem that you build from the right-click context menu, use the
RTW.configSubsystemBuild function to configure an interface.

Set model interface

Function specification: ’Model specific C prototypes -

This function specification supports single rate and multirate single-tasking models. Press Get Default Configuration
to populate the initial argument configuration for the model initialize and step functions.

Get Default Configuration] (Finvokes update diagram)

Configure model initialize and step functions
Initialize function name: rtwdemao_fenprotoctrl_init_custom
Step function name: rtwdemo_fenprotoctrl_step_custom

Step function arguments:

Order Port Name PortType Category Argument Name Qualifier Up
Return Outl Outport Outl [none ~ Down
1 Inl Inport arglnl ’const w7

2 In2 Inport argIn2 Iconst * const v

3 Out2 Outport argOut2 [none ~

4 In3 Inport argln3 ’const * const w7

;

Ind4 Inport Fointer ¥ |arglnd Inone v

Step function preview

Outl = rtwdemo_fcnprotoctrl_step_custom (argInl, * argIn2, * argOut2, * argIn3, * argln4)
Validation

(*invokes update diagram)

@ Fress validate to confirm the specification is valid for this model.

[0K][Cancel H Help] Apply

“& Model Interface: twdemo_fenprotoctr! @

m

In the Configure model initialize and step functions subpane:

12-6

Function Prototype Control

Parameter

Description

Step function name

Name of the model step function.

Initialize function name

Name of the model initialize function.

Note: A referenced model contains at least one
initialization function. This parameter controls the name
of the function that initializes states to nonzero values.

A model generates this function only if it contains such
states or requires the function for some other less common
reason. The code generator determines the names of the
other initialization functions.

Order

Order of the argument. A return argument is listed as
Return.

Port Name

Name of the port.

Port Type

Type of the port.

Category

Specifies how an argument is passed in or out from
the customized step function, either by copying a value
(Value) or by a pointer to a memory space (Pointer).

Argument Name

Name of the argument.

12-7

] 2 Function and Class Inferfaces

12-8

Parameter Description

Qualifier (optional) Specifies a const type qualifier for a function argument.
The available values are dependent on the Category
specified. When you change the Category, if the specified
type is not available, the Qualifier changes to none. The
possible values are:

* none
+ const (value)
+ const* (value referenced by the pointer)

+ const*const (value referenced by the pointer and the
pointer itself)

Note: When a model includes a referenced model, the
const type qualifier for the root input argument of the
referenced model's specified step function interface is
set to none, and the qualifier for the source signal in the
referenced model's parent is set to a value other than
none, code generation honors the referenced model's
interface specification by generating a type cast that
discards the const type qualifier from the source signal.
To override this behavior, add a const type qualifier to
the referenced model.

The Step function preview subpane provides a preview of how your step function
prototype is interpreted in generated code. The preview is updated dynamically as you
make modifications.

An argument Foo whose Category is Pointer is previewed as * foo. If its Category
is Value, it is previewed as Foo. Notice that argument types and qualifiers are not
represented in the Step function preview subpane.

Combine Input and Output Arguments in Model Step Interface
When using C function prototype control or C++ class interface control, you can configure

a pair of model step function arguments, an input and an output, to allow the code
generator to reuse their buffers. This merging of input and output can eliminate buffers

Function Prototype Control

in the generated code. The following requirements apply to combining model step
function input and output arguments:

The input and output arguments must be assigned the same argument name.

The corresponding inport and outport blocks must have the same data type and
sampling rate.

Additionally, the following limitations apply to combining model step function input and
output arguments:

The sample rate of the inport and outport blocks must be the same as the base rate of
the model.

The outport cannot be driven by a conditionally-executed subsystem.

The outport must be driven by a single, nonvirtual block output. For example, it
cannot be connected to a Mux block, which merges multiple buffers.

To configure model step function I/O arguments to allow buffer reuse:

1

In the Configuration Parameters dialog box, select the Code Generation >
Interface pane. To initiate C function prototype control, click the Configure Model
Functions button. To initiate C++ class interface control, click the Configure C++
Class Interface button.

Navigate to the view that allows you to modify model step function I/O arguments
— Model specific C prototypes view for C function prototype control or I/O
arguments step method for C++ class interface control.

Select an inport/outport pair, configure their Category and Argument Name
settings to match, and make sure that Category is not set to Value. Set Qualifier
to none for both ports.

12-9

12 Function and Class Inferfaces

12-10

Configure model inftialize and step functions

Initialize function name: madel_init_custom
Step function narme: model_step_custom
Step function arguments:

.Ontler Port Name Port Type Category Argument Name Qualifier .

[w
1 Inl Inport Value = |argini const -] Down
2 Out Outport Fointer = | arg_out2 | nane -

3 outl Outport SharedArg none -
4 In2 Inport sharedArg r|'|¢1|'m! -]

Step function preview
model_step_custom (arglnl, * arg_0Out2, = sharedArg)

Validation

Validate | (®imokes update diagram)

@ vLast validetion succeeded.

When you generate code from the model, the arguments are combined in the function
prototype. For example:

35 /) Model step function
25 wold model step custom(const real T argInl, boolean T *arg Out2, boolean T

37 *sharedArg)
L

The shared argument appears in inport read code and outport write code. For example:

Function Prototype Control

*arg Out2 = !*sharedArg;
L]
7 Update for UnitDelay <Root>/Unit Delay' incorporates
B Update for Inport <Root>/Inl

&0 rtDWork.UnitDelay DSTATE = argInl;

£2 // Logic: "<Root>/LogCp’
&3 *sharedArg = (rtk_RelCpl 1| rtk RelOpZ):

¢ 1
Configure Function Prototypes for Nonvirtual Subsystems

You can control step and initialization function prototypes for nonvirtual subsystems
in ERT-based Simulink models, if you generate subsystem code using right-click build.
Function prototype control is supported for the following types of nonvirtual blocks:

+ Triggered subsystems

* Enabled subsystems

* Enabled trigger subsystems

* While subsystems

+ For subsystems

+ Stateflow blocks

* MATLAB function block

To launch the Model Interface for Subsystem dialog box, open the model containing the
subsystem and invoke the RTW.configSubsystemBui Id function.

The Model Interface dialog box for modifying the model-specific C prototypes for the
rtwdemo_counter/Amplifier subsystem appears as follows:

12-11

] 2 Function and Class Inferfaces

“& Model Interface for subsystem: Amplifier @

Description

»

Choose an interface for the model. Mote: for a subsystem that you build from the right-click context menu, use the
RTW.configSubsystemBuild function to configure an interface.

Set model interface

Function specification: ’Model specific C prototypes -

This function specification supports single rate and multirate single-tasking models. Press Get Default Configuration
to populate the initial argument configuration for the model initialize and step functions.

Get Default Configuration] (Finvokes update diagram)

Configure model initialize and step functions
Initialize function name: Amplifier_initialize

Step function name: Amplifier_custom

m

Step function arguments:

oOrder Port Name PortType Category Argument Name Qualifier Up

1 In Inport arg_In Inone N Down
2 Trigger Inport arg_Trigger Inone w7
3 Out Outport arg_Out [none -

Step function preview

Amplifier_custom (arg_In, arg_Trigger, * arg_Out)

Validation

(*invokes update diagram)

@ Fress validate to confirm the specification is valid for this model.

[0K H Cancel H Help H Apply]

Right-click building the subsystem generates the step and initialization functions
according to the customizations you make.

12-12

Function Prototype Control

Sample Procedure for Configuring Function Prototypes

The following procedure shows how to use the Configure Model Functions button on
the Code Generation > Interface pane of the Configuration Parameters dialog box to
control the model function prototypes when generating code for your Simulink model.

Open a MATLAB session and launch the rtwdemo_counter model.

2 In the rtwdemo_counter Model Editor, double-click the Generate Code Using
Embedded Coder (double-click) button to generate code for an ERT-based
version of rtwdemo_counter. The code generation report for rtwdemo_counter
appears.

3 In the code generation report, click the link for rtwdemo_counter.c.

4 In the rtwdemo_counter.c code display, locate and examine the generated code for
the rtwdemo_counter_step and the rtwdemo_counter_initialize functions:

/* Model step function */
void rtwdemo_counter_step(void)

{
o

/* Model initialize function */
void rtwdemo_counter_initialize(void)

{
o

You can close the report window after you have examined the generated code.
Optionally, you can save rtwdemo_counter.c and other generated files to a
different location for later comparison.

5 From the rtwdemo_counter model, open the Configuration Parameters dialog box.

Navigate to the Code Generation > Interface pane and click the Configure
Model Functions button. The Model Interface dialog box appears.

7 In the initial (Default model initialize and step funtions) view of the
Model Interface dialog box, click the Validate button to validate and preview the
default function prototype for the rtwdemo_counter_step function. The function
prototype arguments under Step function preview should correspond to the
default prototype in step 4.

12-13

] 2 Function and Class Inferfaces

"k Model Interface: twdemo_counter @

-~

Description

Choose an interface for the model. Note: for a subsystem that you build
from the right-click context menu, use the RTW.configSubsystemBuild
function to configure an interface.

Set model interface

Function specification: | Default model initialize and step functions ~

Generate the default model initialize and step functions for Embedded E
Coder.

Step function preview

riwdemo_counter_step ()

Validation
Validate | (*invokes update diagram)

@ Last validation succeeded.

| oK || Cancel || Help | Apply

8 In the Model Interface dialog box, set Function specification field to Model
specific C prototypes. Making this selection switches the dialog box from
the Default model initialize and step functions view to the Model
specific C prototypes view.

12-14

Function Prototype Control

"k Model Interface: twdemo_counter @
Description 5

Choose an interface for the model. Note: for a subsystem that you build
from the right-click context menu, use the RTW.configSubsystemBuild
function to configure an interface.

Set model interface

Function specification: |Model specific C prototypes -

This function specification supports single rate and multirate single-
tasking models. Press Get Default Configuration to populate the initial =
argument configuration for the model initialize and step functions.

Get Default Configuration I (Finvokes update diagram)

Step function preview

rtwdemo_counter_custom ()

Validation
Validate | (*invokes update diagram)

@ press validate to confirm the specification is valid for this
model.

-

I OK H Cancel H Help H Apply J

9 Inthe Model specific C prototypes view, click the Get Default
Configuration button to activate the Configure model initialize and step
functions subpane.

12-15

] 2 Function and Class Inferfaces

"k Model Interface: twdemo_counter @

Description

Choose an interface for the model. Note: for a subsystem that you build from the right-click context menu, use the
RTW.configSubsystemBuild function to configure an interface.

Set model interface

Function specification: [Model specific C prototypes -

This function specification supports single rate and multirate single-tasking models. Press Get Default Configuration
to populate the initial argument configuration for the model initialize and step functions.

Get Default Configuration] (Finvokes update diagram)

Configure model initialize and step functions
Initialize function name: rtwdemo_counter_initialize

Step function name: rtwdemo_counter_custom

m

Step function arguments:

order Port Name PortType Category Argument Name Qualifier Up

il Input Inport arg_Input lnone "] Down
2 Output Outport arg_Output lnone ']

Step function preview

rtwdemo_counter_custom (arg_Input, * arg_Output)

Validation

(Finvokes update diagram)

@ Fress validate to confirm the specification is valid for this model.

-

’ OK ” Cancel ” Help ” Apply]

12-16

10 In the Configure model initialize and step functions subpane, change

Initialize function name to rtwdemo_counter_cust_init.

Function Prototype Control

11 In the Configure model initialize and step functions subpane, in the row for the
Input argument, change the value of Category from Value to Pointer and change
the value of Qualifier from none to const *. The preview reflects your changes.

“k Model Interface: rtwdemo_counter

Description

=5

-

Choose an interface for the model. Note: for a subsystem that you build from the right-click context menu, use the

RTW.configSubsystemBuild function to configure an interface.

Set model interface

Function specification: [Model specific C prototypes -

This function specification supports single rate and multirate single-tasking models. Press Get Default Configuration

to populate the initial argument configuration for the model initialize and step functions.

Get Default Configuration I (*invokes update diagram)

Configure model initialize and step functions
Initialize function name: rtwdemo_counter_cust_init
Step function name: rbwdemo_counter_custom

Step function arguments:

Order Port Name Port Type Category Argument Name Qualifier

1 Input Inport arg_Input Iconst =

m

Up

2 Output Outport Pointer ~ | arg_Output Inone

Step function preview

riwdemo_counter_custom (* arg_Input, * arg_Output)

Validation
Validate | (*invokes update diagram)

@ Press validate to confirm the specification is valid for this model.

0K H Cancel H

Help

| [Apply

12-17

] 2 Function and Class Inferfaces

12-18

12

13
14

15
16

17

Click the Validate button to validate the modified function prototype. The
Validation subpane displays a message that the validation succeeded.

Click OK to exit the Model Interface dialog box.

Generate code for the model. When the build completes, the code generation report
for rtwdemo_counter appears.

In the code generation report, click the link for rtwdemo_counter.c.
Locate and examine the generated code for the rtwdemo_counter_custom and
rtwdemo_counter_cust_init functions:

/* Model step function */
void rtwdemo_counter_custom(const int32_T *arg_Input, int32_T *arg_Output)

{
v

/* Model initialize function */
void rtwdemo_counter_cust_init(void)
{

3

Verify that the generated code is consistent with the function prototype
modifications that you specified in the Model Interface dialog box.

Configure Function Prototypes Programmatically

You can use the function prototype control functions (listed in Function Prototype
Control Functions), to programmatically control model function prototypes. Typical uses
of these functions include:

Create and validate a new function prototype

1 Create a model-specific C function prototype with obj =
RTW_ModelSpecificCPrototype, where 0bj returns a handle to a newly
created, empty function prototype.

2 Add argument configuration information for your model ports using
RTW.ModelSpecificCPrototype.addArgCont.

3 Attach the function prototype to your loaded ERT-based Simulink model using
RTW_ModelSpecificCPrototype.attachToModel.

4 Validate the function prototype using
RTW.ModelSpecificCPrototype.runValidation.

Function Prototype Control

5

If validation succeeds, save your model and then generate code using the
rtwbui Id function.

Modify and validate an existing function prototype

1

4

Get the handle to an existing model-specific C function prototype that

is attached to your loaded ERT-based Simulink model with obj =
RTW.getFunctionSpecification(modelName), where modelName is a string
specifying the name of a loaded ERT-based Simulink model, and 0bj returns a
handle to a function prototype attached to the specified model.

You can use other function prototype control functions on the returned handle
only if the test isa(obj, "RTW_ModelSpecificCPrototype™) returns 1. If the
model does not have a function prototype configuration, the function returns [].
If the function returns a handle to an object of type RTW.FcnDefault, you cannot
modify the existing function prototype.

Use the Get and Set functions listed in Function Prototype Control Functions
to test and reset such items as the function names, argument names, argument
positions, argument categories, and argument type qualifiers.

Validate the function prototype using
RTW_ModelSpecificCPrototype.runValidation

If validation succeeds, save your model and then generate code using the
rtwbui Id function.

Create and validate a new function prototype, starting with default
configuration information from your Simulink model

1

Create a model-specific C function prototype using obj =
RTW._ModelSpeciFficCPrototype, where obj returns a handle to a newly
created, empty function prototype.

Attach the function prototype to your loaded ERT-based Simulink model using
RTW.ModelSpecificCPrototype.attachToModel

Get default configuration information from your model using
RTW._ModelSpecificCPrototype.getDefaultConf.

Use the Get and Set functions listed in Function Prototype Control Functions
to test and reset such items as the function names, argument names, argument
positions, argument categories, and argument type qualifiers.

Validate the function prototype using
RTW_ModelSpecificCPrototype.runValidation

12-19

] 2 Function and Class Inferfaces

6 If validation succeeds, save your model and then generate code using the

rtwbui ld function.

+ Reset the model function prototype

to the default ERT function

configuration Create an object of the ERT default function signature. Reset
the model function prototype and undo any custom settings, by calling the
RTW.FcnDefault method, attachToModel, as follows:

obj = RTW.FcnDefault;
obj.attachToModel (model) ;

model must be a loaded ERT-based model.

Note: You should not use the same model-specific C function prototype object across
multiple models. If you do, changes that you make to the step and initialization function
prototypes in one model are propagated to other models, which is usually not desirable.

Function Prototype Control Functions

Function

Description

RTW_ModelSpecificCPrototype.addArgConf

Add step function argument configuration
information for Simulink model port to
model-specific C function prototype

RTW_ModelSpecificCPrototype.attachToModel

Attach model-specific C function prototype
to loaded ERT-based Simulink model

RTW_ModelSpecificCPrototype.getArgCategor

Get step function argument category for
Simulink model port from model-specific C
function prototype

RTW_ModelSpecificCPrototype.getArgName

Get step function argument name for
Simulink model port from model-specific C
function prototype

RTW_ModelSpecificCPrototype.getArgPositio

Get step function argument position for
Simulink model port from model-specific C
function prototype

RTW._ModelSpecificCPrototype.getArgQualifi

Get step function argument type qualifier
for Simulink model port from model-specific
C function prototype

12-20

Function Prototype Control

Function

Description

RTW.ModelSpecificCPrototype.getDefaultCon

Get default configuration information for
model-specific C function prototype from
Simulink model to which it is attached

RTW_ModelSpecificCPrototype.getFunctionNal

Get function names from model-specific C
function prototype

RTW_ModelSpecificCPrototype.getNumArgs

Get number of step function arguments from
model-specific C function prototype

RTW.ModelSpecificCPrototype.getPreview

Get model-specific C function prototype code
previews

RTW.configSubsystemBuild

Launch GUI to configure C function
prototype or C++ class interface for right-
click build of specified subsystem

RTW.getFunctionSpecification

Get handle to model-specific C function
prototype object

RTW_ModelSpecificCPrototype.runValidation

Validate model-specific C function prototype
against Simulink model to which it is
attached

RTW._ModelSpecificCPrototype.setArgCategor

Set step function argument category for
Simulink model port in model-specific C
function prototype

RTW_ModelSpecificCPrototype.setArgName

Set step function argument name for
Simulink model port in model-specific C
function prototype

RTW_ModelSpecificCPrototype.setArgPositio

Set step function argument position for
Simulink model port in model-specific C
function prototype

RTW_ModelSpecificCPrototype.setArgQualifi

Set step function argument type qualifier
for Simulink model port in model-specific C
function prototype

RTW_ModelSpecificCPrototype.setFunctionNal

Set function names in model-specific C
function prototype

12-21

] 2 Function and Class Inferfaces

12-22

Sample Script for Configuring Function Prototypes

The following sample MATLAB script configures the model function prototypes for the
rtwdemo_counter model, using the Function Prototype Control Functions.

%% Open the rtwdemo_counter model
rtwdemo_counter

%% Select ert.tlc as the System Target File for the model
set_param(gcs, "SystemTargetFile®, "ert.tlc")

%% Create a model-specific C function prototype
a=RTW.ModelSpecificCPrototype

%% Add argument configuration information for Input and Output ports
addArgConf(a, "Input”, "Pointer”, "inputArg~, "const *")
addArgConf(a, "Output”, "Pointer”, "outputArg”, “none")

%% Attach the model-specific C function prototype to the model
attachToModel (a,gcs)

%% Rename the initialization function
setFunctionName(a, " InitFunction®, "init")

%% Rename the step function and change some argument attributes
setFunctionName(a, "StepFunction®, "step*)

setArgPosition(a, "Output”,1)

setArgCategory(a, " Input”, “Value®)
setArgName(a, " Input”, " InputArg*)
setArgQualifier(a, "Input”, “none*)

%% Validate the function prototype against the model
[status,message]=runValidation(a)

%% if validation succeeded, generate code and build
if status

rtwbuild(gcs)
end

Verify Generated Code for Customized Functions

You can use software-in-the-loop (SIL) testing to verify the generated code for your
customized step and initialization functions. This involves creating a SIL block with your
generated code, which then can be integrated into a Simulink model to verify that the
generated code provides the same result as the original model or nonvirtual subsystem.
For more information, see “Choose a SIL or PIL Approach”.

Function Prototype Control

Function Prototype Control Limitations

The following limitations apply to controlling model function prototypes:

Function prototype control supports only step and initialization functions generated
from a Simulink model.

Function prototype control supports only single-instance implementations. For
standalone targets, you must set Code interface packaging to Nonreusable
function (on the Code Generation > Interface pane of the Configuration
Parameters dialog box). For model reference targets, you must select One for the
Total number of instances allowed per top model parameter (on the Model
Referencing pane of the Configuration Parameters dialog box).

For model reference targets, if Code interface packaging is set to Reusable
function, the code generator ignores the setting.

You must select the Single output/update function parameter (on the Interface
pane of the Configuration Parameters dialog box).

Function prototype control does not support multitasking models. Multirate models
are supported, but you must configure the models for single-tasking.

You must configure root-level inports and outports to use Auto storage classes.

Do not control function prototypes with the static ert_main.c provided by
MathWorks. Specifying a function prototype control configuration other than the
default creates a mismatch between the generated code and the default static
ert_main.c.

The code generator removes the data structure for the root inports of the model unless
a subsystem implemented by a nonreusable function uses the value of one or more of
the inports.

The code generator removes the data structure for the root outports of the model
except when you enable MAT-file logging, or if the sample time of one or more of the
outports is not the fundamental base rate (including a constant rate).

If you copy a subsystem block and paste it to create a new block in either a new model
or the same model, the function prototype control interface information from the
original subsystem block does not copy to the new subsystem block.

If you have a Stateflow license, for a Stateflow chart that uses a model root inport
value, or that calls a subsystem that uses a model root inport value, you must do one
of the following to generate code:

Clear the Execute (enter) Chart At Initialization check box in the Stateflow
chart.

12-23

] 2 Function and Class Inferfaces

12-24

+ Make the Stateflow function a nonreusable function.

Insert a Simulink Signal Conversion block immediately after the root inport. In
the Signal Conversion block parameters dialog box, select Exclude this block
from 'Block reduction' optimization.

If a model root inport value connects to a Simscape conversion block, you must
insert a Simulink Signal Conversion block between the root inport and the Simscape
conversion block. In the Signal Conversion block parameters dialog box, select
Exclude this block from 'Block reduction' optimization.

C++ Class Interface Control

C++ Class Interface Control

In this section...
“About C++ Class Interface Control” on page 12-25
“Simple Use of C++ Class Control” on page 12-26

“Customize C++ Class Interfaces Using Graphical Interfaces” on page 12-32
“Customize C++ Class Interfaces Programmatically” on page 12-47
“Configure Step Method for Model Class” on page 12-49

“Specify Custom Storage Class for C++ Class Code Generation” on page 12-50
“Model Class Copy Constructor and Assignment Operator” on page 12-51

“C++ Class Interface Control Limitations” on page 12-52

About C++ Class Interface Control

Using the Code interface packaging option C++ class, on the Code Generation

> Interface pane of the Configuration Parameters dialog box, you can generate a C++
class interface to model code. The generated interface encapsulates required model data
into C++ class attributes and model entry point functions into C++ class methods. The
benefits of C++ class encapsulation include:

* Greater control over access to model data

+ Ability to multiply instantiate model classes

+ Easier integration of model code into C++ programming environments

C++ class encapsulation also works for right-click builds of nonvirtual subsystems.

(For information on requirements that apply, see “Configure C++ Class Interfaces for
Nonvirtual Subsystems” on page 12-46.)

If you have an Embedded Coder license and you have selected an ERT target for your
model, you can use additional Code Generation > Interface pane parameters in
the Configuration Parameter dialog box to customize and control the generated C++
class interface to model code. The general procedure for generating custom C++ class
interfaces to model code is as follows:

1 Configure your model to use an ert.tlc system target file provided by MathWorks.

2 Select the C++ language for your model.

12-25

] 2 Function and Class Inferfaces

12-26

3 Select C++ class code interface packaging for your model.

4 Customize C++ class interface settings for your model code, using either a graphical
user interface (GUI) or application programming interface (API).

5 Generate model code.

6 Examine the C++ class interfaces in the generated files and the HTML code
generation report.

To get started with an example, see “Simple Use of C++ Class Control” on page 12-26.
For more details about customizing C++ class interfaces for your model code, see
“Customize C++ Class Interfaces Using Graphical Interfaces” on page 12-32 and
“Customize C++ Class Interfaces Programmatically” on page 12-47. For limitations
that apply, see “C++ Class Interface Control Limitations” on page 12-52.

Note: For an example of C++ class code generation, see the example model
rtwdemo_cppclass.

Simple Use of C++ Class Control

This example illustrates a simple use of C++ class code interface packaging.
It generates C+ class code interfaces from an example model, without extensive
modifications to default settings.

Note: For details about setting C++ class parameters, see the sections that follow this
example, beginning with “Customize C++ Class Interfaces Using Graphical Interfaces”
on page 12-32.

To generate C++ class interfaces for a Simulink model:

1 Open a model for which you would like to generate C++ class code interfaces. This
example uses the model rtwdemo_counter.

2 Configure the model to use an ert.tlc system target file provided by MathWorks.
For example, open the Configuration Parameters dialog box, go to the Code
Generation pane, select a target value from the System target file menu, and
click Apply.

3 On the Code Generation pane of the Configuration Parameters dialog box, set the
Language parameter to C++.

C++ Class Interface Control

On the Code Generation > Interface pane, check that the Code interface
packaging parameter is set to C++ class.

Code interface

Code interface packaging: | C++ class hd

Click Apply.

Note: To immediately generate the default style of C++ class code, without exploring
the related model configuration options, skip steps 4-8 and go directly to step 9.

Go to the Interface pane of the Configuration Parameters dialog box and examine
the Code interface subpane.

Code interface

Code interface packaging: |C++ dlass '] Multi-instance code error diagnostic: |Error ~
Classic call interface ["] Use dynamic memory allocation for model block instantiation
Single output/update function Terminate function required

Generate preprocessor conditionals: [Use local settings ']

[] Suppress error status in real-time model data structure [| Combine signal/state structures

Data Member Visibility/Access Control

Block parameter visibility Block parameter access {None 'l
Internal data visibility Internal data access {None 'l

External I/O access {None 'l

Generate destructor

[Configure C++ Class Interface I

When you select C++ class code interface packaging for your model, additional
C++ class interface controls become available in the Code interface subpane.

See “Configure Code Interface Options” on page 12-33 for descriptions of

these controls. You might want to modify the default settings according to your
application.

Click the Configure C++ Class Interface button. This action opens the Configure
C++ class interface dialog box, which allows you to configure the step method for
your generated model class. The dialog box initially displays a view for configuring a

12-27

] 2 Function and Class Inferfaces

void-void style step method (passing no I/O arguments) for the model class. In this
view, you can specify the model class name, step method name, and namespace for
your model.

L Configure C++ class interface: rtwdemo_counter @
Description
Choose an interface for the model class. Note: for a subsystem that you build from the right-click context menu, use the
RTW.configSubsystemBuild function to configure an interface.

Set interface style

Function specification: |\.f0id—\.r0id step method -

This specification generates void-void style member step function for the model C++ class interface. It supports single rate and
multirate models.

m

Configure C++ class interface

Step method name: step Class name: demo_counterModelClass Namespace:

Step function preview

rtwdemo_counterModelClass :: step()

Validation
Validate

@ Press validate to confirm the specification is valid for this model.

| oK || Cancel || Help || Apply

See “Configure Step Method for Your Model Class” on page 12-37 for descriptions
of these controls.

Note: If the void-void interface style meets your needs, you can skip steps 6-8 and
go directly to step 9.

6 If you want root-level model input and output to be arguments on the step method,
select the value 1/0 arguments step method from the Function specification
menu. The dialog box displays a view for configuring an I/O arguments style step
method for the model class.

12-28

C++ Class Interface Control

i Configure C++ class interface: twdemo_counter @
Description
Choose an interface for the model class. Note: for a subsystem that you build from the right-click context menu, use the
RTW.configSubsystemBuild functien to configure an interface.

Set interface style

Function specification: |I;’O arguments step method -

This specification generates I/O argument style member step function for the model C++ class interface. It supports single rate
and multirate single-tasking models. Press Get Default Configuration to populate the initial interface specification from which
further customization is possible.

m

Get Default Configuration | (*invokes update diagram)

Step function preview

rtwdemo_counterModelClass :: step ()

Validation
Validate | (*invokes update diagram)

@ Press validate to confirm the specification is valid for this model.

| 0K || Cancel || Help || Apply

See “Configure Step Method for Your Model Class” on page 12-37 for descriptions
of these controls.

Click the Get Default Configuration button. This action causes a Configure C
++ class interface subpane to appear in the dialog box. The subpane displays the
initial interface configuration for your model, which provides a starting point for
further customization.

12-29

] 2 Function and Class Inferfaces

Configure C++ class interface

Step method name: step Class name: demo_counterModelClass Namespace:
order Port Name Port Type Category Argument Name Qualifier Up
1 Input Inport arg_Input Inone YI Bawe

2 Qutput Qutport Fointer ~ | arg_Output [none ']

See “Passing I/0 Arguments” on page 12-39 for descriptions of these controls.
8 Perform this optional step only if you want to customize the configuration of the I/O
arguments generated for your model step method.

Note: If you choose to skip this step, you should click Cancel to exit the dialog box.

If you choose to perform this step, first you must check that the required option
Remove root level I/O zero initialization is selected on the Optimization pane,
and then navigate back to the 1/0 arguments step method view of the Configure
C++ class interface dialog box.

Now you can use the dialog box controls to configure I/O argument attributes.

For example, in the Configure C++ class interface subpane, in the row for the
Input argument, you can change the value of Category from Value to Pointer
and change the value of Qualifier from none to const *. The preview updates to
reflect your changes. Click the Validate button to validate the modified interface
configuration.

Continue modifying and validating until you are satisfied with the step method
configuration.

12-30

C++ Class Interface Control

Configure C++ class interface

Step method name: step Class name: demo_counterModelClass Namespace:

Order Port Name Port Type Category Argument Name Qualifier

1 Input Inport arg_Input [const *

2 Output Outport arg_Output [none

Step function preview

rtwdemo_counterModelClass :: step (* arg_Input, * arg_Output)

Validation
Validate | (Tinvokes update diagram)

@ Last validation succeeded.

Click Apply and OK.

Generate code for the model. When the build completes, the code generation report

for rtwdemo_counter appears. Examine the report and observe that required
model data is encapsulated into C++ class attributes and model entry point

functions are encapsulated into C++ class methods. For example, click the link for

rtwdemo_counter .h to see the class declaration for the model.

12-31

] 2 Function and Class Inferfaces

12-32

“& Code Generation Report
@ & Find:
Contents

Summary

Subsystem Report

Code Interface Report
Traceability Report

Static Code Metrics Report
Code Replacements Report

Generated Code

[-1 Main file
2rt_main.cpp

[-1 Maodel files

rtwdemo counter.cpp

rwdemo counter.h

rwdemo counter private.h
rwdemo counter types.h

[+] Utility files (1)

|

44 W Match Case

/ Class declaration for model rtwdemo counter -
class rtwdemo counterModelClass {
// public data and function members
public:
/ Model entry point functions
// model initialize functieon
woid inditialize():
'/ model step function
void step(const int32 T *arg Input, int32 T *arg Output);
'/ model terminate function

void terminate();

'/ Constructor

rtwdemo_counterModelClass () ;

/ Destructor

~rtwdemo_counterModelClass() ;

m

/ Real-Time Model get method

RT MODEL rtwdemo counter T * getRTM():

private:
// Block states

DW_rtwdemo_counter T rtwdemo counter DW;

BrevZCX rtwdemo counter T :rtwderr.o_co'.lnter_PrevZCX:,"';" Triggersd svents

/ Real-Time Model

RT_MODEL rtwdemo_counter T rtwdemo counter M;

n | 3

Note: If you configured custom I/O arguments for the model step method (optional

step 8), examine the generated code for the step method in rtwdemo_counter.h and
rtwdemo_counter.cpp. The arguments should reflect your changes. For example, if
you performed the Input argument modifications in step 8, the input argument should
appear as const Int32_T *arg_lInput.

Customize C++ Class Interfaces Using Graphical Interfaces

“Select C++ Class Code Interface Packaging” on page 12-33

“Configure Code Interface Options” on page 12-33

C++ Class Interface Control

+ “Configure Step Method for Your Model Class” on page 12-37
+ “Use Namespaces to Scope C++ Model Classes” on page 12-42
+ “Combine Input and Output Arguments in Model Step Interface” on page 12-8

* “Configure C++ Class Interfaces for Nonvirtual Subsystems” on page 12-46

Select C++ Class Code Interface Packaging

To select C++ class code interface packaging, in the Configuration Parameters dialog
box, on the Code Generation pane, set the Language parameter to C++. Then, in
the Code Generation > Interface pane, check that the Code interface packaging
parameter is set to C++ class:

Code interface

Code interface packaging: | C++ class -

Selecting this value:

+ Disables model configuration options that C++ class does not support. For details,
see “C++ Class Interface Control Limitations” on page 12-52.

+ Adds additional C++ class interface parameters, which are described in the next
section.

Configure Code Interface Options

When you select C++ class code interface packaging for your model, the Code
interface parameters shown below are displayed on the Interface pane.

12-33

] 2 Function and Class Inferfaces

12-34

Code interface

Code interface packaging: |C++ class '] Multi-instance code error diagnostic: |Error ~

Classic call interface

Single output/update function

| Use dynamic memory allocation for model block instantiation

Terminate function required

Generate preprocessor conditionals: IUse local settings

7

["| Suppress error status in real-time model data structure

Data Member Visibility/ Access Control

Block parameter visibility
Internal data visibility

Generate destructor

[Configure C++ Class Interface

| Combine signal/state structures

Block parameter access ’None ']
Internal data access ’None ']
External I/O access ’None ']

Multi-instance code error diagnostic

Specifies the severity level for diagnostics displayed when a model violates
requirements for generating multi-instance code.

* None — Proceed with build without displaying a diagnostic message.

* Warning — Proceed with build after displaying a warning message.

* Error (default) — Abort build after displaying an error message.

Terminate function required

Specifies whether to generate the model terminate method (on by default). This
function contains model termination code and should be called as part of system

shutdown.

Generate preprocessor conditionals

For a model containing Model blocks, specifies whether to generate preprocessor
conditional directives globally for a model, locally for each variant Model block,

or conditionally based on the Generate preprocessor conditionals setting in
the Model Reference Parameter dialog for each variant Model block (Use local

settings by default).

Suppress error status in real-time model data structure

C++ Class Interface Control

Specifies whether to omit the error status field from the generated real-time model
data structure rtModel (off by default). Selecting this option reduces memory usage.

Be aware that selecting this option can cause the code generator to omit the rtModel
data structure from generated code.

Combine signal/state structures
Specifies whether to combine global block signals and global state data into one data

structure in the generated code (off by default). Selecting this option reduces RAM
and improves readability of the generated code.

Block parameter visibility

Specifies whether to generate the block parameter structure as a public, private,
or protected data member of the C++ model class (private by default).

Internal data visibility

Specifies whether to generate internal data structures, such as Block I/O, DWork

vectors, Runtime model, Zero-crossings, and continuous states, as public, private,
or protected data members of the C++ model class (private by default).

Block parameter access
Specifies whether to generate access methods for block parameters for the C++ model

class (None by default). You can select noninlined access methods (Method) or inlined
access methods (Inlined method).

Internal data access
Specifies whether to generate access methods for internal data structures, such as
Block I/0, DWork vectors, Runtime model, Zero-crossings, and continuous states,

for the C++ model class (None by default). You can select noninlined access methods
(Method) or inlined access methods (Inlined method).

External I/0 access

Specifies whether to generate access methods for root-level I/0 signals for the C++
model class (None by default). If you want to generate access methods, you have the
following options:

Generate either noninlined or inlined access methods.

12-35

] 2 Function and Class Inferfaces

12-36

* Generate either per-signal or structure-based access methods. That is, you can
generate a series of set and get methods on a per-signal basis, or generate just one
set method that takes the address of an external input structure as an argument
and, for external outputs (if applicable), just one get method that returns a
reference to an external output structure. The generated code for structure-based
access methods has the following general form:

class ModelClass {

// Root inports set method
void setExternal Inputs(const External Inputs* pExternallnputs);

// Root outports get method
const ExternalOutputs & getExternalOutputs() const;
}

Note: This parameter affects generated code only if you are using the default
(void-void style) step method for your model class; not if you are explicitly passing
arguments for root-level I/0 signals using an I/O arguments style step method. For
more information, see “Passing No Arguments (void-void)” on page 12-37 and
“Passing I/0 Arguments” on page 12-39.

Generate destructor

Specifies whether to generate a destructor for the C++ model class (on by default).

Use dynamic memory allocation for model block instantiation

For a model containing Model blocks, specifies whether generated code should use
dynamic memory allocation, during model object registration, to instantiate objects
for referenced models configured with a C++ class interface (off by default). If you
select this option, during instantiation of an object for the top model in a model
reference hierarchy, the generated code uses the operator new to instantiate objects
for referenced models.

Selecting this option frees a parent model from having to maintain information about
referenced models beyond its direct children. Clearing this option means that a parent
model maintains information about its referenced models, including its direct and
indirect children.

Note:

C++ Class Interface Control

+ If you select this option, be aware that a bad_al loc exception might be
thrown, per the C++ standard, if an out-of-memory error occurs during the use

of new. You must provide code to catch and process the bad_al loc exception in
case an out-of-memory error occurs for a new call during construction of a top
model object.

* If Use dynamic memory allocation for model block instantiation is
selected and the base model contains a Model block, the build process might
generate copy constructor and assignment operator functions in the private
section of the model class. The purpose of the functions is to prevent pointer
members within the model class from being copied by other code. For more
information, see “Model Class Copy Constructor and Assignment Operator” on
page 12-51.

+ Configure C++ Class Interface

Opens the Configure C++ class interface dialog box, which allows you to configure the
step method for your model class. For more information, see “Configure Step Method
for Your Model Class” on page 12-37.

Configure Step Method for Your Model Class

To configure the step method for your model class, on the Code Generation > Interface
pane, click the Configure C++ Class Interface button, which is available when

you select C++ class code interface packaging for your model. This action opens the
Configure C++ class interface dialog box, where you can configure the step method for
your model class in either of two styles:

+ “Passing No Arguments (void-void)” on page 12-37
+ “Passing I/O Arguments” on page 12-39

Note: The void-void style of step method specification supports single-rate models
and multirate models, while the I/O arguments style supports single-rate models and
multirate single-tasking models.

Passing No Arguments (void-void)

The Configure C++ class interface dialog box initially displays a view for configuring a
void-void style step method for the model class.

12-37

] 2 Function and Class Inferfaces

12-38

i Configure C++ class interface: mymodel

Description -

Choose an interface for the model class. Note: for a subsystem that you build from the right-click context menu, use the
RTW.configSubsystemBuild function to configure an interface.

Set interface style

Function specification: |V0id—\.r0id step method -

This specification generates void-void style member step function for the model C++ class interface. It supports single rate and
multirate models.

m

Configure C++ class interface

Step method name: step Class name: mymaodelModelClass Namespace:

Step function preview

mymodelModelClass :: step()

Validation
Validate

@ Fress validate to confirm the specification is valid for this model.

(0] 4 || Cancel || Help || Apply

Step method name

Allows you to specify a step method name other than the default, step.

Class name

Allows you to specify a model class name other than the default, modeIModelClass.
Namespace

Allows you to specify a namespace for the model class. If specified, the namespace

is emitted in the generated code for the model class. The Namespace parameter

provides a means of scoping C++ model classes. In a model reference hierarchy, you
can specify a different namespace for each referenced model.

Step function preview

Displays a preview of the model step function prototype as currently configured. The
preview display is dynamically updated as you make configuration changes.

C++ Class Interface Control

+ Validate

Validates your current model step function configuration. The Validation pane
displays the status and an explanation of any failure.

Passing I/O Arguments

If you select 1/0 arguments step method from the Function specification menu,
the dialog box displays a view for configuring an I/O arguments style step method for the
model class.

Note: To use the I/O arguments style step method, you must select the option Remove
root level I/O zero initialization on the Optimization pane of the Configuration
Parameters dialog box.

12-39

] 2 Function and Class Inferfaces

12-40

"k Configure C++ class interface: mymodel @
Description
Choose an interface for the model class. Note: for a subsystem that you build from the right-click context menu, use the
RTW.configSubsystemBuild function to configure an interface.

Set interface style

Function specification: |I{O arguments step method -

This specification generates /O argument style member step function for the model C++ class interface. It supports single rate
and multirate single-tasking models. Press Get Default Configuration to populate the initial interface specification from which
further customization is possible.

Get Default Configuration | (Finvokes update diagram)

Step function preview

mymodelModelClass :: step ()

Validation
Validate | (*invokes update diagram)

@ Press validate to confirm the specification is valid for this model.

OK || Cancel || Help || Apply

Get Default Configuration

Click this button to get the initial interface configuration that provides a starting
point for further customization.

Step function preview

Displays a preview of the model step function prototype as currently configured. The
preview dynamically updates as you make configuration changes.

+ Validate

Validates your current model step function configuration. The Validation pane
displays the status and an explanation of any failure.

C++ Class Interface Control

When you click Get Default Configuration, the Configure C++ class interface
subpane appears in the dialog box, displaying the initial interface configuration. For
example:

Configure C++ class interface

Step method name: step Class name: mymodelModelClass Namespace:

Order Port Hame Port Type Category Argument Name Qualifier Up

1 It Inport [Value ~|arg_in1 [none -] [oown_|
2 2 Inport Value ~ | arg_mn2 [none -]

3 3 Inpart Value ~|arg_n3 [none -

4 outl Outport Fointer ~ | arg_out1 [none -

5

Out2 Outport Pointer ~ | arg_Out2 Inone YI

* Step method name

Allows you to specify a step method name other than the default, step.

+ Class name

Allows you to specify a model class name other than the default, modeIModelClass.

* Namespace

Allows you to specify a namespace for the model class. If specified, the namespace
is emitted in the generated code for the model class. The Namespace parameter
provides a means of scoping C++ model classes. In a model reference hierarchy, you
can specify a different namespace for each referenced model.

+ Order

Displays the numerical position of each argument. Use the Up and Down buttons to
change argument order.

* Port Name

Displays the port name of each argument (not configurable using this dialog box).

* Port Type

Displays the port type, Inport or Outport, of each argument (not configurable using
this dialog box).

+ Category

12-41

] 2 Function and Class Inferfaces

12-42

Displays the passing mechanism for each argument. To change the passing
mechanism for an argument, select Value, Pointer, or Reference from the
argument's Category menu.

* Argument Name
Displays the name of each argument. To change an argument name, click in the

argument's Argument name field, position the cursor for text entry, and enter the
new name.

* Qualifier
Displays the const type qualifier for each argument. To change the qualifier for
an argument, select an available value from the argument's Qualifier menu. The
possible values are:
none
+ const (value)
const* (value referenced by the pointer)
+ const*const (value referenced by the pointer and the pointer itself)

const & (value referenced by the reference)

Tip When a model includes a referenced model, the const type qualifier for the root
input argument of the referenced model's specified step function interface is set to none
and the qualifier for the source signal in the referenced model's parent is set to a value
other than none, code generation honors the referenced model's interface specification by
generating a type cast that discards the const type qualifier from the source signal. To
override this behavior, add a const type qualifier to the referenced model.

Use Namespaces to Scope C++ Model Classes

Embedded Coder provides namespace control for scoping model classes generated using
C++ class code interface packaging. In the Configure C++ class interface dialog box, use
the Namespace parameter to specify a namespace for a model class. If specified, the
namespace is emitted in the generated code for the model class. To scope the C++ model
classes in a model reference hierarchy, you can specify a different namespace for each
referenced model.

C++ Class Interface Control

For an example of namespace control, see the example model rtwdemo_cppclass. This
model assigns namespaces as follows:

* TopNS for top-level model rtwdemo_cppclass

+ MiddleNS for referenced model rtwdemo_cppclass_refmid

+ BottomNS for referenced model rtwdemo_cppclass_refbot

If you build the model with its default settings, you can examine the generated header
and source files for each model to see where the namespace is emitted. For example,

the Namespace setting for the model rtwdemo_cppclass_refmid is shown below,
followed by excerpts of the emitted namespace code in the model header and source files.

“& Configure C++ class interface: twdemo_cppclass_refmid @
Configure C++ class interface o
Step method name: StepMethod Class name: MiddleClass Mamespace: MiddleNS

order Port Name Port Type Category Argument Name Qualifier Up
1 Inl Inport Pointer - |arg_Inl Iconst = '] Down
2 In2 Inport Reference ¥ |arg_In2 Iconst& ']
3 Outl Outport Pointer ¥ | arg_Outl Inone ']
4 Out2 Outport Pointer ¥ | arg_Out2 Inone v]

42 // Class declaration for model rtwdemo_cppclass_refmid
43 namespace MiddleNS {

44 class MiddleClass {

45 // public data and function members

46 public:

47 // Model entry point functions

52 // model step function

53 void StepMethod(const real_T *arg_Inl, const real_T &arg_In2, real_T
54 *arg_Outl, real_T *arg_Out2);

87 ¥

88 }

15 #include "rtwdemo_cppclass_refmid.h"
16 #include "rtwdemo_cppclass_refmid_private.h"

17

18 namespace MiddleNS

19

20 // Model step function

21 void MiddleClass: :StepMethod(const real_T *arg_Inl, const real_T &arg_In2,
22 real_T *arg_Outl, real_T *arg_Out2)

12-43

] 2 Function and Class Inferfaces

12-44

23 {
a3 3
83 3}

Combine Input and Output Arguments in Model Step Interface

When using C function prototype control or C++ class interface control, you can configure
a pair of model step function arguments, an input and an output, to allow the code
generator to reuse their buffers. This merging of input and output can eliminate buffers
in the generated code. The following requirements apply to combining model step
function input and output arguments:

* The input and output arguments must be assigned the same argument name.

* The corresponding inport and outport blocks must have the same data type and
sampling rate.

Additionally, the following limitations apply to combining model step function input and
output arguments:

* The sample rate of the inport and outport blocks must be the same as the base rate of
the model.

* The outport cannot be driven by a conditionally-executed subsystem.

* The outport must be driven by a single, nonvirtual block output. For example, it
cannot be connected to a Mux block, which merges multiple buffers.

To configure model step function I/O arguments to allow buffer reuse:

1 In the Configuration Parameters dialog box, select the Code Generation >
Interface pane. To initiate C function prototype control, click the Configure Model
Functions button. To initiate C++ class interface control, click the Configure C++
Class Interface button.

2 Navigate to the view that allows you to modify model step function I/O arguments
— Model specific C prototypes view for C function prototype control or I/O
arguments step method for C++ class interface control.

3 Select an inport/outport pair, configure their Category and Argument Name
settings to match, and make sure that Category is not set to Value. Set Qualifier
to none for both ports.

C++ Class Interface Control

Configure model inftialize and step functions

Initialize function name: model_init_custom

Step function narme: model_step_custom

Step function arguments:

|order Portmame Port Type Category Argument Name | Qualifier | Up

1 Inl Inport Value = |argini const -] Down
2 Out Outport Fointer = | arg_out2 | nane -

3 outl Outport SharedArg none -
4 In2 Inport sharedArg r|'|¢1|'m! -]

Step function preview
model_step_custom (arglnl, * arg_0Out2, = sharedArg)

Validation
Validate | (*imvokes update diagram)

@ vLast validetion succeeded.

When you generate code from the model, the arguments are combined in the function
prototype. For example:

35 /) Model step function
25 wold model step custom(const real T argInl, boolean T *arg Out2, boolean T

37 *sharedirg)
L]

The shared argument appears in inport read code and outport write code. For example:

12-45

] 2 Function and Class Inferfaces

12-46

*arg Out?2 = !*sharedirg;

rtDWork.UnitDelay DSTATE = argInl;

// Logic: '<Root>/Loglp’

*sharedhrg = (rtb RelOpl || rtb RelOp2);
L]

t

Configure C++ Class Interfaces for Nonvirtual Subsystems

You can configure C++ class interfaces for right-click builds of nonvirtual subsystems in
Simulink models, if the following requirements are met:

The model is configured for the C++ language and C++ class code interface
packaging.

The subsystem is convertible to a Model block using the function
Simulink.SubSystem.convertToModelReference. For referenced
model conversion requirements, see the Simulink reference page
Simulink.SubSystem.convertToModelReference.

To configure C++ class interfaces for a subsystem that meets the requirements:

Open the containing model and select the subsystem block.
Enter the following MATLAB command:

RTW.configSubsystemBui ld(gcb)

where gcb is the Simulink function gcb, returning the full block path name of the
current block.

This command opens a subsystem equivalent of the Configure C++ class interface
dialog sequence that is described in detail in the preceding section, “Configure Step
Method for Your Model Class” on page 12-37. (For more information about using
the MATLAB command, see RTW.configSubsystemBuild.)

Use the Configure C++ class interface dialog boxes to configure C++ class settings for
the subsystem.

Right-click the subsystem and select C/C++ Code > Build This Subsystem.

C++ Class Interface Control

5 When the subsystem build completes, you can examine the C++ class interfaces in
the generated files and the HTML code generation report.

Customize C++ Class Interfaces Programmatically

If you select the Code interface packaging option C++ class for your model, you
can use the C++ class interface control functions (listed in C++ Class Interface Control
Functions) to programmatically configure the step method for your model class.

Typical uses of these functions include:

+ Create and validate a new step method interface, starting with default
configuration information from your Simulink model

1

6

Create a model-specific C++ class interface with obj =
RTW.ModelCPPVoidClass or obj = RTW.ModelCPPArgsClass, where obj
returns a handle to an newly created, empty C++ class interface.

Attach the C++ class interface to your loaded ERT-based Simulink model using
attachToModel.

Get default C++ class interface configuration information from your model using
getDefaultCont.

Use the Get and Set functions listed in C++ Class Interface Control Functions
to test or reset the model class name and model step method name. Additionally,
if you are using the I/O arguments style step method, you can test and reset
argument names, argument positions, argument categories, and argument type
qualifiers.

Validate the C++ class interface using runVal idation. (If validation fails,
use the error message information thatrunVal idation returns to address the
issues.)

Save your model and then generate code using the rtwbui ld function.

* Modify and validate an existing step method interface for a Simulink model

1

Get the handle to an existing model-specific C++ class interface that

is attached to your loaded ERT-based Simulink model using obj =
RTW.getClasslInterfaceSpecification(modelName), where modelName
is a string specifying the name of a loaded ERT-based Simulink model, and 0bj
returns a handle to a C++ class interface attached to the specified model. If the
model does not have an attached C++ class interface configuration, the function
returns [].

12-47

12

Function and Class Inferfaces

C++ Class Interface Control Functions

2 Use the Get and Set functions listed in C++ Class Interface Control Functions to
test or reset the model class name and model step method name. Additionally, if
the returned interface uses the I/O arguments style step method, you can test and
reset argument names, argument positions, argument categories, and argument

type qualifiers.

3 Validate the C++ class interface using runVal idation. (If validation fails, use
the error message information that runVal idation returns to address the

issues.)

4 Save your model and then generate code using the rtwbui Id function.

Note: You should not use the same model-specific C++ class interface control
object across multiple models. If you do, changes that you make to the step method
configuration in one model propagate to other models, which is usually not desirable.

Function Description

attachToModel Attach model-specific C++ class interface to loaded ERT-based
Simulink model

getArgCategory Get argument category for Simulink model port from model-
specific C++ class interface

getArgName Get argument name for Simulink model port from model-
specific C++ class interface

getArgPosition Get argument position for Simulink model port from model-

specific C++ class interface

getArgQualifier

Get argument type qualifier for Simulink model port from
model-specific C++ class interface

getClassName Get class name from model-specific C++ class interface

getDefaultConf Get default configuration information for model-specific C++
class interface from Simulink model to which it is attached

getNamespace Get namespace from model-specific C++ class interface

getNumArgs Get number of step method arguments from model-specific C+
+ class interface

getStepMethodName Get step method name from model-specific C++ class interface

12-48

C++ Class Interface Control

Function

Description

RTW.configSubsystemBuild

Open GUI to configure C function prototype or C++ class
interface for right-click build of specified subsystem

RTW.getClass-
InterfaceSpecification

Get handle to model-specific C++ class interface control object

runVal idation

Validate model-specific C++ class interface against Simulink
model to which it is attached

setArgCategory Set argument category for Simulink model port in model-
specific C++ class interface

setArgName Set argument name for Simulink model port in model-specific
C++ class interface

setArgPosition Set argument position for Simulink model port in model-

specific C++ class interface

setArgQualifier

Set argument type qualifier for Simulink model port in model-
specific C++ class interface

setClassName Set class name in model-specific C++ class interface
setNamespace Set namespace in model-specific C++ class interface
setStepMethodName Set step method name in model-specific C++ class interface

Configure Step Method for Model Class

The following sample MATLAB script configures the step method for the
rtwdemo_counter model class, using the C++ Class Interface Control Functions.

%% Open the rtwdemo_counter model

rtwdemo_counter

%% Select ert.tlc as the System Target File for the model
set_param(gcs, "SystemTargetFile","ert.tlc")

%% Select C++ as the target language for the model
set_param(gcs, "TargetLang”™, "C++")

%% Select C++ class as the code interface packaging for the model
set_param(gcs, "CodelnterfacePackaging”, "C++ class™)

%% Set required option for 1/0 arguments style step method (cmd off = GUI on)
set_param(gcs, "ZeroExternalMemoryAtStartup”®, "off")

%% Create a C++ class interface using an 1/0 arguments style step method

a=RTW.Mode ICPPArgsClass

12-49

] 2 Function and Class Inferfaces

12-50

%% Attach the C++ class interface to the model
attachToModel (a,gcs)

%% Get the default C++ class interface configuration from the model
getDefaultConf(a)

%% Move the Output port argument from position 2 to position 1
setArgPosition(a, "Output”,1)

%% Reset the model step method name from step to StepMethod
setStepMethodName(a, "StepMethod™)

%% Change the Input port argument name, category, and qualifier
setArgName(a, " Input”, "inputArg")
setArgCategory(a, " Input”, "Pointer")

setArgQualifier(a, "Input”,"const *")

%% Validate the function prototype against the model
[status,message]l=runValidation(a)

%% 1f validation succeeded, generate code and build
if status

rtwbuild(gcs)
end

Specify Custom Storage Class for C++ Class Code Generation

To configure a Simulink parameter, signal, or state to use a custom storage class (CSC)

with C++ class code generation:

1 Open an ERT-based model for which Language is set to C++ and Code interface

packaging is set to C++ class.

2 Open the Configuration Parameters dialog box.

On the Code Generation > Interface pane, set the Multi-instance code error

diagnostic parameter to a value other than Error.

Code interface

Code interface packaging: |C++ class v| Multi-instance code error diagnostic: |Warning =

4 On the Code Generation pane, if the option Ignore custom storage classes is

selected, clear the option.

Data specification override

Ignore custom storage classes

C++ Class Interface Control

Apply the changes.

In the model, select a custom storage class for a parameter, signal, or state. For
example, select a signal, open its Properties dialog box, and view its code generation
options. In the Storage class drop-down list, select a custom storage class, and then
configure its attributes. Apply the changes.

Note: C++ class code generation does not support the following CSCs:

+ CSCs with Volati le specifications.

+ (CSCs of type Other, except GetSet.
Build the model.

In the code generation report, examine the files model .h and model .cpp to observe
the use of CSCs in the generated C++ code.

Model Class Copy Constructor and Assignment Operator

Code generation automatically adds a copy constructor and an assignment operator
to C++ class declarations when required to securely handle pointer members. The
constructor and operator are added as private member functions when both of the
following conditions exist:

The model option Use dynamic memory allocation for model block
instantiation is set to on.

The base model contains a Model block. The Model block is not directly or indirectly
within a subsystem for which Function packaging is set to Reusable function.

Under these conditions, the software generates a private copy constructor and
assignment operator to prevent pointer members within the model class from being
copied by other code.

Note: To prevent generation of these functions, consider clearing the option Use
dynamic memory allocation for model block instantiation.

12-51

] 2 Function and Class Inferfaces

12-52

The code excerpt below shows generated model . h code for a model class that has a
pointer member. (Look for instances of MiddleClass_ptr). The copy constructor and
assignment operator declarations are shown in bold.

class MiddleClass; // class forward declaration for <S1>/Bottom model instance
typedef MiddleClass* MiddleClass_ptr;

// Class declaration for model cppclass_top
class Top {

// private data and function members
private:

// Block signals
BlocklO_cppclass_top cppclass_top_B;

// Block states
D_Work_cppclass_top cppclass_top_DWork;

// Real-Time Model
RT_MODEL_cppclass_top cppclass_top_M;

// private member function(s) for subsystem "<Root>/Subsystem®
void cppclass_top_Subsystem_Init();

void cppclass_top_Subsystem Start();

void cppclass_top_Subsystem();

//Copy Constructor
Top(const Top &rhs);

//Assignment Operator
Top& operator= (const Top &rhs);

// model instance variable for "<S1>/Bottom model instance”

MiddleClass_ptr Bottom_model_instanceMDLOBJ1;
}:

C++ Class Interface Control Limitations

* The C++ class code interface packaging option does not support some Simulink
model configuration options. Selecting C++ class disables the following items in the
Configuration Parameters dialog box:

+ Identifier format control subpane on the Symbols pane

+ File customization template parameter on the Templates pane

Note: The code and data templates on the Templates pane are supported for C+
+ class code generation. However, the following template file features that are

C++ Class Interface Control

supported for other language selections are not supported for C++ class generated
code:

* Free-form text outside template sections

* Custom tokens

*+ TLC commands (<! > tokens)

+ Global data placement (custom storage classes only) subpane on the Code
Placement pane

* Memory Sections pane

Among the data exchange interfaces available on the Interface pane of the
Configuration Parameters dialog box, only the C API interface is supported for C++
class code generation. If you select External mode or ASAP2, code generation fails
with a validation error.

The I/O arguments style of step method specification supports single-rate models and
multirate single-tasking models, but not multirate multitasking models.

The Code Generation > Export Functions capability does not support C++ class
code interface packaging.

If you have a Stateflow license, for a Stateflow chart that resides in a root model
configured to use the 1/0 arguments step method function specification, and
that uses a model root inport value or calls a subsystem that uses a model root inport
value, you must do one of the following to generate code:

+ Clear the Execute (enter) Chart At Initialization check box in the Stateflow
chart.

* Insert a Simulink Signal Conversion block immediately after the root inport. In
the Signal Conversion block parameters dialog box, select Exclude this block
from 'Block reduction' optimization.

If a model root inport value connects to a Simscape conversion block, you must
insert a Simulink Signal Conversion block between the root inport and the Simscape
conversion block. In the Signal Conversion block parameters dialog box, select
Exclude this block from 'Block reduction' optimization.

When building a referenced model that is configured to generate a C++ class
interface:

* You must use the 1/0 arguments step method style of the C++ class interface.
The void-void step method style is not supported for referenced models.

12-53

] 2 Function and Class Inferfaces

You cannot use a C++ class interface in cases when a referenced model cannot
have a combined output/update function. Cases include a model that

Has a continuous sample time

Saves states

12-54

Atomic Subsystem Code

Atomic Subsystem Code

In this section...

“About Nonvirtual Subsystem Code Generation” on page 12-55
“Configure Subsystem for Generating Modular Function Code” on page 12-56
“Modular Function Code for Nonvirtual Subsystems” on page 12-61

“Nonvirtual Subsystem Modular Function Code Limitations” on page 12-66

About Nonvirtual Subsystem Code Generation

The Embedded Coder software provides a Subsystem Parameters dialog box option,
Function with separate data, that allows you to generate modular function code
for nonvirtual subsystems, including atomic subsystems and conditionally executed
subsystems.

By default, the generated code for a nonvirtual subsystem does not separate a
subsystem's internal data from the data of its parent Simulink model. This can make
it difficult to trace and test the code, particularly for nonreusable subsystems. Also, in
large models containing nonvirtual subsystems, data structures can become large and
potentially difficult to compile.

Function with separate data allows you to generate subsystem function code in which
the internal data for a nonvirtual subsystem is separated from its parent model and is
owned by the subsystem. The subsystem data structure is declared independently from
the parent model data structures. A subsystem with separate data has its own block I/0
and DWork data structure. As a result, the generated code for the subsystem is easier to
trace and test. The data separation also tends to reduce the maximum size of global data
structures throughout the model, because they are split into multiple data structures.

To use the Function with separate data parameter,
* Your model must use an ERT-based system target file (requires a Embedded Coder

license).

* Your subsystem must be configured to be atomic or conditionally executed. For more
information, see “Systems and Subsystems”.

* Your subsystem must use the Nonreusable function setting for Code
Generation > Function packaging.

12-55

] 2 Function and Class Inferfaces

To configure your subsystem for generating modular function code, you invoke the
Subsystem Parameters dialog box and make a series of selections to display and enable
the Function with separate data option. See “Configure Subsystem for Generating
Modular Function Code” on page 12-56 and “Modular Function Code for Nonvirtual
Subsystems” on page 12-61 for details. For limitations that apply, see “Nonvirtual
Subsystem Modular Function Code Limitations” on page 12-66.

For more information about generating code for atomic subsystems, see the sections
“Code Generation of Subsystems” and “Generate Code and Executables for Individual
Subsystem” in the Simulink Coder documentation.

Configure Subsystem for Generating Modular Function Code

This section summarizes the steps to configure a nonvirtual subsystem in a Simulink
model for modular function code generation.

1 Verify that the Simulink model containing the subsystem uses an ERT-based system
target file (see the System target file parameter on the Code Generation pane of
the Configuration Parameters dialog box).

2 In your Simulink model, select the subsystem for which you want to generate
modular function code and launch the Subsystem Parameters dialog box (for
example, right-click the subsystem and select Block Parameters (Subsystem)).
The dialog box for an atomic subsystem is shown below. (In the dialog box for a
conditionally executed subsystem, the dialog box option Treat as atomic unit is
greyed out, and you can skip Step 3.)

12-56

Atomic Subsystem Code

Subsystem

Select the settings for the subsystem block. To enable parameters on the
Code Generation tab, on the Main tab, select 'Treat as atomic unit'.

Main Code Generation

E Function Block Parameters: fuel_rate_control @

Show port labels ’FromPorﬂcon

Read/Write permissions: lReadWrite

Mame of error callback function:

Permit hierarchical resolution: |All

[T Treat as atomic unit

_} [oK H Cancel ” Help l Apply

If the Subsystem Parameters dialog box option Treat as atomic unit is available
for selection but not selected, the subsystem is neither atomic nor conditionally
executed. Select the option Treat as atomic unit, which enables Function
packaging on the Code Generation tab. Select the Code Generation tab.

12-57

] 2 Function and Class Inferfaces

E Function Block Parameters: fuel_rate_control IEI
Subsystem
Select the settings for the subsystem block. To enable parameters on the
Code Generation tab, on the Main tab, select 'Treat as atomic unit'.
- Code Generation
Function packaging: lAuto -
J [0K] [Cancel] l Help l Apply

4 For the Function packaging parameter, select the value Nonreusable
function. After you make this selection, the Function with separate data option
is displayed.

12-58

Atomic Subsystem Code

Function Block Parameters: fuel_rate_control IEI
Subsystem

Select the settings for the subsystem block. To enable parameters on the
Code Generation tab, on the Main tab, select 'Treat as atomic unit'.

- Code Generation

Function packaging: lNonreusabIefunction ']
Function name options: lAuto ']
File name options: lAuto ']
Function interface: ’void_void ']

[C] Function with separate data

Memory section for initialize/terminate functions: [[nherit from model ']

Memory section for execution functions: [Inherit from model ']

J oK H Cancel ” Help ” Apply

Note: Before you generate nonvirtual subsystem function code with the Function
with separate data option selected, you might want to generate function code with
the option deselected and save the generated function .c and .h files in a separate
directory for later comparison.

Select the Function with separate data option. After you make this selection,
additional configuration parameters are displayed.

12-59

] 2 Function and Class Inferfaces

12-60

Function Block Parameters: fuel_rate_control @
Subsystem

Select the settings for the subsystem block. To enable parameters on the Code
Generation tab, on the Main tab, select Treat as atomic unit'.

- Code Generation

Function packaging: lNonreusabIefunction 'l
Function name options: lAuto 'l
File name options: lAuto 'l
Function interface: ’void_void 'l

Function with separate data

Memory section for initialize/terminate functions: [[nherit from model 'l
Memory section for execution functions: [Inherit from model 'l
Memory section for constants: [Inherit from model 'l
Memory section for internal data: [[nherit from model 'l
Memory section for parameters: [Inherit from model 'l
_), [oK] ’ Cancel] ’ Help] [Apply]

Note: To control the naming of the subsystem function and the subsystem files in the

generated code, you can modify the subsystem parameters Function name options
and File name options.

6 To save your subsystem parameter settings and exit the dialog box, click OK.

This completes the subsystem configuration for generating modular function code.
You can now generate the code for the subsystem and examine the generated files,
including the function .c and .h files named according to your subsystem parameter
specifications. For more information on generating code for nonvirtual subsystems, see
“Code Generation of Subsystems”. For examples of generated subsystem function code,
see “Modular Function Code for Nonvirtual Subsystems” on page 12-61.

Atomic Subsystem Code

Modular Function Code for Nonvirtual Subsystems

To illustrate the selection of the Function with separate data option for a nonvirtual
subsystem, the following procedure generates atomic subsystem function code with and
without the option selected and compares the results.

1 Open MATLAB and launch the model rtwdemo_atomic using the MATLAB
command rtwdemo_atomic. Examine the Simulink model.

Sum

In1

Gain

2 Double-click the SS1 subsystem and examine the contents. (You can close the
subsystem window when you are finished.)

1) o KIS »(1)
In1 z-1 Out1
Integrator

3 Use the Configuration Parameters dialog box to change the model's System target
file from GRT to ERT. For example, from the Simulink window, select Simulation >
Model Configuration Parameters. On the Configuration Parameters dialog box,
select the Code Generation pane and specify ert.tlc for the System target file
parameter. Click OK twice to confirm the change.

4 Create a variant of rtwdemo_atomic that illustrates function code without data
separation.

a In the Simulink view of rtwdemo_atomic, right-click the SS1 subsystem and
select Block Parameters (Subsystem). In the Subsystem Parameters dialog
box, verify that

* On the Main tab, Treat as atomic unit is selected
12-61

] 2 Function and Class Inferfaces

+ On the Code Generation tab, User specified is selected for Function
name options

* On the Code Generation tab, myfun is specified for Function name
b In the Subsystem Parameters dialog box, on the Code Generation tab

i Select the value Nonreusable function for the Function packaging
parameter. After this selection, additional parameters and options will
appear.

ii Select the value Use function name for the File name options
parameter. This selection is optional but simplifies the later task of code
comparison by causing the atomic subsystem function code to be generated
into the files myfun.c and myfun_h.

Do not select the option Function with separate data. Click Apply to apply
the changes and click OK to exit the dialog box.

¢ Save this model variant to a personal work directory, for example,
rtwdemo_atomiclin d:/atomic.

5 Create a variant of rtwdemo_atomic that illustrates function code with data
separation.

a In the Simulink view of rtwdemo_atomicl (or rtwdemo_atomic with step
3 reapplied), right-click the SS1 subsystem and select Block Parameters
(Subsystem). In the Subsystem Parameters dialog box, verify that

* On the Main tab, Treat as atomic unit is selected

* On the Code Generation tab, Function is selected for Function
packaging

+ On the Code Generation tab, User specified is selected for Function
name options

* On the Code Generation tab, myfun is specified for Function name

* On the Code Generation tab, Use function name is specified for File
name options
b Inthe Subsystem Parameters dialog box, on the Code Generation tab, select
the option Function with separate data. Click Apply to apply the change and
click OK to exit the dialog box.

¢ Save this model variant, using a different name than the first variant, to a
personal work directory, for example, rtwdemo_atomic2 in d:/atomic.

12-62

Atomic Subsystem Code

Generate code for each model, rtwdemo_atomicl and rtwdemo_atomic2.

In the generated code directories, compare the model .c/.h and myfun.c/.h files
generated for the two models. (In this example, there are not significant differences
in the generated variants of ert_main.c, model_ private.h, model_ types.h, or
rtwtypes.h.)

H File Differences for Nonvirtual Subsystem Function Data Separation

The differences between the H files generated for rtwdemo_atomicl and
rtwdemo_atomic?2 help illustrate the selection of the Function with separate data
option for nonvirtual subsystems.

1

Selecting Function with separate data causes typedefs for subsystem data to be
generated in the myfun_h file for rtwdemo_atomic2:

/* Block signals for system "<Root>/SS1" */
typedef struct {

real_T Integrator; /* "<S1>/Integrator® */
} rtB_myfun;

/* Block states (auto storage) for system "<Root>/SS1" */
typedef struct {

real_T Integrator_DSTATE; /* "<S1>/Integrator® */
3} rtDW_myfun;

By contrast, for rtwdemo_atomicl, typedefs for subsystem data belong to the
model and appear in rtwdemo_atomicl._h:

/* Block signals (auto storage) */
typedef struct {

real_T Integrator; /* "<S1>/Integrator® */
} BlockIlO_rtwdemo_atomicl;

/* Block states (auto storage) for system "<Root>" */
typedef struct {

real_T Integrator_DSTATE; /* "<S1>/Integrator® */
} D_Work_rtwdemo_atomicl;

Selecting Function with separate data generates the following external
declarations in the myfun.h file for rtwdemo_atomic2:

/* Extern declarations of internal data for "system "<Root>/SS1"" */
extern rtB_myfun rtwdemo_atomic2_myfunB;

12-63

] 2 Function and Class Inferfaces

12-64

extern rtDW_myfun rtwdemo_atomic2_myfunDW;
extern void myfun_initialize(void);
By contrast, the generated code for rtwdemo_atomicl contains model-level

external declarations for the subsystem's Blockl0 and D_Work data, in
rtwdemo_atomicl.h:

/* Block signals (auto storage) */
extern BlocklO_rtwdemo_atomicl rtwdemo atomicl B;

/* Block states (auto storage) */
extern D _Work rtwdemo_atomicl rtwdemo_atomicl DWork;

C File Differences for Nonvirtual Subsystem Function Data Separation

The differences between the C files generated for rtwdemo_atomicl and
rtwdemo_atomic? illustrate the selection of the Function with separate data option
for nonvirtual subsystems.

1

Selecting Function with separate data causes a separate subsystem
initialize function, myfun_initialize, to be generated in the myfun. c file for
rtwdemo_atomic2:

void myfun_initialize(void) {
((real_T*)&rtwdemo_atomic2_myfunB. Integrator)[0] = 0.0;

rtwdemo_atomic2_myfunDW. Integrator_DSTATE = 0.0;
}

The subsystem initialize function in myfun.c is invoked by the model initialize
function in rtwdemo_atomic2.c:

/* Model initialize function */
void rtwdemo_atomic2_initialize(void)

{

/* Initialize subsystem data */
myfun_initialize();

}

Atomic Subsystem Code

By contrast, for rtwdemo_atomicl, subsystem data is initialized by the model
initialize function in rtwdemo_atomicl.c

/* Model initialize function */

void rtwdemo_atomicl_initialize(void)

{

/* block 1/0 */
{

((real_T*)&rtwdemo_atomicl_B.Integrator)[0] = 0.0;

/* states (dwork) */

rtwdemo_atomicl_DWork. Integrator_DSTATE = 0.0;

Selecting Function with separate data generates the following declarations in the
myfun.c file for rtwdemo_atomic2:

/* Declare variables for internal data of system "<Root>/SS1* */
rtB_myfun rtwdemo_atomic2_myfunB;

rtDW_myfun rtwdemo_atomic2_myfunDW;

By contrast, the generated code for rtwdemo_atomicl contains model-
level declarations for the subsystem's Blockl0 and D_Work data, in
rtwdemo_atomicl.c:

/* Block signals (auto storage) */
BlocklO_rtwdemo_atomicl rtwdemo_atomicl B;

/* Block states (auto storage) */
D_Work_rtwdemo_atomicl rtwdemo_atomicl DWork;

Selecting Function with separate data generates identifier naming that reflects
the subsystem orientation of data items. Notice the references to subsystem

data in subsystem functions such as myfun and myfun_update or in the

model's model step function. For example, compare this code from myfun for
rtwdemo_atomic?2

12-65

] 2 Function and Class Inferfaces

12-66

/* Discretelntegrator: "<S1>/Integrator”™ */
rtwdemo_atomic2_myfunB. Integrator = rtwdemo_atomic2_myfunDW. Integrator_DSTATE;

to the corresponding code from myfun for rtwdemo_atomicl.

/* Discretelntegrator: "<S1>/Integrator® */
rtwdemo_atomicl_B.Integrator = rtwdemo_atomicl_DWork. Integrator_DSTATE;

Nonvirtual Subsystem Modular Function Code Limitations

The nonvirtual subsystem option Function with separate data has the following
limitations:

The Function with separate data option is available only in ERT-based Simulink
models (requires a Embedded Coder license).

The nonvirtual subsystem to which the option is applied cannot have multiple sample
times or continuous sample times; that is, the subsystem must be single-rate with a
discrete sample time.

The nonvirtual subsystem cannot contain continuous states.
The nonvirtual subsystem cannot output function call signals.
The nonvirtual subsystem cannot contain noninlined S-functions.

The generated files for the nonvirtual subsystem will reference model-wide header
files, such as model.h and model private.h.

The Function with separate data option is incompatible with the Classic
call interface option, located on the Code Generation > Interface pane of the
Configuration Parameters dialog box. Selecting both generates an error.

The Function with separate data option is incompatible with setting Code
interface packaging to Reusable function (Code Generation > Interface
pane). Selecting both generates an error.

Memory Sections

+ “About Memory Sections” on page 13-2

+ “Requirements for Defining Memory Sections” on page 13-3
* “Define Memory Sections” on page 13-5

+ “Configure Memory Sections” on page 13-9

+ “Declare Constant Data as Volatile” on page 13-10

+ “Apply Memory Sections” on page 13-13

* “Generated Code with Memory Sections” on page 13-21

+ “Model-Level Data Structures” on page 13-23

13 Memory Sections

About Memory Sections

13-2

What Are Memory Sections?

Every custom storage class has an associated memory section definition. A memory
section is a named collection of properties related to placement of an object in memory;
for example, in RAM, ROM, or flash memory. Memory section properties let you specify
storage directives for data objects. For example, you can specify const declarations, or
compiler-specific #pragma statements for allocation of storage in ROM or flash memory
sections.

The Embedded Coder software provides a memory section capability that allows you to
insert comments and pragmas and to qualify constants as volatile in generated code
for

* Data in custom storage classes

* Model-level functions

* Model-level internal data

* Subsystem functions

* Subsystem internal data
Pragmas inserted into generated code can surround

+ A contiguous block of function or data definitions

+ Each function or data definition separately

When pragmas surround each function or data definition separately, the text of each
pragma can contain the name of the definition to which it applies.

To see an example of memory sections, type rtwdemo_memsec at the MATLAB command
line.

Requirements for Defining Memory Sections

Requirements for Defining Memory Sections

Before you can define memory sections, you must do the following:
1 Set the Simulink model's code generation target to an embedded target such as
ert.tlc.

2 To create packages, specify package properties, or create classes, including custom
storage classes, see “Define Data Classes” in the Simulink documentation.

See also the instructions that appear when you click the Custom Storage Classes
tab.

3 If you need to specify custom storage class properties,

a Choose View > Model Explorer in the model window.

The Model Explorer appears.

b Choose Tools > Custom Storage Class Designer in the Model Explorer
window.

A notification box appears that states Please Wait ... Finding Packages. After
a brief pause, the notification box closes and the Custom Storage Class Designer
appears.

¢ Select the Custom Storage Class tab. The Custom Storage Class pane
initially looks like this:

13-3

13 Memory Sections

W Custom Starage Class Designer

Validation result
Select package: (Read Only)

Last validation succeeded.

Custom Storage Class | Memaory Section |

Custom storage class definitions: New

Default = [Mew Reference

BitField

Const Copy

Volatile =

ConstVolatile U

Define Down

ImportedDefine i Pseudocode preview
ExportToFile Remove

ImportFromFile

FileSrnna = Rclfoks

Header file:

General | Comments Mo header file is specifisd. By default, data is

exported via the generated model.h file.

Name: Default

Type: |Unstructured For parameters For signals

Type definition: Not applicable.
Memory section: | Default Data scope: | Exported
Data initialization: | Auto Data access: |Direct Declaration:

Header file: |Specify /% C5C declaration comment generated by default #/

extern DATATYPE DATANAME [DIMENSION];
Owner: | Specify

Definition file: | Specify
Definition:

/% CSC definition comment generated by default */
DATATYPE DATANAME [DIMENSION] ;

Filename: csc_registration.p

Location: E:\jobarchive\Adoc\2012_02_08_h02m42s54_job1722... Save

[oK ” Cancel H Help] Apply

d Use the Custom Storage Class pane to select a writable package and specify
custom storage class properties. Instructions for using this pane appear in
“Design Custom Storage Classes and Memory Sections”.

13-4

Define Memory Sections

Define Memory Sections

In this section...

“Edit Memory Section Properties” on page 13-5

“Specify the Memory Section Name” on page 13-6

“Specify a Qualifier for Custom Storage Class Data Definitions” on page 13-7
“Specify Comment and Pragma Text” on page 13-7

“Surround Individual Definitions with Pragmas” on page 13-7

“Include Identifier Names in Pragmas” on page 13-8

Edit Memory Section Properties

After you have satisfied the requirements in “Requirements for Defining Memory
Sections” on page 13-3, you can define memory sections and specify their properties. To
create new memory sections or specify memory section properties,

1 Choose View > Model Explorer in the model window.

The Model Explorer appears.
2 Choose Tools > Custom Storage Class Designer in the Model Explorer window.

A notification box appears that states Please Wait ... Finding Packages. After
a brief pause, the notification box closes and the Custom Storage Class Designer
appears.

3 Click the Memory Section tab of the Custom Storage Class Designer. The Memory
Section pane initially looks like this:

13-5

13 Memory Sections

=] Custom Storage Class Designer

Select package: |Simulink -

(Read Orly)

Custom Storage Class

Memory Section |

— Validation result:

Last validation succeeded.

Memory section definitions: MNew |
Default
MemConst New Reference
MemVolatile Co
MemConstiolatle —IW
S
Dawn
—Pseudocode pr
Remove
p— Header file: Not zppliezble.
Memary Section | Type definition: Mot applicable.
Name: | Default Declaration
I= | Is const ™ Isvolstle Qualifier: [extern DATATYEZ DATANAME;
Comment:
Definition
DATATYDE DATANAME;
Pragma surrounds: |4/ variable 'I
Pre-memory-section pragma:
Post-memory-section pragma:
Filename: csc_registration.p
(mem E:\matiab toolbox\simulink\simulink\@Simulink Save

oK | Cancel |

4 If you intend to create or change memory section definitions, use the Select

package field to select a writable package.

The rest of this section assumes that you have selected a writable package, and describes
the use of the Memory section subpane on the lower left. For descriptions of the other
subpanes, instructions for validating memory section definitions, and other information,

see “Define Memory Sections” on page 13-5.

Specify the Memory Section Name

To specify the name of a memory section, use the Name field. A memory section name

must be a legal MATLAB identifier.

13-6

Define Memory Sections

Specify a Qualifier for Custom Storage Class Data Definitions

To specify a qualifier for custom storage class data definitions in a memory section, enter
the components of the qualifier below the Name field.

+ To specify const, check Is const.

* To specify volati le, check Is volatile.

* To specify anything else (e.g., static), enter the text in the Qualifier field.

The qualifier will appear in generated code with its components in the same left-to-

right order in which their definitions appear in the dialog box. A preview appears in the
Pseudocode preview subpane on the lower right.

Note: Specifying a qualifier affects only custom storage class data definitions. The code
generator omits the qualifier from other definition categories.

Specify Comment and Pragma Text

To specify a comment, prepragma, or postpragma for a memory section, enter the
comment in the text boxes on the left side of the Custom Storage Class Designer. In the
text boxes, you can type multiple lines separated by ordinary Returns.

Surround Individual Definitions with Pragmas

If the Pragma surrounds field for a memory section specifies Each variable, the
code generator will surround each definition in a contiguous block of definitions with the
comment, prepragma, and postpragma defined for the section.

If the Pragma surrounds field for a memory section specifies All variables, the
code generator will insert the comment and prepragma for the section before the
first definition in a contiguous block of custom storage class data definitions, and the
postpragma after the last definition in the block.

Note: Specifying All variables affects only custom storage class data definitions. For
other definition categories, the code generator surrounds each definition separately
regardless of the value of Pragma surrounds.

13-7

13 Memory Sections

13-8

Include Identifier Names in Pragmas

When pragmas surround each separate definition in a contiguous block, you can include
the string %<identifier>in a pragma. The string must appear without surrounding
quotes.

* When %<identifier> appears in a prepragma, the code generator will substitute
the identifier from the subsequent function or data definition.

*+ When %<identifier> appears in a postpragma, the code generator will substitute
the identifier from the previous function or data definition.

You can use %<identifier> with pragmas only when pragmas to surround each
variable. The Val idate phase will report an error if you violate this rule.

Note: Although %<identifier> looks like a TLC variable, it is not: it is just a keyword
that directs the code generator to substitute the applicable data definition identifier
when it outputs a pragma. TLC variables cannot appear in pragma specifications in the
Memory Section pane.

Configure Memory Sections

Configure Memory Sections

You configure memory sections by using the Code Generation > Memory Sections
pane of the Configuration Parameters dialog box.

To...

Select...

Specify the package that contains memory
sections that you want to apply

The name of a package for Package. Click
Refresh package list to refresh the list of
available packages in your configuration.

Apply memory sections to initialize/start and
terminate functions

A value for Initialize/Terminate.

Apply memory sections to step, run-time
initialization, derivative, enable, and disable
functions

A value for Execution.

Apply memory sections to constant parameters,
constant block I/O, zero representation, and real-
time model data structure

A value for Constants.

Apply memory sections to root inputs and root
outputs

A value for Inputs/Outputs.

Apply memory sections to block I/0, D-work
vectors, and zero-crossings

A value for Internal data.

Apply memory sections to parameters

A value for Parameters.

The interface checks whether the specified package is on the MATLAB path and that the
selected memory sections are in the package. The results of this validation appear in the

field Validation results.

13-9

13 Memory Sections

Declare Constant Data as Volatile

13-10

In the C language, the value of data declared with the storage type qualifier, volatile,
can be read from memory and written back to memory when changed without compiler
control or detection. Examples of use include variables for initialization at system power-
up or for system clock updates.

You can add the volati le qualifier to type definitions generated in code for model
constant block I/O, constant parameters, and ground data (zero representation).

To add the volati le qualifier to type definitions, you must configure your model as
follows:

* Enable inline parameters

* Specify an ERT target

+ Set the memory section for constant data to MemVolatile or MemConstVolatile

If you choose to add the volati le qualifier to type definitions in your generated code,
note the following:

+ If constant data that is qualified with volati le is passed by pointer, the code
generator casts away the volatility. This occurs because generated functions assume
that data values do not change during execution and, therefore, pass their arguments
as const * (not const volatile *).

+ If a variable must be declared const and you specify MemVolati le, the code
generator declares the variable with the const and volati le qualifiers.

+ If you set Constants to MemConst or MemConstVolatile, and a variable cannot be
declared as constant data, a TLC warning appears and the code generator does not
qualify the variable with const.

Consider the following simple lookup table model.

n Out1

O r——r A C—
INPLT ,l OUTPUT

Lockup Table

1 On the Configuration Parameters dialog box, in the Optimization > Signals and
Parameters pane, select Inline parameters.

Declare Constant Data as Volatile

In the Code Generation pane, set System target file to ert.tlc.

In the Code Generation > Memory Sections pane, set Package to Simulink or
mpt, and Constants to MemConstVolatile.

Open the Signal Properties dialog box for signal INPUT. On the Code
Generation tab, set the Package to Simul ink or mpt and the Storage class to
ExportedGlobal for storing state in a global variable.

Generate code. You should see the volati le qualifier in the generated files
model data.c and model.h.

model_data.c

/* Constant parameters (auto storage) */
/* ConstVolatile memory section */
const volatile ConstParam_simple_lookup simple_lookup_ConstP = {
/* Expression: [-5:5]
* Referenced by: "<Root>/Lookup Table*
*/
{-5.0, -4.0, -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0 },

/* Expression: tanh([-5:5])

* Referenced by: "<Root>/Lookup Table*
*/

{ -0.99990920426259511, -0.999329299739067,
-0.99505475368673046, -0.9640275800758169,
-0.76159415595576485, 0.0, 0.76159415595576485,
0.9640275800758169, 0.99505475368673046,
0.999329299739067, 0.99990920426259511 }

¥
model .h

/* Real-time Model Data Structure */
struct RT_MODEL_simple_lookup {
const char_T * volatile errorStatus;

¥

/* Constant parameters (auto storage) */
extern const volatile ConstParam_simple_lookup simple_lookup_ConstP;

Also note in the model . c file that a typecast is inserted in the rt_Lookup function
call, removing the volati le qualifier.

/* Lookup: "<Root>/Lookup Table® incorporates:

13-11

13 Memory Sections

* Inport: "<Root>/Inl*

*/

OUTPUT = rt_Lookup(((const real_T%*)
&simple_lookup_ConstP.LookupTable_XData[0]), 11, INPUT, ((
const real_T*) &simple_lookup_ConstP._LookupTable_YData[0]));

13-12

Apply Memory Sections

Apply Memory Sections

In this section...

“Assign Memory Sections to Custom Storage Classes” on page 13-13
“Apply Memory Sections to Model-Level Functions and Internal Data” on page 13-15

“Apply Memory Sections to Atomic Subsystems” on page 13-17

Assign Memory Sections to Custom Storage Classes

To assign a memory section to a custom storage class,

1 Choose View > Model Explorer in the model window.

The Model Explorer appears.

2 Choose Tools > Custom Storage Class Designer in the Model Explorer window.

A notification box appears that states Please Wait ... Finding Packages. After
a brief pause, the notification box closes and the Custom Storage Class Designer
appears.

3 Select the Custom Storage Class tab. The Custom Storage Class pane initially
looks like this:

13-13

13 Memory Sections

=] Custom Storage Class Designer x|
~Validation result
Select package: |Simulink | (Read Only)

Last validation succeeded.

Custom Storage Class | Memary Section |

Custom storage class definitions: New
INew Reference
Copy

Constiolatile up

Define

ImportedDefine T

ExportToFile ~Pseudocode pr

ImportFromFie Remove

Struct dondor F11

GetSet = Validate eader file

No header file is specified. By defeuls, date is

General | Comments | sxported vis the gensrated medel.h Sils.
Name: |Default
Type: [Unstructured vl ¥ For parameters W For signals Type definition: Not applicable.

Memary section: [Default] Datascope: [Epart=d =

Data initialization: |Auto vl Data access: |Direct
f* CSC declaration comment generated by default */

Header file: |Specwfy =l | extern DATATYPE DATANAME [DIMENSTON];

Declaration

|

Definition

f* CSC definition comment generated by default */
DATATYFE DATANAME [DIMENSION];

Location: M:\R2009bd\atest_passimatiab\toolbox\simulink\, .. Save.

’rF\Ienama: csc_registration.p

oK | Cancel I Help | Apply |

4 Use the Select package field to select a writable package. The rest of this section
assumes that you have selected a writable package.

5 Select the desired custom storage class in the Custom storage class definitions
pane.

6 Select the desired memory section from the Memory section pull-down.

7 Click Apply to apply changes to the open copy of the model; Save to apply changes
and save them to disk; or OK to apply changes, save changes, and close the Custom
Storage Class Designer.

Generated code for data definitions in the specified custom storage class are enclosed
in the pragmas of the specified memory section. The pragmas can surround contiguous
blocks of definitions or each definition separately, as described in “Surround Individual
Definitions with Pragmas” on page 13-7. For more information, see “Design Custom
Storage Classes and Memory Sections”.

13-14

Apply Memory Sections

Note: The code generator does not generate a pragma around definitions or declarations
for data that has the following built-in storage classes:

* ExportedGlobal

+ ImportedExtern

+ ImportedExternPointer

The code generator treats data with these built-in storage classes like custom storage
classes without a specified memory section.

Apply Memory Sections to Model-Level Functions and Internal Data

When using code generation software, you can apply memory sections to the following
categories of model-level functions:

Function Category Function Subcategory

Initialize/Terminate functions Initialize/Start
Terminate

Execution functions Step functions

Run-time initialization

Derivative
Enable
Disable

When using code generation software, you can apply memory sections to the following
categories of internal data:

Data Category Data Definition Data Purpose
Constants model constP Constant parameters
model constB Constant block I/0
model_ constZ Zero representation
model_constM Real-time model data
structure

13-15

13 Memory Sections

13-16

Data Category Data Definition Data Purpose
Input/Output model U Root inputs
model_ Y Root outputs
Internal data model B Block I/0
model D D-work vectors
model_Zero Zero-crossings
Parameters model P Parameters

Memory section specifications for model-level functions and internal data apply to the top
level of the model and to its subsystems. However, these specifications are not applicable
to atomic subsystems that contain overriding memory section specifications, as described
in “Apply Memory Sections to Atomic Subsystems” on page 13-17.

To specify memory sections for model-level functions or internal data,

1 Open the Configuration Parameters dialog box and select Code Generation >

General.

2 Specify the System target file as an ERT target, such as ert.tlc.

Select Memory Sections. The Memory Sections pane looks like this:

Apply Memory Sections

7

Select: Package containing memory sections for model data and functions

- Solver -
Package: |mpt ~ | |Refresh package list

- Data Import/Export 2 [B] l B L]

i O.ptII'I'IIZﬁ.tIUI'I Memory sections for model functions and subsystem defaults

—I-Diagnostics

- Sample Time
ata Validity
ype Conversion

Initialize/ Terminate: [Default

Execution: [Default

Shared utility: [Default ']

-~ Saving Memory sections for model data and subsystem defaults

" Stateflow Constants: [MemConstVoIatiIe ']
- Hardware Implementation
-~ Model Referencing Inputs/Outputs: [Default V]
+- Simulation Target
= Code Generation Internal data: [Default ']

- Report

- Comments Parameters: [Default ']

- Symbols

- Custom Code Validation results

-~ Debug Package and memory sections found.

- Interface

--SIL and PIL Verification

- Code Style

- Templates

- Code Placement

- Data Type Replacement

~Memory Sections

Initially, the Package field specifies ———-None--- and the pull-down lists only built-
in packages. If you have defined packages of your own, click Refresh package list.
This action adds user-defined packages on your search path to the package list.

In the Package pull-down, select the package that contains the memory sections
that you want to apply.

In the pull-down for each category of internal data and model-level function, specify
the memory section that you want to apply to that category. Accepting or specifying
Default omits specifying memory section for that category.

Click Apply to save changes to the package and memory section selections.

Apply Memory Sections to Atomic Subsystems

For atomic subsystem whose generated code format is Function or Reusable
Function, you can specify memory sections for functions and internal data that exist in
that code format. Such specifications override model-level memory section specifications.
Such overrides apply only to the atomic subsystem itself, not to subsystems within it.

13-17

13 Memory Sections

13-18

Subsystems of an atomic subsystem inherit memory section specifications from the
containing model, not from the containing atomic subsystem.

To specify memory sections for an atomic subsystem,

Right-click the subsystem in the model window.

2 Choose Subsystem Parameters from the context menu. The Function Block
Parameters: Subsystem dialog box appears.

3 Select the Treat as atomic unit checkbox. If it is not selected, you cannot specify
memory sections for the subsystem.

For an atomic system, on the Code Generation tab, you can use the Function
packaging field to control the format of the generated code.

4 Specify Function packaging as Nonreusable function or Reusable
function. Otherwise, you cannot specify memory sections for the subsystem.

5 If the code format is Function and you want separate data, check Function with
separate data.

The Code Generation tab now shows applicable memory section options. The
available options depend on the values of Function packaging and the Function
with separate data check box. When the former is Nonreusable function and
the latter is checked, the pane looks like this:

Apply Memory Sections

Function Block Parameters: 551 @
Subsystem

Select the settings for the subsystem block. To enable parameters on the Code
Generation tab, on the Main tab, select 'Treat as atomic unit'.

- Code Generation

Function packaging: ’Nonreusable function ']
Function name options: ’Auto v]
File name options: [Auto v]
Function interface: [void_void v]

Function with separate data

Memory section for initialize/terminate functions: [Inherit from model v]
Memory section for execution functions: [Inhe-rit from model v]
Memory section for constants: [Inherit from model v]
Memory section for internal data: [Inhe-rit from model V]
Memory section for parameters: [Inhe-rit from model V]
_J, [0K l [Cancel] [Help] [Apply]

6 In the pull-down for each available definition category, specify the memory section
that you want to apply to that category.

+ Selecting Inherit from model inherits the corresponding selection from the
model level (not parent subsystem).

+ Selecting Default specifies that the category does not have an associated
memory section, overriding model-level specifications for that category.

7 Click Apply to save changes, or OK to save changes and close the dialog box.

Caution If you use Build This Subsystem or Build Selected Subsystem to generate
code for an atomic subsystem that specifies memory sections, the code generator ignores
the subsystem-level specifications and uses the model-level specifications instead.

The generated code is the same as if the atomic subsystem specified Inherit from
model for every category of definition. For information about building subsystems, see
“Generate Code and Executables for Individual Subsystem”.

13-19

13 Memory Sections

13-20

It is not possible to specify the memory section for a subsystem in a library. However,
you can specify the memory section for the subsystem after you have copied it into a
Simulink model. This is because in the library it is unknown what code generation target
will be used. You can copy a library block into many different models with different code
generation targets and different memory sections available.

Generated Code with Memory Sections

Generated Code with Memory Sections

Sample ERT-Based Model with Subsystem

The next figures show an ERT-based Simulink model that defines one subsystem,
mySubsystem, and then the contents of that subsystem.

Ini

C

Iml

: s out f——» ()
= Cout1
Unit Delay
mySubsystemn
%b 1)
Crut1
Gain

Assume that the subsystem is atomic. On the Code Generation tab, the Function
packaging parameter is Reusable function. Memory sections have been created and
assigned as shown in the next two tables; here, data memory sections specify Pragma
surrounds to be Each variable.

Model-Level Memory Section Assignments and Definitions

Section Assignment|Section Name |Field Name Field Value
Input/Output MemSectl Prepragma #pragma 10_begin
Postpragma |#pragma 10-end
Internal data MemSect2 Prepragma #pragma InData-begin(%<identifier>)
Postpragma |#pragma InData-end
Parameters MemSect3 Prepragma #pragma Parameters-begin
Postpragma |#pragma Parameters-end
Initialize/ MemSect4 Prepragma #pragma InitTerminate-begin
Terminate Postpragma |#pragma InitTerminate-end

13-21

13 Memory Sections

Section Assignment|Section Name |Field Name Field Value
Execution MemSect5 Prepragma #pragma ExecFunc-begin(%<identifier>)
functions Postpragma |#pragma ExecFunc-begin(%<identifier>)

Subsystem-Level Memory Section Assignments and Definitions

Section Assignment|Section Name |Field Name Field Value
Execution MemSect6 Prepragma #pragma DATA SEC(%<identifier>,
functions "“"FAST_RAM™)

Postpragma

Given the preceding specifications and definitions, the code generator would create the
following code, with minor variations depending on the current version of the Target
Language Compiler.

13-22

Model-Level Data Structures

Model-Level Data Structures

#pragma 10-begin
External Inputs_mySample mySample_U;
#pragma 10-end

#pragma 10-begin
ExternalOutputs_mySample mySample_Y;
#pragma 10-end

#pragma InData-begin(mySample_B)
BlocklO_mySample mySample_B;
#pragma InData-end

#pragma InData-begin(mySample_DWork)
D_Work_mySample mySample_DWork;
#pragma InData-end

#pragma InData-begin(mySample_M_)
RT_MODEL_mySample mySample_M_;
#pragma InData-end

#pragma InData-begin(mySample_M)
RT_MODEL_mySample *mySample_M = &mySample_M_;
#pragma InData-end

#pragma Parameters-begin

Parameters_mySample mySample P = {
0.0 , {2.3}

};

#pragma Parameters-end

Model-Level Functions

#pragma ExecFunc-begin(mySample_step)

void mySample_step(void)

{
real_T rtb_UnitDelay;
rtb_UnitDelay = mySample_DWork.UnitDelay DSTATE;
mySubsystem(rtb_UnitDelay, &mySample_B_mySubsystem;,

(rtP_mySubsystem *) &mySample_P._mySubsystem);

mySample_Y_Outl_o = mySample_B_mySubsystem.Gain;
mySample_DWork.UnitDelay DSTATE = mySample_U.In1;

13-23

13 Memory Sections

13-24

3
#pragma ExecFunc-end(mySample_step)

#pragma InitTerminate-begin
void mySample_initialize(void)
{
rtmSetErrorStatus(mySample_M, (const char_T *)0);

((real_T*)&mySample_B.mySubsystem.Gain)[0] = 0.0;

mySample_DWork.UnitDelay DSTATE = 0.0;

mySample_U_.Inl1 = 0.0;

mySample_Y_Outl o = 0.0;

mySample_DWork.UnitDelay DSTATE = mySample_P.UnitDelay_ XO;
3

#pragma InitTerminate-end

Subsystem Function

Because the subsystem specifies a memory section for execution functions that overrides
that of the parent model, subsystem code looks like this:

/* File: mySubsystem.c */

#pragma DATA_SEC(mySubsystem, “FAST_RAM™)
void mySubsystem(real T rtu_Inl,
rtB_mySubsystem *localB,
rtP_mySubsystem *localP)
{

localB->Gain = rtu_Inl * localP->Gain_Gain;

}

If the subsystem had not defined its own memory section for execution functions, but
inherited that of the parent model, the subsystem code would have looked like this:

/* File: mySubsystem.c */

#pragma ExecFunc-begin(mySubsystem)
void mySubsystem(real T rtu_Inl,
rtB_mySubsystem *localB,
rtP_mySubsystem *localP)
{
localB->Gain = rtu_Inl * localP->Gain_Gain;

}

Model-Level Data Structures

#pragma ExecFunc-end(mySubsystem)

13-25

Code Generation

Configuration

“Application Objectives” on page 14-2
“High-Level Code Generation Objectives” on page 14-3
“Determine Model Configuration for Specified Objectives” on page 14-5

“Configure Model for Code Generation Objectives Using Code Generation Advisor” on
page 14-6

“Configure Model for Code Generation Objectives Using Configuration Parameters
Dialog Box” on page 14-10

“Configure Code Generation Objectives Programmatically” on page 14-14
“Check Objectives in Referenced Models” on page 14-15

“Checking Model and Configuration with Model Advisor” on page 14-16
“Check Model During Code Generation” on page 14-17

“Create Custom Objectives” on page 14-18

“Code Generation Targets” on page 14-24

“Configuration Variations” on page 14-32

“Wizard” on page 14-33

14 Configuration

Application Obijectives

The first step in applying Embedded Coder configuration options to the application
development process is to consider how your application objectives, particularly with
respect to efficiency, traceability, and safety, map to code generation options in a model
configuration set.

Parameters that you set in the Solver, Data Import/Export, Diagnostics, and Code
Generation panes of the Configuration Parameters dialog box specify the behavior of a
model in simulation and the code generated for the model.

Consider questions such as the following:

* What settings might help you debug your application?

* What is the highest objective for your application — efficiency, traceability, safety
precaution, debugging, or some other criteria?

+ What is the second highest objective?

+ Can the objective at the start of the project differ from the objective required for the
end result? What tradeoffs can you make?

After you answer these questions, you must:

+ Define your objectives in the configuration set. For more information, see “High-Level
Code Generation Objectives” on page 14-3.

+ Use the Code Generation Advisor to identify parameter values that are not configured
for the objectives that you selected. For more information, see “Determine Model
Configuration for Specified Objectives” on page 14-5.

14-2

High-Level Code Generation Objectives

High-Level Code Generation Obijectives

Based on your objective selections and prioritization, the Code Generation Advisor checks
your model and suggests changes that you can make to achieve your code generation
objectives.

Depending on the type of application that your model represents, you are likely to have
specific code generation objectives. For example, safety and traceability might be more
critical than efficient use of memory. If you have specific objectives, you can quickly
configure your model to meet those objectives by selecting and prioritizing from these
code generation objectives:

+ Execution efficiency (all targets) — Configure code generation settings to achieve fast
execution time.

* ROM efficiency (ERT-based targets) — Configure code generation settings to reduce
ROM usage.

* RAM efficiency (ERT-based targets) — Configure code generation settings to reduce
RAM usage.

* Traceability (ERT-based targets) — Configure code generation settings to provide
mapping between model elements and code.

+ Safety precaution (ERT-based targets) — Configure code generation settings to
increase clarity, determinism, robustness, and verifiability of the code.

* Debugging (all targets) — Configure code generation settings to debug the code
generation build process.

+ MISRA-C:2004 guidelines (ERT-based targets) — Configure code generation settings
to increase compliance with MISRA-C:2004 guidelines.

* Polyspace (ERT-based targets) — Configure code generation settings to prepare the
code for Polyspace® analysis.

Based on your objective selections and prioritization, the Code Generation Advisor checks
your model and suggests changes that you can make to achieve your code generation
objectives.

Note: If you select the MISRA-C:2004 guidelines code generation objective, the Code
Generation Advisor checks:

* The model configuration settings for compliance with the MISRA-C:2004
configuration setting recommendations.

14-3

14 Configuration

14-4

+ For blocks that are not supported or recommended for MISRA-C:2004 compliant code
generation.

Setting code generation objectives and running the Code Generation Advisor provides
information on how to meet code generation objectives for your model. The Code
Generation Advisor does not alter the generated code. You can use the Code Generation
Advisor to make the suggested changes to your model. The generated code is changed
only after you modify your model and regenerate code. If you use the Code Generation
Advisor to set code generation objectives and check your model, the generated code
includes comments identifying which objectives you specified, the checks the Code
Generation Advisor ran on the model, and the results of running the checks.

Determine Model Configuration for Specified Objectives

Determine Model Configuration for Specified Objectives

You can use the Code Generation Advisor to review your model and identify the
parameters that are not configured for your objective. The Code Generation Advisor
reviews a subset of model configuration parameters. It displays the results in the Check
model configuration settings against code generation objectives check.

The Code Generation Advisor uses the information presented in “Recommended Settings
Summary” to determine the values. When there is a conflict due to multiple objectives,
the higher-priority objective takes precedence.

You can use the Code Generation Advisor to review a model before generating code, or as
part of the code generation process. When you choose to review a model before generating
code, you specify which model, subsystem, or referenced model the Code Generation
Advisor reviews. When you choose to review a model as part of the code generation
process, the Code Generation Advisor reviews the entire system.

14-5

14 Configuration

Configure Model for Code Generation Obijectives Using Code
Generation Advisor

14-6

This example shows how to use the Code Generation Advisor to check and configure your
model to meet code generation objectives:

1

On the menu bar, select Code > C/C++ Code > Code Generation Advisor.
Alternatively:

T
On the toolbar Ry drop-down list, select Code Generation Advisor.

* Right-click a subsystem, and then select C/C++ Code > Code Generation
Advisor. Go to step 3.

In the System Selector window, select the model or subsystem that you want to
review, and then click OK.

In the Code Generation Advisor, on the Code Generation Objectives pane, select
the code generation objectives. As you select objectives, on the left pane, the Code
Generation Advisor updates the list of checks it will run on your model. If your
model is configured with an ERT-based target, more objectives are available. For this
example, the model is configured with an ERT-based target. If your objectives are
execution efficiency and traceability, in that priority, do the following:

a In Available objectives, double-click Execution efficiency. Execution
efficiency is added to Selected objectives - prioritized.

b In Available objectives, double-click Traceabi lity. Traceability is added
to Selected objectives - prioritized below Execution efficiency.

Configure Model for Code Generation Objectives Using Code Generation Advisor

Description

Select and prioritize your code generation objectives. You can add custom
objectives, for details, see the documentation.

Available objectives Selected objectives - prioritized

ROM efficiency Execution efficiency
RAM efficiency Traceability

Safety precaution
Debugging
MISRA-C:2004 guidelines

Polyspace

+

" Set Objectives - Code Generation Advisor @

| OK |I Cancel H Help

Click Run Selected Checks to run the checks listed in the left pane of the Code
Generation Advisor.

In the Code Generation Advisor window, review the results for Check model
configuration settings against code generation objectives by selecting it from
the left pane. The results for that check are displayed in the right pane.

Check model configuration settings against code generation objectives
triggers a warning for either of these reasons:

+ Parameters are set to values other than the value recommended for the specified
code generation objectives.

+ Selected code generation objectives differ from the objectives set in the model.
Click Modify Parameters to set:

+ Parameter to the value recommended for the specified code generation objectives.

+ Code generation objectives in the model to the objectives specified in the Code
Generation Advisor.

14-7

14 Configuration

-

EB Code Generation Advisor - rtwdemo_rtwecintro | = || = || 2 |

Find: - fﬁ !’%

Check model configuration settings against code generation objectives

»

4 I3 Code Generation Object
Analysis

/i\, Check model config —
@ Check for optimal by Check model configuration settings against the code generation objectives.
. ’ Successfully passing this check may take multiple iterations since a change to
0 Identify questionabl ; B)
one option can impact other options.
o Check the hardware

Q Identify questionabl Run This Check

Q Identify questionabl
a “ldentify blocks that Result: & Warring
'a ~ldentify questional

Check far efficien L
o) The following parameter values are not optimized for the selected

objectives: Execution efficiency, Traceability.

»

m

m

To automatically fix the warning, dick the 'Modify Parameters' button
and then rerun the check. To manually fix the warning, dick the
parameter hyperlink to open the Configuration Parameters dialog bax,
and manually apply the recommended value.

{Objectives: Execution efficdency, Traceability)

Parameter Current Value [Recommended Value

Suppress error statusin | pff on —

real-time model data

structure

"o JRPRSU | PRVSRRpUIY R, SIS Ty PR) Y - 5 - h
Action

Change current values to recommended value. Some parameters might
require manual changes,

Modify Parameters

L] i | 3

6 In the Code Generation Advisor window, review the results for the remaining checks
by selecting them from the left pane. The right pane populates the results for the
checks.

7 After reviewing the check results, you can choose to fix warnings and failures, as
described in “Fix a Model Check Warning or Failure”.

14-8

Configure Model for Code Generation Objectives Using Code Generation Advisor

Note: When you specify an efficiency or Safety precaution objective, the Code Generation
Advisor includes additional checks.

When you make changes to one check, the other check results could become invalid. You
must run the checks again.

14-9

14 Configuration

Configure Model for Code Generation Obijectives Using
Configuration Parameters Dialog Box

14-10

This example shows how to configure and check your model to meet code generation
objectives using the Configuration Parameters dialog box:

1 Open the Configuration Parameters dialog box. Select Code Generation.

2 Specify a system target file. If you specify an ERT-based target, more objectives are
available. For this example, choose an ERT-based target such as ert._tlc.

3 Click Set Objectives.

4 In the “Set Objectives — Code Generation Advisor Dialog Box”, specify your
objectives. For example, if your objectives are execution efficiency and traceability, in
that priority, do the following:

a In Available objectives, double-click Execution efficiency. Execution
efficiency is added to Selected objectives - prioritized.

b In Available objectives, double-click Traceability. Traceability is added
to Selected objectives - prioritized below Execution efficiency.

"l Set Objectives - Code Generation Advisor @
Description

Select and prioritize your code generation objectives. You can add custom
objectives, for details, see the documentation.

Available objectives Selected objectives - prioritized

ROM efficiency Execution efficiency
RAM efficiency Traceability

Safety precaution
Debugging
MISRA-C:2004 guidelines
Polyspace

E

(+1

OK || Cancel || Help

Configure Model for Code Generation Objectives Using Configuration Parameters Dialog Box

¢ Click OK to accept the objectives. In the Configuration Parameters dialog box,
Code Generation > General > Prioritized objectives is updated.

On the Configuration Parameters > Code Generation > General pane, click
Check Model.

In the System Selector window, select the model or subsystem that you want to
review, and then click OK. The Code Generation Advisor opens and reviews the
model or subsystem that you specified.

In the Code Generation Advisor window, review the results by selecting a check from
the left pane. The right pane populates the results for that check.

14-11

14 Configuration

-

Find:

EB Code Generation Advisor - rtwdemo_rtwecintro

L

I3 Code Generation Object

L1

/i\, Check model config
a Check far optimal by
0 Identify questionabl
o Check the hardware
Q Identify questionabl
Q Identify questionabl
@ ldentify blocks that
'a ~ldentify questional
o Check far efficiency

ML

(=@]=]

Check model configuration settings against code generation objectives

Analysis

Check model configuration settings against the code generation ohjectives.
Successfully passing this check may take multiple iterations since a change to
one option can impact other options.

Result: /&y Warning

»

The following parameter values are not optimized for the selected
objectives: Execution efficiency, Traceability.

m

To automatically fix the warning, dick the 'Modify Parameters' button
and then rerun the check. To manually fix the warning, dick the
parameter hyperlink to open the Configuration Parameters dialog bax,
and manually apply the recommended value.

{Objectives: Execution efficdency, Traceability)

Parameter Current Value [Recommended Value

Suppress error statusin | pff on

real-time model data

structure

"o JRPRSU | PRVSRRpUIY R, SIS Ty PR) Y - 5 - h
Action

Change current values to recommended value. Some parameters might
require manual changes,

Modify Parameters

Apply

»

m

8 After reviewing the check results, you can choose to fix warnings and failures, as

described in “Fix a Model Check Warning or Failure”.

Note: When you specify an efficiency or Safety precaution objective, the Code Generation
Advisor includes additional checks. When you make changes to one check, the other

check results could become invalid and you must run the checks again.

14-12

Configure Model for Code Generation Objectives Using Configuration Parameters Dialog Box

For more information, see “Set Objectives — Code Generation Advisor Dialog Box”

14-13

14 Configuration

Configure Code Generation Objectives Programmatically

14-14

This example shows how to configure code generation objectives by writing a MATLAB
script or entering commands at the command line.

1 Specify a system target file. If you specify an ERT-based target, more objectives are
available. For this example, specify ert.tlc. model name is the name or handle to
the model.

set_param(model name, "SystemTargetFile", "ert.tlc");
2 Specify your objectives. For example, if your objectives are execution efficiency and
traceability, in that priority, enter:

set_param(model_name, "ObjectivePriorities”, ...
{"Execution efficiency”, "Traceability"});

Note: When you specify a GRT-based system target file, you can specify an objective at
the command line. If you specify ROM efficiency, RAM effFiciency, Traceability,
MISRA-C:2004 guidelines, Polyspace, or Safety precaution, the build process
changes the objective to Unspecified because you have specified a value that is invalid
when using a GRT-based target.

Check Objectives in Referenced Models

Check Objectives in Referenced Models

When you check a model during the code generation process, you must specify the same
objectives in the top model and referenced models. If you specify different objectives for
the top model and referenced model, the build process generates an error.

To specify different objectives for the top model and each referenced model, review the
models separately without generating code.

14-15

14 Configuration

Checking Model and Configuration with Model Advisor

14-16

You can use the Model Advisor checks available with Embedded Coder to assess model
readiness for code generation. For information about the Model Advisor, see “Run Model
Checks”. For checks available with Embedded Coder, see “Embedded Coder Checks”.

If you want to check and configure your model for code generation objectives such as
traceability or safety, see “Application Considerations”.

Check Model During Code Generation

Check Model During Code Generation

This example shows how to use the Code Generation Advisor to review a model as part of
the code generation process.

Specify your code generation objectives.

2 On the Configuration Parameters > Code Generation > General pane, select
one of the following from Check model before generating code:

*+ On (proceed with warnings)
On (stop for warnings)

3 Ifyou only want to generate code, select Generate code only; otherwise clear the
check box to build an executable.

4 Apply your changes, and then click Generate Code/Build. The Code Generation
Advisor starts and reviews the top model and subsystems.

If the Code Generation Advisor issues failures or warnings, and you specified:

* On (proceed with warnings) — The Code Generation Advisor window opens
while the build process proceeds. After the build process is complete, you can
review the results.

* On (stop for warnings) — The build process halts and displays the
Diagnostic Viewer. To continue, you must review and resolve the Code
Generation Advisor results or change the Check model before generating
code selection.

5 In the Code Generation Advisor window, review the results by selecting a check from
the left pane. The right pane populates the results for that check.

6 After reviewing the check results, you can choose to fix warnings and failures as
described in “Fix a Model Check Warning or Failure”.

Note: When you specify an efficiency or Safety precaution objective, the Code
Generation Advisor includes additional checks. When you make changes to one of
these checks, the other check results could become invalid and you must run the
check again.

For more information, see “Set Objectives — Code Generation Advisor Dialog Box”

14-17

14 Configuration

Create Custom Obijectives

14-18

In this section...

“Specify Parameters in Custom Objectives” on page 14-18
“Specify Checks in Custom Objectives” on page 14-19

“Determine Checks and Parameters in Existing Objectives” on page 14-19

“How to Create Custom Objectives” on page 14-21

The Code Generation Advisor reviews your model based on objectives that you specify. If
the predefined efficiency, traceability, Safety precaution, and debugging objectives do not
meet your requirements, you can create custom objectives.

You can create custom objectives by:

+ Creating a new objective and adding parameters and checks to a new objective.

* Creating a new objective based on an existing objective, then adding, modifying, and
removing the parameters and checks within the new objective.

Specify Parameters in Custom Obijectives

When you create a custom objective, you specify the values of configuration parameters
that the Code Generation Advisor reviews. You can use the following methods:

+ addParam — Add parameters and specify the values that the Code Generation
Advisor reviews in Check model configuration settings against code
generation objectives. When you add parameters that have dependencies, the
software includes the dependencies in the list of parameter values that the Code
Generation Advisor reviews.

+ modifylnheritedParam — Modify inherited parameter values that the Code
Generation Advisor reviews in Check model configuration settings against code
generation objectives.

* removelnheritedParam — Remove inherited parameters from a new objective
that is based on an existing objective. When a user selects multiple objectives, if
another selected objective includes this parameter, the Code Generation Advisor
reviews the parameter value in Check model configuration settings against
code generation objectives.

Create Custom Objectives

Specify Checks in Custom Objectives

Objectives include the Check model configuration settings against code
generation objectives check by default. When you create a custom objective, you
specify the list of additional checks that are associated with the custom objective. You
can use the following methods:

+ addCheck — Add checks to the Code Generation Advisor. When a user selects the
custom objective, the Code Generation Advisor displays the check, unless the user
specifies an additional objective with a higher priority that excludes the check.

For example, you might add a check to the Code Generation Advisor to include a
custom check in the automatic model checking process.

+ excludeCheck — Exclude checks from the Code Generation Advisor. When a user
selects multiple objectives, if the user specifies an additional objective that includes

this check as a higher priority objective, the Code Generation Advisor displays this
check.

For example, you might exclude a check from the Code Generation Advisor when a
check takes a long time to process.

+ removelnheritedCheck — Remove inherited checks from a new objective that is
based on an existing objective. When a user selects multiple objectives, if another
selected objective includes this check, the Code Generation Advisor displays the
check.

For example, you might remove an inherited check, rather than exclude the check,
when the check takes a long time to process, but the check is important for another
objective.

Determine Checks and Parameters in Existing Objectives

When you base a new objective on an existing objective, you can determine what checks
and parameters the existing objective contains. The Code Generation Advisor contains
the list of checks in each objective.

For example, the EFFiciency objective includes checks which you can see in the Code
Generation Advisor. To see the checks in the Code Generation Advisor:

1 Open the rtwdemo_rtwecintro model.
2 Specify an ERT-based target.

14-19

14 Configuration

14-20

3 On the model toolbar, select Code > C/C++ Code > Code Generation Advisor.

4 In the System Selector window, select the model or subsystem that you want to
review, and then click OK.

5 In the Code Generation Advisor, on the Code Generation Objectives pane, select
the code generation objectives. As you select objectives, on the left pane, the Code
Generation Advisor updates the list of checks it will run on your model. For this
example, select Execution efficiency.

+ In Available objectives, double-click Execution efficiency. Execution
efficiency is added to Selected objectives - prioritized.

In the left pane, the Code Generation Advisor lists the checks for the Execution
efficiency objective. The first check, Check model configuration settings against
code generation objectives, lists parameters and values specified by the objective.
For example, the Code Generation Advisor displays the list of parameters and the
recommended values in the Execution efFiciency objective. To see the list of
parameters and values:

1 Run Check model configuration settings against code generation objectives.
2 Click Modify Parameters.
3 Rerun the check.

In the check results, the Code Generation Advisor displays the list of parameters and
recommended values for the Execution efficiency objective.

Paszed
{Objectives: Execution efficiency)
The following parameters have been checked and confirmed with the recommended value

Parameter Value
non-mlined 3-functions off
Suppress error status m real-time model data structure on
LAAT-fle logging [of |
|C1assic call interface ”off |
contimions time off
non-finite numbers off
single cutputupdate function on
Mlinimize algebraic loop occurrences off

Create Custom Objectives

How to Create Custom Obijectives

To create a custom objective:
1 Create an sl_customization.m file.

+ Specify custom objectives in a single sl _customization.m file only, or the
software generates an error. This issue is true even if you have more than one
sl_customization.m file on your MATLAB path.

* Except for the matlabroot/work folder, do not place an sl _customization.m
file in your root MATLAB folder, or its subfolders. Otherwise, the software
ignores the customizations that the file specifies.

2 Create an sl_customization function that takes a single argument. When
the software invokes the function, the value of this argument is the Simulink
customization manager. In the function:

a Create a handle to the code generation objective, using the
ObjectiveCustomizer constructor.

b Register a callback function for the custom objectives, using the
ObjectiveCustomizer.addCal lbackObjFcn method.

¢ Add a call to execute the callback function, using the
ObjectiveCustomizer.cal lbackFcn method.

For example:

function sl_customization(cm)
%SL_CUSTOMIZATION objective customization callback

objCustomizer = cm.ObjectiveCustomizer;
index = objCustomizer.addCal lbackObjFcn(@addObjectives);
objCustomizer.callbackFcn{index}();

end
3 Create a MATLAB callback function that:
* Creates code generation objective objects using the
rtw.codegenObjectives.Objective constructor.

+ Adds, modifies, and removes configuration parameters for each objective using
the addParam, modifylnheritedParam, and removelnheritedParam
methods.

14-21

14 Configuration

14-22

+ Includes and excludes checks for each objective using the addCheck,
excludeCheck, and remove lnheritedCheck methods.

* Registers objectives using the register method.

The following example shows how to create an objective, Reduce RAM Example.
Reduce RAM Example includes five parameters and three checks that the Code
Generation Advisor reviews.

function addObjectives

% Create the custom objective
obj = rtw.codegenObjectives.Objective("ex_ram_17);
setObjectiveName(obj, "Reduce RAM Example®);

% Add parameters to the objective
addParam(obj, “InlineParams®, "on");
addParam(obj, "BooleanDataType®, “on");
addParam(obj, "OptimizeBlocklOStorage®, "on");
addParam(obj, "EnhancedBackFolding®, “on");
addParam(obj, "BooleansAsBitfields®™, "on");

% Add additional checks to the objective

% The Code Generation Advisor automatically includes "Check model

% configuration settings against code generation objectives® in every
% objective.

addCheck(obj, "mathworks.design.UnconnectedLinesPorts®);
addCheck(obj, "mathworks.design.Update™);

%Register the objective
register(obj);

end

The following example shows you how to create an objective, My Traceability
Example, based on the existing Traceability objective. The custom objective modifies,
removes, and adds parameters that the Code Generation Advisor reviews. It also
adds and removes checks from the Code Generation Advisor.

function addObjectives

% Create the custom objective from an existing objective
obj = rtw.codegenObjectives.Objective("ex_my trace 17, "Traceability);
setObjectiveName(obj, "My Traceability Example®);

% Modify parameters in the objective
modifylnheritedParam(obj, “GenerateTraceReportSf®, "0ff");
remove IlnheritedParam(obj, "ConditionallyExecutelnputs®);
addParam(obj, “MatFileLogging®, “"On");

% Modify checks in the objective

Create Custom Objectives

addCheck(obj, "mathworks.codegen.SWEnvironmentSpec®);
remove InheritedCheck(obj, "mathworks.codegen.Codelnstrumentation®);

%Register the objective
register(obj);

end

If you previously opened the Code Generation Advisor, close the model from which
you opened the Code Generation Advisor.

Refresh the customization manager. At the MATLAB command line, enter the
sl_refresh_customizations command.

Open your model and review the new objectives.

14-23

14 Configuration

Code Generation Targets

14-24

In this section...

“About Target Selection” on page 14-24

“Select an ERT Target” on page 14-25

“Customize an ERT Target” on page 14-26

“Configure Support for Numeric Data” on page 14-26

“Configure Support for Time Values” on page 14-26

“Support for Non-inlined S-Functions” on page 14-27

“Configure Model Function Generation and Argument Passing” on page 14-27

“Set Up Support for Code Reuse” on page 14-29

“Configure a Code Replacement Library” on page 14-31

About Target Selection

The first step to configuring a model for code generation is to choose and configure a
code generation target. When you select a target, other model configuration parameters
change automatically to best serve requirements of the target. For example:

+ Code interface parameters

* Build process parameters, such as the template make file

* Target hardware parameters, such as word size and byte ordering

Use the Browse button on the Code Generation pane to open the System Target File

Browser (see “Select a Target”. The browser lets you select a preset target configuration
consisting of a system target file, template makefile, and make command.

If you select a target configuration by using the System Target File Browser, your
selection appears in the System target file field (target.tlc).

If you are using a target configuration that does not appear in the System Target File
Browser, enter the name of your system target file in the System target file field. Click
Apply or OK to configure for that target.

“Targets and Code Formats” describes the use of the browser and includes a complete list
of available target configurations.

Code Generation Targets

You also can select a system target file programmatically from MATLAB code, as
described in “Select a System Target File Programmatically”.

After selecting a system target, you can modify model configuration parameter settings.

If you want to switch between different targets in a single workflow for different code
generation purposes (for example, rapid prototyping versus product code deployment), set
up different configuration sets for the same model and switch the active configuration set
for the current operation. For more information on how to set up configuration sets and
change the active configuration set, see “Manage a Configuration Set”.

Select an ERT Target

The Browse button in the Target Selection subpane of the Code Generation >
General pane lets you select an ERT target with the System Target File Browser. See
“Targets and Code Formats” for a general discussion of target selection.

The code generator provides variants of the ERT target including the following:

+ Default ERT target

* ERT target for generating and building a Visual C++" Solution (.sIn) file for the
Visual C++ IDE

* ERT target for generating a Windows® or UNIX® host-based shared library

These targets are based on a common system target file, ert.tlc. They are displayed in
the System Target File Browser as shown in the figure below.

Systern Target File Browser: untitled @
System Target File: Description:
ert.tlc Embedded Coder -
ert.tlc Create Visual C/C++ Solution File for the Embedded Coder
ert_shrlib.tlec Embedded Coder (host-based shared library target
grt.tlc Generic Real-Time Target =
grt.tlc Create Visual C/C++ Solution File for the "grt"™ target
idelink ert.tlec IDE Link ERT
idelink grt.tlc IDE Link GRT
realtime.tlc Run on Target Hardware
rzim.tlc Rapid Simulation Target i
Full Name: C:\Program Files\MATLAB\R2013a\rtw'\c\ert\ert.tlc
Template Makefile: ert_default_tmf
Make Command: make_rtw

[0K] | Cancel | | Help Apply

14-25

14 Configuration

You can use the ert_shrlib.tlc target to generate a host-based shared library from
your Simulink model. Selecting this target allows you to generate a shared library
version of your model code for your host platform, either a Windows dynamic link library
(.dl1) file or a UNIX shared object (.so0) file. This feature can be used to package your
source code securely for easy distribution and shared use.

Customize an ERT Target

For information on customizing ERT targets, see “Target Development”.

Configure Support for Numeric Data

By default, ERT targets support code generation for integer, floating-point, nonfinite, and
complex numbers.

To Generate Code that Supports... |Do...

Integer data only Deselect Support floating-point numbers. If noninteger data

or expressions are encountered during code generation, an error
message reports the offending blocks and parameters.

Floating-point data Select Support floating-point numbers.

Nonfinite values (for example, |Select Support floating-point numbers and Support non-

NaN, Inf)

finite numbers .

Complex data Select Support complex numbers .

For more information, see “Code Generation Pane: Interface”.

Configure Support for Time Values

Certain blocks require the value of absolute time (that is, the time from the start of
program execution to the present time) , elapsed time (for example, the time elapsed
between two trigger events), or continuous time. Depending on the blocks used, you
might need to adjust the configuration settings for supported time values.

To...

Select...

Generate code that creates |Support absolute time. For further information on the allocation
and maintains integer and operation of absolute and elapsed timers, see “Absolute and
counters for blocks that use |Elapsed Time Computation” in the Simulink Coder documentation.

14-26

If you do not select this parameter and the model includes block that

Code Generation Targets

To... Select...

absolute or elapsed time use absolute or elapsed time values, the build process generates an

values (default) error.

Generate code for blocks Support continuous time. If you do not select this parameter

that rely on continuous time |and the model includes continuous-time blocks, the build process
generates an error.

For more information, see “Code Generation Pane: Interface”.

Support for Non-inlined S-Functions

To generate code for noninlined S-Functions in a model, select Support noninlined
S-functions. The generation of noninlined S-functions requires floating-point and
nonfinite numbers. Thus, when you select Support non-inlined S-functions, the ERT
target automatically selects Support floating-point numbers and Support non-
finite numbers.

When you select Support non-finite numbers, the build process generates an error
if the model includes a C MEX S-function that does not have a corresponding TLC
implementation (for inlining code generation).

Note that inlining S-functions is highly advantageous in production code generation, for
example in implementing device drivers. To enforce the use of inlined S-functions for
code generation, clear Support non-inlined S-functions.

When generating code for a model that contains non-inlined S-functions with an ERT
target and either of the following is true:

* On the Code Generation pane, Generate code only is cleared.

* On the Hardware Implementation pane, Test hardware is the same as
production hardware is cleared.

There might be a mismatch between the simulation and code generation results. To avoid
such a mismatch select Test hardware is the same as production hardware or
select Generate code only.

Configure Model Function Generation and Argument Passing

For ERT targets, you can configure how a model's functions are generated and how
arguments are passed to the functions.

14-27

14 Configuration

To...

Do...

Generate model function calls that are
compatible with the main program
module of the pre-R2012a GRT target
(grt_main.c or .cpp)

Select Classic call interface and MAT-file logging.
In addition, deselect Suppress error status in real-
time model data structure. Classic call interface
provides a quick way to use code generated in R2012a or
higher with a pre-R2012a GRT-based custom target by
generating wrapper function calls that interface to the
generated code.

Reduce overhead and use more local
variables by combining the output
and update functions in a single
model step function

Select Single output/update function

Errors or unexpected behavior can occur if a Model block
is part of a cycle and “Single output/update function” is
enabled (the default). See “Model Blocks and Direct Feed
through” for details.

Generate a model_ terminate
function for a model not designed to
run indefinitely

Select Terminate function required. For more
information, see the description of model terminate.

Generate reusable, reentrant code
from a model or subsystem

Select Generate reusable code. See “Set Up Support for
Code Reuse” on page 14-29 for details.

Statically allocate model data
structures and access them directly in
the model code

Deselect Generate reusable code. The generated code
is not reusable or reentrant. See “Entry-Point Functions
and Scheduling” for information on the calling interface
generated for model functions in this case.

Suppress the generation of an error
status field in the real-time model
data structure, rtModel, for example,
if you do not need to log or monitor
error messages

Select Suppress error status in real-time model data
structure. Selecting this parameter can also cause the
rtModel structure to be omitted completely from the
generated code.

When generating code for multiple integrated models, set
this parameter the same for all of the models. Otherwise,
the integrated application might exhibit unexpected
behavior. For example, if you select the option in one
model but not in another, the error status might not be
registered by the integrated application.

Do not select this parameter if you select the MAT-file
logging option. The two options are incompatible.

14-28

Code Generation Targets

To... Do...

Open the Model Step Functions dialog |Click Configure Step Function. Based on the Function
box preview and modify the model's specification value you select for your model step
model_step function prototype function (supported values include Default model-step
(see “Entry-Point Functions and function and Model specific C prototype), you
Scheduling”) can preview and modify the function prototype. Once you

validate and apply your changes, you can generate code
based on your function prototype modifications. For more
information about using the Configure Step Function
button and the Model Step Functions dialog box, see
“Function Prototype Control”.

For more information, see “Code Generation Pane: Interface”.

Set Up Support for Code Reuse

For ERT targets, you can configure how a model reuses code using the Generate
reusable code parameter.

Pass root-level I/O as provides options that control how model inputs and outputs at
the root level of the model are passed to the model step function.

To... Select...
Pass each root-level model input and output Generate reusable code and Pass root-level
argument to the model step function I/O as > Individual arguments.

individually (the default)

Pack root-level input arguments and root-level Generate reusable code and Pass root-level
output arguments into separate structures that |I/O as > Structure reference
are then passed to the model_step function

In some cases, selecting Generate reusable code can generate code that compiles

but is not reentrant. For example, if a signal, DWork structure, or parameter data has

a storage class other than Auto, global data structures are generated. To handle such
cases, use the Reusable code error diagnostic parameter to choose the severity levels
for diagnostics.

In some cases, the Embedded Coder software is unable to generate valid and compilable
code. For example, if the model contains one of the following, the code generated would be
invalid.

14-29

14 Configuration

+ An S-function that is not code-reuse compliant

* A subsystem triggered by a wide function call trigger
In these cases, the build terminates after reporting the problem.

For more information, see “Code Generation Pane: Interface”.

14-30

Code Generation Targets

Configure a Code Replacement Library

You can configure the code generator to change the code that it generations for functions
and operators such that the code meets application requirements. Configure the code
generator to apply a code replacement library (CRL) during code generation. If you

have an Embedded Coder license, you can develop and apply custom code replacement
libraries.

For more information about replacing code, using code replacement libraries that
MathWorks provides, see “What Is Code Replacement?” and “Code Replacement
Libraries”. For information about developing code replacement libraries, see “What Is
Code Replacement Customization?” in the Embedded Coder documentation.

14-31

14 Configuration

Configuration Variations

Every model contains one or more named configuration sets that specify model
parameters such as solver options, code generation options, and other choices. A model
can contain multiple configuration sets, but only one configuration set is active at a
time. For more information on configuration sets and how to view and edit them in the
Configuration Parameters dialog box, see “About Model Configurations”.

A configuration set includes options that specify code generation in general. For more
information, see “Configure a Model for Code Generation”. With Embedded Coder and
an ERT target more parameters are available for fine-tuning the generated code with
respect to customizing the appearance and optimizing the generated code.

Multiple configuration sets can be useful in embedded systems development. By defining
multiple configuration sets in a model, you can easily retarget code generation from

that model. For example, one configuration set might specify the default ERT target

with external mode support enabled for rapid prototyping, while another configuration
set might specify the ERT-based target for Visual C++ to generate production code for
deployment of the application. Activation of either configuration set fully reconfigures the
model for that type of code generation.

14-32

Wizard

Wizard

In this section...

“Configure and Optimize Model with Configuration Wizard Blocks” on page 14-33
“Add a Configuration Wizard Block” on page 14-34
“Use Configuration Wizard Blocks” on page 14-36

“Create a Custom Configuration Wizard Block” on page 14-36

Configure and Optimize Model with Configuration Wizard Blocks

The Embedded Coder software provides a library of Configuration Wizard blocks and
scripts to help you configure and optimize code generation from your models quickly and
easily.

The library provides a Configuration Wizard block you can customize, and four preset
Configuration Wizard blocks.

Block Description

Custom MATLAB file Automatically update active configuration
parameters of parent model using a custom
file

ERT (optimized for fixed-point) Automatically update active configuration

parameters of parent model for ERT fixed-
point code generation

ERT (optimized for floating-point) Automatically update active configuration
parameters of parent model for ERT
floating-point code generation

GRT (debug for fixed/floating-point) Automatically update active configuration
parameters of parent model for GRT fixed-
or floating-point code generation with
debugging enabled

GRT (optimized for fixed/floating-point) Automatically update active configuration
parameters of parent model for GRT fixed-
or floating-point code generation

14-33

14 Configuration

These are shown in the figure below.

Configure Model Caonfigure Model
{double-click to activate) {double-click to activate)
ERT {optimized for foeed-point) ERT {optimized for floating-point)
Caonfigure Model Caonfigure Model
{double-click to activate) {double-click to activate)
GRT {debug for feed'floating-point) GRT {optimized for fedfloating-point)
Caonfigure Maodel

{double-click to activate)

Custom MATLAB file

When you add one of the preset Configuration Wizard blocks to your model and double-
click it, a predefined MATLAB file script executes and configures parameters of the
model's active configuration set without manual intervention. The preset blocks configure
the options optimally for one of the following cases:

* Fixed-point code generation with the ERT target

+ Floating-point code generation with the ERT target

+ Fixed/floating-point code generation with TLC debugging options enabled, with the
GRT target.

+ Fixed/floating-point code generation with the GRT target

The Custom block is associated with an example MATLAB file script that you can adapt
to your requirements.

You can also set up the Configuration Wizard blocks to invoke the build process after
configuring the model.

Add a Configuration Wizard Block

This section describes how to add one of the preset Configuration Wizard blocks to a
model.

14-34

Wizard

The Configuration Wizard blocks are available in the Embedded Coder block library. To
use a Configuration Wizard block:

Open the model that you want to configure.
2 Open the Embedded Coder library by typing the command rtweclib.
The top level of the library is shown below.

Embedded Module
Targets Packaging
Configuration
Wizards S

4 Double-click the Configuration Wizards icon. The Configuration Wizards sublibrary
opens.

5 Select the Configuration Wizard block you want to use and drag and drop it into
your model. In the figure below, the ERT (optimized for Ffixed-point)
Configuration Wizard block has been added to the model.

INC ++_J sum_out 1 * 4 LM I

equal_to_count

| — =)
Ly

CT3—»in outp—»(1)
Input Cu tput
Amplifier

switch_out

s 1=

Configure Model
{double-click to activate)

ERT (opimized for fxed-point)
6 You can set up the Configuration Wizard block to invoke the build process after

executing its configuration script. If you do not want to use this feature, skip to the
next step.

14-35

14 Configuration

14-36

If you want the Configuration Wizard block to invoke the build process, right-

click on the Configuration Wizard block in your model, and select Mask > Mask
Parameters... from the context menu. Then, select the Invoke build process after
configuration parameter.

7 Click Apply, and close the Mask Parameters dialog box.

Note You should not change the Configure the model for option, unless you want

to create a custom block and script. In that case, see “Create a Custom Configuration
Wizard Block” on page 14-36.

8 Save the model.

9 You can now use the Configuration Wizard block to configure the model, as described
in the next section.

Use Configuration Wizard Blocks

Once you have added a Configuration Wizard block to your model, just double-click the
block. The script associated with the block automatically sets parameters of the active
configuration set that are relevant to code generation (including selection of the target).
You can verify that the options have changed by opening the Configuration Parameters
dialog box and examining the settings.

If the Invoke build process after configuration option for the block was selected, the
script also initiates the code generation and build process.

Note: You can add more than one Configuration Wizard block to your model. This
provides a quick way to switch between configurations.

Create a Custom Configuration Wizard Block

The Custom Configuration Wizard block is shipped with an associated MATLAB file
script, rtwsampleconfig.m. The script is located in the folder matlabroot/toolbox/
rtw/rtw.

Both the block and the script are intended to provide a starting point for customization.
This section describes:

Wizard

How to create a custom Configuration Wizard block linked to a custom script.

Operation of the example script, and programming conventions and requirements for
a customized script.

How to run a configuration script from the MATLAB command line (without a block).

Setting Up a Configuration Wizard Block

This section describes how to set up a custom Configuration Wizard block and link it to
a script. If you want to use the block in more than one mode, it is advisable to create a
Simulink library to contain the block.

To begin, make a copy of the example script for later customization:

1

5

Create a folder to store your custom script. This folder should not be anywhere inside
the MATLAB folder structure (that is, it should not be under matlabroot).

The discussion below refers to this folder as /Zmy wizards.
Add the folder to the MATLAB path. Save the path for future sessions.

Copy the example script (matlabroot/toolbox/rtw/rtw/rtwsampleconfig.m)
to the /Zmy_wizards folder you created in the previous steps. Then, rename the
script as desired. The discussion below uses the name my_configscript.m.

Open the example script into the MATLAB editor. Scroll to the end of the file and
enter the following line of code:

disp("Custom Configuration Wizard Script completed.");

This statement is used later as a test to verify that your custom block has executed
the script.

Save your script and close the MATLAB editor.

The next step is to create a Simulink library and add a custom block to it. Do this as
follows:

1

Open the Embedded Coder library and the Configuration Wizards sublibrary, as
described in “Add a Configuration Wizard Block” on page 14-34.

Select New > Library from the File menu of the Configuration Wizards sublibrary
window. An empty library window opens.

Select the Custom MATLAB file block from the Configuration Wizards sublibrary
and drag and drop it into the empty library window.

14-37

14 Configuration

To distinguish your custom block from the original, edit the Custom MATLAB file
label under the block as desired.

Select Save as from the File menu of the new library window; save the library to
the /my_wizards folder, under your library name of choice. In the figure below,
the library has been saved as ex_custom_button, and the block has been labeled
my_wizard MATLAB-Tile.

Configure Model
{double-click to activate)

my_w izard MATLAE file

The next step is to link the custom block to the custom script:

1

14-38

Right-click on the block in your model, and select Mask > Mask Parameters from
the context menu. Notice that the Configure the model for menu is set to Custom.
When Custom is selected, the Configuration function edit field is enabled, so that
you can enter the name of a custom script.

Enter the name of your custom script into the Configuration function field. (Do
not enter the .m filename extension, which is implicit.) In the figure below, the script
name my_configscript has been entered into the Configuration function field.
This establishes the linkage between the block and script.

EBlock Parameters: my_wizard M-file x|

—ModelConfiguration'wizard [mask] [link]

Automatically update the active configuration parameters of the parent model uzing a
predefined or cugtom M-file. Double-clicking the block invokes the configuration and
optionally builds the model.

=
F

Configure the model for: | Custom LI

Configuration function:

Imy_configsc:ript

[Invoke build process after configuration

Ok I Lancel | Help | Apply |

Note that by default, the Invoke build process after configuration option is
deselected. You can change the default for your custom block by selecting this option.
For now, leave this option deselected.

Click Apply and close the Mask Parameters dialog box.
Save the library.

Wizard

6

Close the Embedded Coder library and the Configuration Wizards sublibrary. Leave
your custom library open for use in the next step.

Now, test your block and script in a model. Do this as follows:

1

Open the vdp model by typing the command:

vdp

Open the Configuration Parameters dialog box and view the options by clicking on
Code Generation in the list in the left pane of the dialog box.

Observe that vdp is configured, by default, for the GRT target. Close the
Configuration Parameters dialog box.

Select your custom block from your custom library. Drag and drop the block into the
vdp model.

In the vdp model, double-click your custom block.
In the MATLAB window, you should see the test message you previously added to
your script:

Custom Configuration Wizard Script completed.

This indicates that the custom block executed the script.

Reopen the Configuration Parameters dialog box and view the Code Generation
pane again. You should now see that the model is configured for the ERT target.

Before applying further edits to your custom script, proceed to the next section to learn
about the operation and conventions of Configuration Wizard scripts.

14-39

14 Configuration

14-40

Create a Configuration Wizard Script

You should create your custom Configuration Wizard script by copying and modifying the
example script, rtwsampleconfig.m. This section provides guidelines for modification.

The Configuration Function

The example script implements a single function without a return value. The function
takes a single argument cs:

function rtwsampleconfig(cs)

The argument cs is a handle to a proprietary object that contains information about the
model's active configuration set. The Simulink software obtains this handle and passes
it in to the configuration function when the user double-clicks a Configuration Wizard
block.

Your custom script should conform to this prototype. Your code should use cs as a “black
box” object that transmits information to and from the active configuration set, using the
accessor functions described below.

Access Configuration Set Parameters

To set parameters or obtain parameter values, use the Simulink set_param and
get_param functions.

Option names are passed in to set_param and get_param as strings specifying an
internal option name. The internal option name may not correspond to the option
label on the GUI (for example, the Configuration Parameters dialog box). The example
configuration accompanies each set_param and get_param call with a comment that
correlates internal option names to GUI option labels. For example:

set_param(cs, "LifeSpan®,"1"); % Application lifespan (days)

To obtain the current setting of an option in the active configuration set, call get_param.
Pass in the cs object as the first argument, followed by the internal option name. For
example, the following code excerpt tests the setting of the Create code generation
report option:

if strcmp(get_param(cs, "GenerateReport®), "on")

To set an option in the active configuration set, call set_param. Pass in the cs object
as the first argument, followed by one or more parameter/value pairs that specify the

Wizard

internal option name and its value. For example, the following code excerpt turns off the
Support absolute time option:

set_param(cs, "SupportAbsoluteTime®, "off");

Select a Target

A Configuration Wizard script must select a target configuration. The example script
uses the ERT target as a default. The script first stores string variables that correspond
to the required System target file, Template makefile, and Make command
settings:

stf = "ert._tic";
tmf = "ert_default_tmf";
mc = "make_rtw";

The system target file is selected by passing the cs object and the stf string to the
switchTarget function:

switchTarget(cs,stf,[]1);

The template makefile and make command options are set by set_param calls:

set_param(cs, "TemplateMakefile" ,tmf);
set_param(cs, "MakeCommand® ,mc) ;

To select a target, your custom script needs only to set up the string variables stf, tmF,
and mc and pass them to the calls, as above.

Obtain Target and Configuration Set Information

The following utility functions and properties are provided so that your code can obtain
information about the current target and configuration set, with the cs object:

+ isValidParam(cs, "option®): The option argument is an internal option name.
isVal idParam returns true if option is a valid option in the context of the active
configuration set.

+ getPropEnabled(cs, "option®): The option argument is an internal option
name. Returns true if this option is enabled (that is, writable).

+ IsERTTarget property: Your code can detect whether or not the currently selected
target is derived from the ERT target is selected by checking the ISERTTarget
property, as follows:

iSERT = strcmp(get_param(cs, "IseERTTarget"),"on");

14-41

14 Configuration

14-42

This information can be used to determine whether or not the script should configure
ERT-specific options, for example:

if isERT
set_param(cs, "ZeroExternalMemoryAtStartup”, "off");
set_param(cs, "ZerolnternalMemoryAtStartup”, "off");
set_param(cs, "InitFltsAndDblsToZero", "off");
set_param(cs, " InlinedParameterPlacement”, ...
"NonHierarchical®);
set_param(cs, "NoFixptDivByZeroProtection®","on")
end

Invoke a Configuration Wizard Script from the MATLAB Command Prompt

Configuration Wizard scripts can be run from the MATLAB command prompt. (The
Configuration Wizard blocks are provided as a graphical convenience, but are not
essential.)

Before invoking the script, you must open a model and instantiate a cs object to pass in
as an argument to the script. After running the script, you can invoke the build process
with the rtwbui ld command. The following example opens, configures, and builds a
model.

open my_model;

cs = getActiveConfigSet ("my_model®);
rtwsampleconfig(cs);

rtwbui ld("my_model ") ;

Code Appearance

+ “Add Custom Comments to Generated Code” on page 15-3

* “Add Custom Comments for Signal or Parameter Identifiers” on page 15-5
+ “Add Global Comments” on page 15-7

+ “Specify Comment Style” on page 15-13

+ “Customize Generated Identifier Naming Rules” on page 15-14

+ “Identifier Format Control” on page 15-19

+ “Control Name Mangling in Generated Identifiers” on page 15-22

+ “Avoid Identifier Name Collisions with Referenced Models” on page 15-24
+ “Maintain Traceability for Generated Identifiers” on page 15-26

+ “Exceptions to Identifier Formatting Conventions” on page 15-27

+ “Identifier Format Control Parameters Limitations” on page 15-28

* “Control Code Style” on page 15-30

* “Customize Code Organization and Format” on page 15-38

+ “Specify Templates For Code Generation” on page 15-40

* “Code Generation Template (CGT) Files” on page 15-41

* “Custom File Processing (CFP) Templates” on page 15-45

+ “Change the Organization of a Generated File” on page 15-47

+ “Generate Source and Header Files with a Custom File Processing (CFP) Template”
on page 15-50

+ “Comparison of a Template and Its Generated File” on page 15-58
+ “Code Template API Summary” on page 15-62

* “Generate Custom File and Function Banners” on page 15-65

* “Template Symbols and Rules” on page 15-74

* “Code Annotation for Justifying Polyspace Checks” on page 15-82

+ “Manage Placement of Data Definitions and Declarations” on page 15-84

15 code Appearance

+ “Specify Delimiter for #Includes” on page 15-110
+ “Enhance Readability of Code for Flow Charts” on page 15-111

15-2

Add Custom Comments to Generated Code

Add Custom Comments to Generated Code

You can include auto-generated comments in the generated code as described in
“Configure Code Comments”. For ERT targets, include additional custom comments by
setting parameters on the Code Generation > Comments pane in the Configuration
Parameters dialog box. With these parameters, you can enable or suppress generation of
descriptive information in comments for blocks and other model elements.

Goal

Specify

Include the text specified in the Description
field of a block's Block Properties dialog box as
comments in the code generated for each block.

Simulink block descriptions

Add a comment that includes the block name at
the start of the code for each block.

Simulink block descriptions

Include the text specified in the Description
field of a Simulink data object (such as a signal,
parameter, data type, or bus) in the Simulink
Model Explorer as comments in the code
generated for each object.

Simulink data object descriptions

Include comments just above signals and
parameter identifiers in the generated code as
specified in the MATLAB or TLC function.

Custom comments (MPT objects only)

Include the text specified in the Description
field in the Properties dialog box for a Stateflow
object as comments just above the code
generated for each object.

Stateflow object descriptions

Include requirements assigned to Simulink
blocks in the generated code comments (for more
information, see “Generate Code for Models with
Requirements Links”).

Requirements in block comments

When you select Simulink block descriptions:

* The description text for blocks and Stateflow objects and block names generated
as comments can include international (non-US-ASCII) characters. For details on
international character support, see “International Character Support”.

15-3

15 code Appearance

* The code generation software automatically inserts comments into the generated
code for custom blocks. Therefore, you do not need to include block comments in the
associated TLC file for a custom block.

Note: If you have existing TLC files with manually inserted comments for block
descriptions, the code generation process emits these comments instead of the
automatically generated comments. Consider removing existing block comments
from your TLC files. Manually inserted comments might be poorly formatted in the
generated code and code-to-model traceability might not work.

* For virtual blocks or blocks that have been removed due to block reduction, comments
are not generated.

For more information, see “Code Generation Pane: Comments”.

15-4

Add Custom Comments for Signal or Parameter Identifiers

Add Custom Comments for Signal or Parameter Identifiers

This example shows you how to add a comment just above a signal or parameter
identifier in the generated code. Do the following:

1 Write a MATLAB or TLC function and save itin a .mor .tlc file

2 In the Configuration Parameters dialog box, on the Code Generation > Comments
pane, select the Custom comments (MPT objects only) check box.

3 In the Custom comments function field, select the .m or .tlc file.

You can include some or all of the property values for the data object. Each Simulink
signal or parameter data object has properties, as described in “Parameter and Signal
Property Values”. This example comment contains some of the property values for the
data object MAP as specified on the Model Explorer:

/* DocUnits: PSI */
/* Owner: */
/* DefinitionFile: specialDef */

real _T MAP = 0.0;

You can type text in the Description field in the Model Explorer for a signal or
parameter data object. If you select the Simulink data object descriptions check
box on the Comments pane in the Configuration Parameters dialog box, this text
appears beside the signal or parameter identifier in the generated code as a comment.
For example, typing Manifold Absolute Pressure in the Description field for the
data object MAP results in the following in the generated code:

real_T MAP = 0.0; /* Manifold Absolute Pressure */
To add a comment just above a signal or parameter identifier in the generated code:

1 The signal or parameter MPT object must use a custom storage class. Open the MPT
object properties dialog box and confirm that the Storage class is a custom storage
class ((Custom) suffixed to its name). The default storage class for an MPT object is
Global (Custom).

2 Write a MATLAB or TLC function that places comments in the generated files. An
example .m file named rtwdemo_comments_mptfun.mis provided in the matlab/
toolbox/rtw/rtwdemos folder.

The MATLAB function must have three arguments that correspond to objectName,
mode IName, and request, respectively. The TLC function must have three

15-5

15 code Appearance

15-6

arguments that correspond to ob jectName, mode IName, and request, respectively.
For the TLC file, you can use the library function LibGetSLDataObjectinfo to get
every property value of the data object.

Save the function as a .m file or a . tlc file and place it in a folder in the MATLAB
path.

Open the model and the Configuration Parameters dialog box.
On the left pane, under Code Generation, click Comments.

In the Comments pane, on the right, select the Custom comments (MPT objects
only) check box.

In the Custom comments function field, type the file name of the .m file or . tlc
file that you created.

Click Apply.
Click Generate Code.

Open the generated files and inspect their content to verify that the comments are
what you want.

Add Global Comments

Add Global Comments

In this section...
“Use a Simulink DocBlock to Add a Comment” on page 15-7

“Use a Simulink Annotation to Add a Comment” on page 15-10
“Use a Stateflow Note to Add a Comment” on page 15-10
“Use Sorted Notes to Add Comments” on page 15-11

The following examples show how to add a global comment to a Simulink model so

that the comment text appears in the generated file or files where you want. Specify a
template symbol name with a Simulink DocBlock, a Simulink annotation, or a Stateflow
note. You can also use a sorted-notes capability that works with Simulink annotations or
Stateflow notes (but not DocBlocks). For more information about template symbols, see
“Template Symbols and Rules” on page 15-74.

Note Template symbol names Description and ModifiedHistory also are fields

in the Model Properties dialog box. If you use one of these symbol names for global
comment text, and its Model Properties field also has text in it, both names appear in the
generated files.

Use a Simulink DocBlock to Add a Comment

1 With the model open, from the View menu, select Library Browser.

2 Drag the DocBlock from Model-Wide Utilities in the Simulink library into the
model.

3 Double-click the DocBlock and type the comment that you want in the editor. Save
and close the editor.

4 Right-click the DocBlock and select Mask > Mask Parameters.
5 Inthe Code generation template symbol box, type one of the following:

Abstract

+ Description

+ History
ModifiedHistory

15-7

15 code Appearance

+ Notes
Click OK. Template symbol names are case sensitive.
If you are using a DocBlock to add comments to your code, set the Document type

to Text. If you set Document type to RTF or HTML, your comments will not appear
in the code.

o)

E Block Parameters: DocBlock @
DocBlock (mask) (link)

Use this block to save long descriptive text with the model. Double-
clicking the block will open an editor.

Parameters

Code generation template symbol

Abstract

Document type |Text A

[Ok H Cancel H Help Apply

6 In the Block Properties dialog box, on the Block Annotation tab, select
%<ECoderFlag> and click OK. The symbol name that you typed in the previous step
now appears under the DocBlock in the model.

15-8

Add Global Comments

B Block Properties: (link)DocBlock o @ [

General || Block Annotation || callbacks

Usage

Text that appears below the block’s label. Enter the text in the annotation
field. The text may include any of the block property tokens in the Block
property tokens list. Simulink replaces each token with the value of the
corresponding property in the generated annotation. Click the == button to
enter the selected token in the annotation field. Text can be edited on the
right side edit field. See example syntax on the bottom.

Block property tokens: Enter text and tokens for annotation:

SheActveVariant= st<ECoderFlag= ~
W=AncestorBlock=
Ye=BackgroundColor=| =
Y<BlockChoice=
=BlockDescription=
Yo=BlockType=
Ye=Capabilities=
Y=CheckFenCallnplns
<DataTypeOverride
Ye=Description=
Ye=Diagnostics=
Y=DocumentType=
Y=DropShadow= -
%<FrrnrFrn= h Example syntax:

ER ™ 3 Name=%<=Name>

[Ok] [Cancel] [Help] [Apphy]

Save the model. After you generate code, the code generator places the comment in
each generated file whose template has the symbol name that you typed. The code
generator places the comment in the generated file at the location that corresponds
to where the symbol name is located in the template file.

To add more comments to the generated files, repeat steps 1-7.

15-9

15 code Appearance

15-10

Use a Simulink Annotation to Add a Comment

1

4

Double-click the unoccupied area on the model where you want to place the
comment. See “Annotations”.

Type <S:Symbol_name> followed by the comment. Symbol _name is one of the
following:

+ Abstract
Description
* History

* ModifiedHistory
Notes

For example, type <S:Description>This is the description I want.
Template symbol names are case sensitive. (The "'S" before the colon indicates
"symbol.") If you want the code generator to sort multiple comments for the Notes
symbol name, replace the next step with “Use Sorted Notes to Add Comments” on
page 15-11.

Click outside the rectangle and save the model. After you generate code, the code
generator places the comment in each generated file whose template has the symbol
name that you typed. The code generator places the comment in the generated file
at the location that corresponds to where the symbol name is located in the template
file. If you want the code generator to sort multiple comments for the Notes symbol
name, replace the next step with “Use Sorted Notes to Add Comments” on page
15-11.

To add one or more other comments to the generated files, repeat steps 1-3.

Use a Stateflow Note to Add a Comment

1

Right-click the unoccupied area on the Stateflow chart where you want to place the
comment.

Select the annotation icon from the palette.

Type <S:Symbol_name> followed by the comment. Symbol_name is one of the
following:

+ Abstract

+ Description

Add Global Comments

+ History
ModifiedHistory
* Notes

For example, type <S:Description>This is the description I want.
Template symbol names are case sensitive. If you want the code generator to sort
multiple comments for the Notes symbol name, replace the next step with “Use
Sorted Notes to Add Comments” on page 15-11.

4 Click outside the note and save the model. After you generate code, the code
generator places the comment in each generated file whose template has the symbol
name that you typed. The code generator places the comment in the generated file
at the location that corresponds to where the symbol name is located in the template
file.

5 To add one or more other comments to the generated files, repeat steps 1-4.

Use Sorted Notes to Add Comments

The sorted-notes capability allows you to add automatically sorted comments to the
generated files. The code generator places these comments in each generated file at the
location that corresponds to where the Notes symbol is located in the template file.

The code generator uses the following sorting order:

* Numbers before letters.
* Among numbers, O is first.

+ Among letters, uppercase are before lowercase.

You can use sorted notes with a Simulink annotation or a Stateflow note, but not with a
DocBlock.

* In the Simulink annotation or the Stateflow note, type <S:NoteY> followed by the
first comment. Y is a number or a letter.

* Repeat for as many additional comments you want. Replace Y with a subsequent
number or letter.

The figure illustrates sorted notes on a model, and where the code generator places each
note in a generated file.

15-11

15 code Appearance

15-12

@
+_ 4 sum_out
k.

vy

LinMIT i

=5:Moteb>=This is the third comment

|

switch_out

M=

<5:Mote2=This is the second comment | want under Notes.

A—

In put

—()

Output

Amplifier

<5;Moted1=This i the first comment | want
associsted with the Motes symbol

The relevant fragment from the generated file for this model is:

** NOTES

** Notel: This is the first comment I want

associated with the Notes symbol.

Note2: This is the second comment I want under Notes.

Noteb: This is the third comment.

**x

Specify Comment Style

Specify Comment Style

For ERT-based models, the comment style used in generated code is determined by the
programming language selected for the model:
* Ccode uses /7*. . .*/ notation for both single-line and multiple-line comments.

* C++code uses // . . . notation and contains only single-line comments.
If you have an Embedded Coder license, you can modify the comment style for generated

code using the command-line parameter CommentStyle. The parameter takes the
following values:

Valve Description
Auto (default) For C, generate single or multiple-line comments delimited by /*
and */.
For C++, generate single-line comments preceded by /7.
Multi-line Generate single or multiple-line comments delimited by /* and */.
Single-line Generate single-line comments preceded by /7.

For example, the following command sets the comment style to single-line comments:

>> set_param("rtwdemo_counter”, "CommentStyle”, "Single-line")

Here is an example of code generated using the single-line comment style:
// Sum: "<Root>/Sum” incorporates:

// Constant: "<Root>/INC*

// UnitDelay: "<Root>/X"

rtb_sum_out = (Uint8_T)(1U + rtwdemo_counter_DW.X);

Note: For C code generation, select Single-line only if your compiler supports it

15-13

15 code Appearance

Customize Generated Identifier Naming Rules

In this section...

“Apply Naming Rules to Identifiers Globally” on page 15-14
“Apply Naming Rules to Simulink Data Objects” on page 15-15

For GRT and RSim targets, the code generator constructs identifiers for variables and
functions in the generated code. For ERT targets, you can customize the naming of
identifiers in the generated code by specifying parameters on the Code Generation
> Symbols pane in the Configuration Parameters dialog box. You can also specify
parameters that control identifiers generated from Simulink data objects. For detailed
information about these parameters, see “Code Generation Pane: Symbols”.

Apply Naming Rules to Identifiers Globally

Goadl

Specify

Set the maximum number of characters that the
code generator uses for function, typedef, and
variable names (default 31) .

An integer value for the “Maximum identifier
length” parameter. For more information, see
“Specify Identifier Length to Avoid Naming
Collisions”. If you expect your model to generate
lengthy identifiers (due to use of long signal or
parameter names, for example), or if identifiers
are mangled more than you expect, increase the
value of this parameter.

Define a macro string that specifies certain
substrings included within generated identifiers
for:

* Global variables

* Global types
Field names of global types

* Subsystem methods

* Subsystem method arguments
Local temporary variables

+ Local block output variables

+ Constant macros

15-14

A macro string for the Identifier format
control parameters. For more information, see
“Identifier Format Control” on page 15-19.

See also “Exceptions to Identifier Formatting
Conventions” on page 15-27 and “Identifier
Format Control Parameters Limitations” on
page 15-28.

Customize Generated Identifier Naming Rules

Goal

Specify

Shared utilities

Set the minimum number of characters that the
code generator uses for the mangling string.

An integer value for the “Minimum mangle
length” parameter. For more information,
see “Control Name Mangling in Generated
Identifiers” on page 15-22

Control whether the software uses shortened
names for system-generated identifiers.

Shortened for the “System-generated
identifiers” parameter. This setting:
* Provides more space for user names.

* Provides a more predictable and consistent
naming system that uses camel case.

* Does not include underscores or plurals.

+ Provides consistent abbreviations for both a
type and a variable.

Control whether the generated code expresses
scalar inlined parameter values as literal values
or as macros.

The value Literals or Macros for the
“Generate scalar inlined parameter as”
parameter.

+ Literals: If you select Inline parameters,
parameters are expressed as numeric
constants.

+ Macros: Parameters are expressed as
variables (with #define macros). This
setting makes code more readable.

Apply Naming Rules to Simulink Data Objects

When your model uses Simulink data objects from the Simul ink package,
identifiers in generated code copy the names of the objects by default. For example, a
Simulink.Signal object named Speed appears as the identifier Speed in generated

code.

You can control these identifiers by specifying naming rules that are specific to
Simulink data objects. On the Code Generation > Symbols pane of the Configuration
Parameters dialog box, adjust the settings in the Simulink data object naming rules

section .

15-15

15 code Appearance

15-16

When you specify naming rules for generated code, follow ANSI C?*/C++ rules for naming
identifiers.

Specify Naming Rule Using a Function

This example shows how to customize identifiers in generated code by defining a
MATLAB function.

1

Write a MATLAB function that returns an identifier by modifying a data object
name, and save the function in your working folder. For example, the following
function returns an identifier name by appending the string param to a data object
name.

function revisedName = append_string(name, object)
% APPEND_STRING: Returns an identifier for generated
% code by appending a string to a data object name.

% Input arguments:
% name: data object name as spelled in model
% object: target data object

% Output arguments:
% revisedName: altered identifier returned for use in
% generated code.

string = "_param”;

revisedName = [name,string];
Open the model rtwdemo_namerules.

Double-click the yellow box labeled View Symbols Configuration to open the
Code Generation > Symbols pane in the Configuration Parameters dialog box.

From the Parameter naming drop-down list, select Custom M-function.

ANSI is a registered trademark of the American National Standards Institute, Inc.

Customize Generated Identifier Naming Rules

Simulink data object naming rules

Signal naming: IForce lower case

Farameter naming: ICustom M-function

M-function: Edit

#define naming: IForce lower case

5 In the M-function field, type the name of the file that defines the MATLAB
function, append_string.m.

6 Click Apply.
7 Generate code for the model.

8 Inspect the code generation report to confirm the parameter object naming rule.
For example, the generated file rtwdemo_namerules.h represents the parameter
objects G1, G2, and G3 with the variables G1_param, G2_param, and G3_param.

Specify Naming Rule for Storage Class Define

You can specify a naming rule that applies only to Simulink data objects whose storage
class you set to Define. For these data objects, the specified naming rule overrides the
other parameter and signal object naming rules. On the Code Generation > Symbols
pane in the Configuration Parameters dialog box, adjust the #define naming setting.

Override Data Object Naming Rules
This example shows how to override a data object naming rule for a single data object.

You can override data object naming rules by specifying the Al ias property of an
individual Simulink data object. Generated code uses the string that you specify as the
identifier to represent the data object, regardless of naming rules.

Open the model rtwdemo_namerules.
2 Open Model Explorer and navigate to the base workspace.

3 Click the parameter object G1 and specify the Al ias property as mySpecialParam.
Click Apply.

15-17

15 code Appearance

= ™
Model Explarer [E=REE]
File Edit View Tools Add Help
O 4R EHNES &
Search: for variable Usage ~ \Variable defined in: base workspace w Name: Search referenced models: yes = Update diagram: yes @{. Search
Model Hierarchy = Contents of: Base Workspace (only) Filter Contents Simulink.Parameter: G1
4 Simulink Root _ .
ﬁé"“ﬁ:ﬁ :rormm Column View: Show Details llobiectls) e Ak 3
> L& rtwdemo_nameruies Name Vslue DatsType Min Max Dimensions StorageClass — Complexity Initialvslig — Date fype: auto h
A auto mon ExportedGlobal auto Dimensions: [[11] Complexity: | real
B auto nmn ExportedGlobal auto
C auto nmn -1 ExportedGlobal auto b (1 R {1
L auto o - ExportsdGlobal auto Units:
[Final auto non - ExportedGlobal auto
Code generation options
JF1 2 auo o ExportedGlobal
G1 3 auto 1 n ExportedGlobal Storage dass: |ExportedGlobal -
G2 4 to ExportedGlobal
au SR portedGloba Alias: mySpedalParam
l63 5 auo o ExportedGlobal
Ki [auto o Define (Custom) Alignment: -1
Ds auto nmn -1 ExportedGlobal auto
Description:
4 o L Revert | [rep | [apply |
Contents [Search Results

4 Generate code for the model.

5 In the code generation report, confirm the alias for the parameter object G1.
The generated file rtwdemo_namerules.h represents G1 with the variable
mySpecialParam.

15-18

Identifier Format Control

Identifier Format Control

You can customize generated identifiers by specifying the Identifier format control
parameters on the Code Generation > Symbols pane in the Configuration Parameters
dialog box. For each parameter, you can enter a macro string that specifies whether, and
in what order, certain substrings are included within generated identifiers. For example,
you can specify that the root model name be inserted into each identifier using the $R
token.

The macro string can include:

+ Valid tokens, which are listed in Identifier Format Tokens. You can use or omit
tokens depending on what you want to include in the identifier name. The Shared
utilities parameter requires you to specify the checksum string token, $C . The
other parameters require the mangling string token, $M. For more information, see
“Control Name Mangling in Generated Identifiers” on page 15-22. The mangling
string token is subject to the use and ordering restrictions noted in Identifier Format
Control Parameter Values.

+ Valid C or C++ language identifier characters (a-z, A-Z, _ , 0-9).

The build process generates each identifier by expanding tokens and inserting the
resultant strings into the identifier. The tokens are expanded in the order listed in
Identifier Format Tokens. Character strings are inserted in the positions that you specify
around tokens directly into the identifier. Contiguous token expansions are separated by
the underscore () character.

Identifier Format Tokens

Token Description

$M This token is required. If necessary, the code generator inserts a name
mangling string to avoid naming collisions. The position of the $M token
in the Identifier format control parameter specification determines
the position of the name mangling string in the generated identifier. For
example, if you use the specification $RENSM, the name mangling string is
appended (if required) to the end of the identifier. For more information,
see “Control Name Mangling in Generated Identifiers” on page 15-22

$F Insert method name (for example, Update for update method). This
token is available only for subsystem methods.

15-19

15 code Appearance

Token Description

$N Insert name of object (block, signal or signal object, state, parameter,
shared utility function or parameter object) for which identifier is being
generated.

$R Insert root model name into identifier, replacing unsupported characters

with the underscore () character. When you use referenced models, this
token is required in addition to $M (see “Avoid Identifier Name Collisions
with Referenced Models” on page 15-24).

Note: This token replaces the Prefix model name to global identifiers
option in previous releases.

$H Insert tag indicating system hierarchy level. For root-level blocks, the tag
is the string root_. For blocks at the subsystem level, the tag is of the
form sN_. N is a unique system number assigned by the Simulink software.
This token is available only for subsystem methods and field names of
global types.

Note: This token replaces the Include System Hierarchy Number in
Identifiers option in previous releases.

$A Insert data type acronym (for example, 132 for integers) to signal and
work vector identifiers. This token is available for local block output
variables, local temporary variables, and field names of global types.

Note: This token replaces the Include data type acronym in identifier
option in previous releases.

$1 Insert u if the argument is an input or y if the argument is an output. (For
example, rtu_ for an input argument and rty_ for an output argument).
This token is available only for subsystem method arguments.

$C This token is required for Shared utilities. If the identifier exceeds the
Maximum identifier length, the code generator inserts an 8-character
checksum to avoid naming collisions. The position of the $C token in

the Identifier format control parameter specification determines the
position of the checksum in the generated identifier. For example, if you
use the specification NSC, the checksum is appended to the end of the
identifier. This token is available only for shared utilities.

Identifier Format Control Parameter Values lists the default macro string, the supported
tokens, and the applicable restrictions for each Identifier format control parameter.

15-20

Identifier Format Control

Identifier Format Control Parameter Values

Parameter Default Value |Supported Restrictions

Tokens
Global variables rtSNSm $R, N, $M $F, $H, $A, and $1 are not allowed.
Global types SNSRSM_T |$N, $R, $M $F, $H, $A, and $1 are not allowed.
Field name of SNSM $N, $M, $H, $A [$R, $F, and $1 are not allowed.
global types
Subsystem SFENSM $R, $N, $M, $F and $H are empty for Stateflow
methods $F, $H functions; $A and $1 are not

allowed.

Subsystem method |rt$I1SN$SM | SN, $M, $1 $R, $F, $H, and $A are not allowed.
arguments

Local temporary |NM $N, $M, SR, $A |$F, $H, and $1 are not allowed.
variables

Local block output [rtb_NM |$N, $M, $A $R, $F, $H, and $1 are not allowed.
variables

Constant macros |$RINSM $R, $N, $M $F, $H, $A, and $1 are not allowed.

Shared utilities NSC $N, $C $C is required. $M, $R, $F, $H, $A |
and $1 are not allowed.

Non-ERT-based targets (such as the GRT target) implicitly use a default SRENSM
specification. This default specification consists of the root model name, followed by the
name of the generating object (signal, parameter, state, and so on), followed by a name
mangling string.

For limitations that apply to Identifier format control parameters, see “Exceptions
to Identifier Formatting Conventions” on page 15-27 and “Identifier Format Control
Parameters Limitations” on page 15-28.

15-21

15 code Appearance

Control Name Mangling in Generated Identifiers

15-22

The position of the $M token in the Identifier format control parameter specification
determines the position of the name mangling string in the generated identifiers. For
example, if you use the specification $RENS$M, the name mangling string is appended
(if required) to the end of the identifier. For more information, see “Identifier Format
Control” on page 15-19.

Name Mangling String Per Object

Object Type Source of Mangling String

Block diagram Name of block diagram

Simulink block “Simulink Identifier” (SID)

Simulink parameter |Full name of parameter owner (model or block) and parameter
name

Simulink signal Signal name, full name of source block, and port number

Stateflow objects Complete path to Stateflow block and Stateflow computed name

(unique within chart)

The length of the name mangling string is specified by the Minimum mangle length
parameter. The default value is 1, but this automatically increases during code
generation as a function of the number of collisions. To minimize disturbance to the
generated code during development, specify a larger Minimum mangle length. A
Minimum mangle length of 4 is a conservative value. A value of 4 allows for over 1.5
million collisions for a particular identifier before the mangle length is increased.

Minimize Name Mangling

The length of generated identifiers is limited by the Maximum identifier length
parameter. When a name collision exists, the $M token is expanded to the minimum
number of characters required to avoid the collision. Other tokens and character
strings are expanded in the order listed in Identifier Format Tokens. If the Maximum
identifier length is not large enough to accommodate full expansions of the other
tokens, partial expansions are used. To avoid partial expansions, it is good practice to:

Avoid name collisions. One way to avoid name collisions is to not use default block

names (for example, Gainl, Gain2. . .) when there are many blocks of the same type
in the model.

Control Name Mangling in Generated Identifiers

Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers that you expect to generate.

Set the Maximum identifier length parameter to reserve at least three characters
for the name mangling string. The length of the name mangling string increases as
the number of name collisions increases.

If changes to the model create more or fewer collisions, an existing name mangling
string increases or decreases in length. If the length of the name mangling string
increases, additional characters are appended to the existing string. For example,
the mangling string "Xyz" can change to "XyzQ". For fewer collisions, the name
mangling string "Xyz" changes to "xy".

15-23

15 code Appearance

Avoid Identifier Name Collisions with Referenced Models

15-24

Within a model that uses referenced models, collisions between the names of the models
are not allowed. When generating code from a model that uses model referencing:

* You must include the $R token in the Identifier format control parameter
specifications (in addition to the $M token).

* The Maximum identifier length must be large enough to accommodate full
expansions of the $R and $M tokens. If Maximum identifier length is too small, a
code generation error occurs.

When a name conflict occurs between an identifier within the scope of a higher-level
model and an identifier within the scope of a referenced model, the identifier from the
referenced model is preserved. Name mangling is performed on the identifier from the
higher-level model.

If your model contains two referenced models with the same input or output port
names, and one of the referenced models contains an atomic subsystem with “Function
packaging” set to Nonreuseable function, a name conflict can occur and the build
process produces an error.

Use Model Advisor to Detect Identifier Names Changed During Code
Generation

For a referenced model, if the following Configuration Parameters > Code
Generation > Symbols parameters have settings that do not contain a $R token (which
represents the name of the reference model), code generation prepends the $R token to
the identifier format.

* Global variables

* Global types

* Subsystem methods

+ Constant macros

You can use the Model Advisor to identify referenced models in a model referencing
hierarchy for which code generation changes these configuration parameter settings.

1 In the Simulink Editor, select Analysis > Model Advisor.
2 Select By Task.

Avoid Identifier Name Collisions with Referenced Models

3 Run the Check code generation identifier formats used for model reference
check.

15-25

15 code Appearance

Maintain Traceability for Generated Identifiers

15-26

To verify your model, you can trace back and forth between generated identifiers and
corresponding entities within the model. To maintain traceability, it is important that
incremental revisions to a model have minimal impact on the identifier names that
appear in generated code. There are two ways to minimally impact the identifier names:

* Choose unique names for Simulink objects (blocks, signals, states, and so on) as much
as possible.

+ Use name mangling when conflicts cannot be avoided.

The position of the name mangling string is specified by the placement of the $M token in
the Identifier format control parameters. Mangle characters consist of alphanumeric
characters that are unique to each object. For more information, see “Control Name
Mangling in Generated Identifiers” on page 15-22.

Exceptions to Identifier Formatting Conventions

Exceptions to Identifier Formatting Conventions

There are some exceptions to the identifier formatting conventions described in
“Identifier Format Control” on page 15-19.

Type name generation: name mangling conventions do not apply to type names (that
is, typedef statements) generated for global data types. If the $R token is included in
the Identifier format control parameter specification, the model name is included
in the typedef. When generating type definitions, the Maximum identifier length
parameter is not respected.

Non-Auto storage classes: the Identifier format control parameters specification
does not affect objects (such as signals and parameters) that have a storage class
other than Auto (such as ImportedExtern or ExportedGlobal).

For shared utilities, code generation inserts the checksum specified by $C to prevent
name collisions in the following situations:
+ $C is specified without $N.

The length of $N plus the length of the text that you specify exceeds the
Maximum identifier length. Code generation truncates $N and inserts an 8-
character checksum where you specified $C in the formatting string.

15-27

15 code Appearance

Identifier Format Control Parameters Limitations

The following limitations apply to the Identifier format control parameters:

* The following autogenerated identifiers currently do not fully comply with the setting
of the Maximum identifier length parameter on the Code Generation > Symbols
pane of the Configuration Parameters dialog box.

+ Model methods

* The applicable format string is RF, and the longest $F is _derivatives,
which is 12 characters long. The model name can be up to 19 characters
without exceeding the default Maximum identifier length of 31.

Local functions generated by S-functions or by add-on products such as DSP
System Toolbox™ that rely on S-functions

* Local variables generated by S-functions or by add-on products such as DSP
System Toolbox that rely on S-functions

+ DW identifiers generated by S-functions in referenced models
Fixed-point shared utility macros or shared utility functions
Simulink rtm macros
* Most are within the default Maximum identifier

length of 31, but some exceed the limit. Examples are
RTMSpecAccsGetStopRequestedValStoredAsPtr,

RTMSpecAccsGetErrorStatusPointer, and
RTMSpecAccsGetErrorStatusPointerPointer.

Define protection guard macros
* Header file guards, such as _RTW_HEADER_$(Ffilename) h_, which can

exceed the default Maximum identifier length of 31 given a filename such as
$R_private.h.

* Include file guards, such as _$R_COMMON__INCLUDES _.
+ typedef guards, such as CSCI_$R_CHARTSTRUCT _.

* In some situations, the following identifiers potentially can conflict with others.

* Model methods

+ Reentrant model function arguments

15-28

Identifier Format Control Parameters Limitations

+ Local functions generated by S-functions or by add-on products such as DSP
System Toolbox that rely on S-functions

Local variables generated by S-functions or by add-on products such as DSP
System Toolbox that rely on S-functions

* Fixed-point shared utility macros or shared utility functions
* Include header guard macros

The following external identifiers that are unknown to the Simulink software might
conflict with autogenerated identifiers.

+ Identifiers defined in custom code
+ Identifiers defined in custom header files

Identifiers introduced through a non-ANSI C standard library
+ Identifiers defined by custom TLC code

Identifiers generated for simulation targets might exceed the Maximum identifier
length. Simulation targets include the model reference simulation target, the
accelerated simulation target, the RSim target, and the S-function target.

Identifiers generated using a model name and bus object data type name, which are
both long names, might exceed the Maximum identifier length. For example, a
ground value variable name is generated as <model_name>_rtZ<bus_name>. If the
model_name and bus_name are close to the maximum identifier length, the name
exceeds the maximum identifier length.

15-29

15 code Appearance

Control Code Style

15-30

In this section...

“Control Parentheses in Generated Code” on page 15-31

“Control Indentation Style in Generated Code” on page 15-31

“Control Cast Expressions in Generated Code” on page 15-33

You can change the code style, cast expressions, and indentation of your generated code
to conform to certain coding standards. Modify style options by setting parameters on the
Code Generation > Code Style pane.

In the generated code, you can control the following style aspects:

+ Level of parenthesization, see “Control Parentheses in Generated Code” on page
15-31.

* Order of operands in expressions, see “Preserve operand order in expression”.

* Empty primary condition expressions in I f statements, see “Preserve condition
expression in if statement”.

* Whether to generate code for i f-elseif-else decision logic as switch-case
statements, see “Convert if-elseif-else patterns to switch-case statements”.

* Whether to include the extern keyword in function declarations, see “Preserve
extern keyword in function declarations”.

* Whether to generate default cases for switch-case statements in the code for
Stateflow charts, see “Suppress generation of default cases for Stateflow switch
statements if unreachable”.

* Whether to replace multiplications by powers of two with signed bitwise shifts, see
“Replace multiplications by powers of two with signed bitwise shifts”. Some coding
standards, such as MISRA, do not allow bitwise operations on signed integers.
Clearing this option increases the likelihood of generating MISRA-C:2004 compliant
code.

+ Cast expressions, see “Control Cast Expressions in Generated Code” on page
15-33.

* Indentation style, see “Control Indentation Style in Generated Code” on page
15-31.

Control Code Style

Control Parentheses in Generated Code

C code contains some syntactically required parentheses, and can contain additional
parentheses that change semantics by overriding default operator precedence. C code can
also contain optional parentheses that have no functional significance, but only increase
the readability of the code. Optional C parentheses vary between two stylistic extremes:

* Include the minimum parentheses required by C syntax and precedence overrides so
that C precedence rules specify all semantics unless overridden by parentheses.

* Include the maximum parentheses that can exist without duplication so that
C precedence rules become irrelevant. Parentheses alone completely specify all
semantics.

Understanding code with minimum parentheses can require applying nonobvious
precedence rules. Maximum parentheses can hinder code reading by belaboring obvious
precedence rules. Various parenthesization standards exist that specify one or the other
extreme, or define an intermediate style useful to people who read code.

The following example model shows the three levels of parentheses control that you
can set before generating code: rtwdemo_parentheses. For more information on this
parameter, see “Parentheses level”.

Control Indentation Style in Generated Code
For code indentation, you can set the following parameters:

+ “Indent style” controls the placement of braces in generated code.

* “Indent size” controls the number of characters per indent level in generated code (2—
8 characters).

You can set Indent style to K&R or Al Iman style.
K&R

K&R stands for Kernighan and Ritchie. Each function has the opening and closing brace
on its own line at the same level of indentation as the function header. Code within the
function is indented according to the Indent size.

For blocks within a function, opening braces are on the same line as the control
statement. Closing braces are on a new line at the same level of indentation as the
control statement. Code within the block is indented according to the Indent size.

15-31

15 code Appearance

15-32

For example, here is generated code with the Indent style set to K&R with an Indent
size of 2:

void rt_OneStep(void)
{

static boolean_T OverrunFlag = O;

if (OverrunFlag) {
rtmSetErrorStatus(rtwdemo_counter_M, "Overrun');
return;

}

OverrunFlag = TRUE;
rtwdemo_counter_step();
OverrunFlag = FALSE;

}

Allman

Each function has the opening and closing brace on its own line at the same level of
indentation as the function header. Code within the function is indented according to the
Indent size.

For blocks within a function, opening and closing braces for control statements are on
a new line at the same level of indentation as the control statement. This is the key
difference between K&R and Al Iman styles. Code within the block is indented according
to the Indent size.

For example, here is generated code with the Indent style set to Al Iman with an
Indent size of 4:

void rt_OneStep(void)
{
static boolean_T OverrunFlag = O;
if (OverrunFlag)
{
rtmSetErrorStatus(rtwdemo_counter_M, "Overrun');
return;

}

OverrunFlag = TRUE;
rtwdemo_counter_step();
OverrunFlag = FALSE;

Control Code Style

Control Cast Expressions in Generated Code

You can choose how the code generator specifies data type casts in the generated code.
In the Configuration Parameters dialog box, select Code Generation > Code Style.
From the Casting modes drop-down list, three parameter options control how the code
generator casts data types.

* Nominal instructs the code generator to generate code that has minimal data type
casting. When you do not have special data type information requirements, choose
Nominal .

+ Standards Compliant instructs the code generator to cast data types to conform to
MISRA standards when it generates code. The MISRA data type casting eliminates
common MISRA standard violations, including address arithmetic and assignment. It
reduces 10.1, 10.2, 10.3, and 10.4 violations.

For more information, see “MISRA C Guidelines”.

+ Explicitinstructs the code generator to cast data type values explicitly when it
generates code. You can see how a value is stored, which tells you how much memory
space the code uses for the variable. The data type informs you how much precision is
possible in calculations involving the variable.

Open the example model rtwdemo_rtwecintro.

INC @ sim_out ¢ J: LIMIT

equal_to_count l

YyYY

£
| (T r——»in outf—»1)

Input Output
Amplifier

i switch_out

3 =

Enable Nominal Casting Mode and Generate Code

When you choose Nominal casting mode, the code generator does not create data type
casts for variables in the generated code.

15-33

15 code Appearance

15-34

1 On the Code Generation > Code Style pane, from the Casting modes drop-down
list, select Nominal.

On the Code Generation > Report pane, select Create code generation report.
On the Code Generation pane, select Generate code only.

Click Apply.

Click Generate Code.

In the Code Generation report left pane, click rtwdemo_rtwecintro.c to see the
code.

o 0 b WDN

/* Model step function */
void rtwdemo_rtwecintro_step(void)

{

boolean_T rtb_equal_to_count;

/* Sum: "XRootX/Sum® incorporates:
* Constant: "XRootX/INC*

* UnitDelay: "XRootX/X"

*/

rtbDWork. X++;

/* RelationalOperator: "XRootX/RelOpt®" incorporates:
* Constant: “XRootX/LIMIT"

*/

rtb_equal_to_count = (rtbWork.X != 16);

/* Outputs for Triggered SubSystem: "XRootX/Amplifier®™ incorporates:
* TriggerPort: "XS1X/Trigger”
*/
if (rtb_equal_to_count && (rtPrevzZCSigState._Amplifier_Trig_ZCE != POS_ZCSIG))
{
/* Outport: "XRootX/Output®™ incorporates:
* Gain: "XS1X/Gain*
* Inport: "XRootX/Ilnput*®
*/
rtY_Output = rtU.lnput << 1;
}

rtPrevzZCSigState_Amplifier_Trig_ZCE = (uint8 _T)(rtb_equal_to_count ? (int32_T)
POS_ZCSIG : (int32_T)ZERO_ZCSIG);

/* End of Outputs for SubSystem: *"XRootX/Amplifier® */

Control Code Style

/* Switch: "XRootX/Switch®™ */

if (Irtb_equal_to_count) {
/* Update for UnitDelay: "XRootX/X" incorporates:
* Constant: "XRoOtX/RESET"

*/
rtbDWork.X = 0U;
b
/* End of Switch: "XRootX/Switch®" */

}
Enable Standards Compliant Casting Mode and Generate Code

When you choose Standards Compliant casting mode, the code generator creates
MISRA standards compliant data type casts for variables in the generated code.

1 On the Code Style pane, from the Casting modes drop-down list, select
Standards Compliant.

2 On the Code Generation pane, click Apply.

Click Generate Code.

4 In the Code Generation report left pane, click rtwdemo_rtwecintro.c to see the
code.

w

void rtwdemo_rtwecintro_step(void)

{

boolean_T rtb_equal_to_count;

/* Sum: "<Root>/Sum® incorporates:
* Constant: "<Root>/INC*®

* UnitDelay: "<Root>/X"

*/

rtbDWork. X++;

/* RelationalOperator: "<Root>/RelOpt" incorporates:

* Constant: "<Root>/LIMIT"

*/

rtb_equal_to_count = (boolean_T)(int32_T)((int32_T)rtbDWork.X = (int32_T)16);

/* Outputs for Triggered SubSystem: "<Root>/Amplifier”™ incorporates:

* TriggerPort: "<S1>/Trigger”

*/

if (((Iint32_T)rtb_equal_to_count) && (rtPrevzZCSigState._Amplifier_Trig_ZCE !=
POS_ZzCSI1G)) {

15-35

15 code Appearance

15-36

}

/* Outport: "<Root>/0Output” incorporates:

* Gain: "<S1>/Gain”

* Inport: "<Root>/Input”

*/

rtY.Output = (Iint32_T)(uint32_T)((uint32_T)rtU.Input << (uint32_T)(int8_T)1);
}

rtPrevzCSigState_Amplifier_Trig_ZCE = (uint8_T)(int32_T)(rtb_equal_to_count ?
(int32_T) (uint8_T)POS_ZCSIG : (int32_T)(uint8_T)ZERO_ZCSIG);

/* End of Outputs for SubSystem: "<Root>/Amplifier” */

/* Switch: "<Root>/Switch® */
if (Irtb_equal_to_count) {
/* Update for UnitDelay: "<Root>/X" incorporates:
* Constant: "<Root>/RESET"
*/
rtbDWork.X = 0U;
}

/* End of Switch: "<Root>/Switch" */

Enable Explicit Casting Mode and Generate Code

When you choose Explicit casting mode, the code generator creates explicit data type
casts for variables in the generated code.

A WODN —

On the Code Style pane, from the Casting modes drop-down list, select Explicit.
On the Code Generation pane, click Apply.
Click Generate Code.

In the Code Generation report left pane, click rtwdemo_rtwecintro.c to see the
code.

/* Model step function */
void rtwdemo_rtwecintro_step(void)

{

boolean_T rtb_equal_to_count;

/* Sum: "<Root>/Sum® incorporates:
* Constant: "<Root>/INC*®

* UnitDelay: "<Root>/X"

*/

Control Code Style

rtDWork.X = (uint8_T)(1U + (uint32_T)(int32_T)rtbWork.X);

/* RelationalOperator: "<Root>/RelOpt" incorporates:

* Constant: "<Root>/LIMIT"

*/

rtb_equal_to_count = (boolean_T)((int32_T)rtbWork.X != 16);

/* Outputs for Triggered SubSystem: "<Root>/Amplifier”™ incorporates:
* TriggerPort: "<S1>/Trigger”
*/
if (((Int32_T)rtb_equal_to_count) && ((int32_T)((Iint32_T)
rtPrevzZCSigState.Amplifier_Trig_ZCE != (int32_T)POS_ZCSI1G))) {

/* Outport: "<Root>/0Output” incorporates:

* Gain: "<S1>/Gain”

* Inport: "<Root>/Input”

*/

rtY_Output = rtU.lnput << 1;
}

rtPrevzCSigState_Amplifier_Trig_ZCE = (uint8 _T)(rtb_equal_to_count ? (int32_T)
POS_ZCSIG : (int32_T)ZERO_ZCSIG);

/* End of Outputs for SubSystem: “"<Root>/Amplifier” */

/* Switch: "<Root>/Switch® */
if (1(int32_T)rtb_equal_to_count) {
/* Update for UnitDelay: "<Root>/X" incorporates:
* Constant: "<Root>/RESET"
*/
rtbDWork.X = 0U;
}

/* End of Switch: "<Root>/Switch" */
3

More About

. “Code Generation Pane: Code Style”

15-37

15 code Appearance

Customize Code Organization and Format

15-38

In this section...

“Custom File Processing Components” on page 15-38

“Custom File Processing Configuration” on page 15-39

Custom file processing (CFP) tools allow you to customize the organization and
formatting of your generated code. With these tools, you can:

Generate a source (.cC or .cpp) or header (.h) file. Using a custom file processing
template (CFP template), you can control how code emits to the standard generated
model files (for example, model .c or .cpp, model .h) or generate files that are
independent of model code.

Organize generated code into sections (such as includes, typedefs, functions, and
more). Your CFP template can emit code (for example, functions), directives (such as
#define or #include statements), or comments into each section.

Generate custom file banners (comment sections) at the start and end of generated
code files and custom function banners that precede functions in the generated code.

Generate code to call model functions, such as model initialize, model step,
and so on.

Generate code to read and write model inputs and outputs.
Generate a main program module.

Obtain information about the model and the generated files from the model.

Custom File Processing Components

The custom file processing features are based on the following interrelated components:

Code generation template (CGT) files: a CGT file defines the top-level organization
and formatting of generated code. See “Code Generation Template (CGT) Files” on
page 15-41.

The code template API: a high-level Target Language Compiler (TLC) API that
provides functions with which you can organize code into named sections and
subsections of generated source and header files. The code template API also provides
utilities that return information about generated files, generate standard model calls,
and perform other functions. See “Code Template API Summary” on page 15-62.

Customize Code Organization and Format

* Custom file processing (CFP) templates: a CFP template is a TLC file that manages
the process of custom code generation. A CFP template assembles code to be
generated into buffers. A CFP template also calls the code template API to emit the
buffered code into specified sections of generated source and header files. A CFP
template interacts with a CGT file, which defines the ordering of major sections of the
generated code. See “Custom File Processing (CFP) Templates” on page 15-45.

To use CFP templates, you must understand TLC programming, for more information,
see “Target Language Compiler”.

Custom File Processing Configuration

Customize generated code by specifying code and data templates on the Code
Generation > Templates pane:

Goal

Action

Specify a template that defines
the top-level organization and
formatting of generated source
code (.c or .cpp) files

Enter a code generation template (CGT) file for the Source
file (*.c) template parameter.

Specify a template that defines
the top-level organization and
formatting of generated header
(-h) files

Enter a CGT file for the Header file (*.h) template
parameter. This template file can be the same template file
that you specify for Source file (.c) template. If you use the
same template file, source and header files contain identical
banners. The default template is matlabroot
/toolbox/rtw/targets/ecoder/
ert_code_template.cgt.

Specify a template that organizes
generated code into sections (such
as includes, typedefs, functions,
and more)

Enter a custom file processing (CFP) template file for the

“File customization template” parameter. A CFP template can
emit code, directives, or comments into each section. For more
information, see “Custom File Processing (CFP) Templates” on
page 15-45.

Generate a model-specific example
main program module

Select Generate an example main program. For more
information, see “Generate a Standalone Program”.

Note: Place the template files that you specify on the MATLAB path.

15-39

15 code Appearance

Specify Templates For Code Generation

15-40

To use custom file processing features, create CGT files and CFP templates. These files
are based on default templates provided by the code generation software. Once you have
created your templates, you must integrate them into the code generation process.

Select and edit CGT files and CFP templates, and specify their use in the code generation
process in the Code Generation > Templates pane of a model configuration set. The
following figure shows options configured for their defaults.

The options related to custom file processing are:

The Source file (.c) template field in the Code templates and Data templates
sections. This field specifies the name of a CGT file to use when generating source (.C
or -cpp) files. You must place this file on the MATLAB path.

The Header file (.h) template field in the Code templates and Data templates
sections. This field specifies the name of a CGT file to use when generating header
(-h) files. You must place this file on the MATLAB path.

By default, the template for both source and header files is matlabroot/toolbox/rtw/
targets/ecoder/ert_code_template.cgt.

The File customization template edit field in the Custom templates section. This
field specifies the name of a CFP template file to use when generating code files. You
must place this file on the MATLAB path. The default CFP template is matlabroot/
toolbox/rtw/targets/ecoder/example_file_process.tlec.

In each of these fields, click Browse to navigate to and select an existing CFP template
or CGT file. Click Edit to open the specified file into the MATLAB editor where you can
customize it.

Code Generation Template (CGT) Files

Code Generation Template (CGT) Files

Code Generation Template (CGT) files define the top-level organization and formatting of
generated source code and header files. CGT files have the following applications:

+ Generation of custom banners (comments sections) in code files. See “Generate
Custom File and Function Banners” on page 15-65.

* Generation of custom code using a CFP template requires a CGT file. To use CFP
templates, you must understand the CGT file structure. In many cases, however, you
can use the default CGT file without modifying it.

Default CGT file

The code generation software provides a default CGT file, matlabroot/toolbox/rtw/targets/
ecoder/ert_code_template.cgt. Base your custom CGT files on the default file.

CGT File Structure

A CGT file consists of one required section and four optional sections:
Code Insertion Section

(Required) This section contains tokens that define an ordered partitioning of the
generated code into a number of sections (such as Includes and Defines sections).
Tokens have the form of:

%<SectionName>

For example,

%<Includes>

The code generation software defines a minimal set of required tokens. These tokens
generate C or C++ source or header code. They are built-in tokens (see “Built-In Tokens
and Sections” on page 15-42). You can also define custom tokens and custom sections.

Each token functions as a placeholder for a corresponding section of generated code. The
ordering of the tokens defines the order in which the corresponding sections appear in
the generated code. If you do not include a token, then the corresponding section is not
generated. To generate code into a given section, explicitly call the code template API
from a CFP template, as described in “Custom File Processing (CFP) Templates” on page
15-45.

15-41

15 code Appearance

15-42

The CGT tokens define the high-level organization of generated code. Using the code
template API, you can partition each code section into named subsections, as described in
“Subsections” on page 15-43.

In the code insertion section, you can also insert C or C++ comments between tokens.
Such comments emit directly into the generated code.

File Banner Section

(Optional) This section contains comments and tokens you use in generating a custom file
banner.

Function Banner Section

(Optional) This section contains comments and tokens for use in generating a custom
function banner.

Shared Utility Function Banner Section

(Optional) This section contains comments and tokens for use in generating a custom
shared utility function banner.

File Trailer Section
(Optional) This section contains comments for use in generating a custom trailer banner.

For more information on these sections, see “Generate Custom File and Function
Banners” on page 15-65.

Built-In Tokens and Sections

The following code extract shows the required code insertion section of the default CGT
file with the required built-in tokens.

969%9%%%%%%%%%%%%% %% %% %% %% %6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6 %% %6666 %% %% %% %% %% %% %% % % % % % % %% % % %% %% %% %%
%% Code insertion section (required)

%% These are required tokens. You can insert comments and other tokens in
%% between them, but do not change their order or remove them.

%%

%<Includes>

%<DeFfines>

%<Types>

%<Enums>

%<DeFfinitions>

%<Declarations>

%<Functions>

Code Generation Template (CGT) Files

Note the following requirements for customizing a CGT file:

* Do not remove required built-in tokens.

* Built-in tokens must appear in the order shown because each successive section has
dependencies on previous sections.

* Only one token per line.
* Do not repeat tokens.

* You can add custom tokens and comments to the code insertion section as long as you
do not violate the previous requirements.

Note: If you modify a CGT file and then rebuild your model, the code generation process

does not force a top model build. To regenerate the code, see “Force Regeneration of Top
Model Code”.

The following table summarizes the built-in tokens and corresponding section names,
and describes the code sections.

Built-In CGT Tokens and Corresponding Code Sections

Token and Section Description

Name

Includes #include directives section

Defines #define directives section

Types typedeT section.Typedefs can depend on a previously defined

type

Enums Enumerated types section

Definitions Data definitions (for example, double x = 3.0;)
Declarations Data declarations (for example, extern double Xx;)
Functions C or C++ functions
Subsections

You can define one or more named subsections for any section. Some of the built-in
sections have predefined subsections summarized in table “Subsections Defined for Built-
In Sections”.

15-43

15 code Appearance

Note: Sections and subsections emit to the source or header file in the order listed in the
CGT file.

Using the custom section feature, you can define additional sections. See “Generate a
Custom Section”.

Subsections Defined for Built-In Sections

Section Subsections Subsection Description

Includes N/A

Defines N/A

Types IntrinsicTypes Intrinsic typedef section. Intrinsic types depend

only on intrinsic C or C++ types.

Types PrimitiveTypedefs |Primitive typedef section. Primitive typedefs
depend only on intrinsic C or C++ types

and on typedeTfs previously defined in the
IntrinsicTypes section.

Types UserTop You can place any type of code in this section,
including code that has dependencies on the
previous sections.

Types Typedefs typedef section. Typedefs can depend on
previously defined types

Enums N/A

Definitions N/A

Declarations N/A

Functions C or C++ functions

Functions CompilerErrors #error directives

Functions CompilerWarnings #warning directives

Functions Documentation Documentation (comment) section

Functions UserBottom You can place any code in this section.

15-44

Custom File Processing (CFP) Templates

Custom File Processing (CFP) Templates

The files provided to support custom file processing are:

* matlabroot/rtw/c/tle/mw/codetemplatelib.tle: A TLC function library that implements
the code template API. codetemplatelib.tlc also provides the comprehensive
documentation of the API in the comments headers preceding each function.

* matlabroot/toolbox/rtw/targets/ecoder/example_file_process.tlc: An example custom
file processing (CFP) template, which you should use as the starting point for creating
your own CFP templates. Guidelines and examples for creating a CFP template are
provided in “Generate Source and Header Files with a Custom File Processing (CFP)
Template” on page 15-50.

+ TLC files supporting generation of single-rate and multirate main program modules
(see “Customizing Main Program Module Generation” on page 15-54).

Once you have created a CFP template, you must integrate it into the code generation
process, using the File customization template edit field. See “Specify Templates For
Code Generation” on page 15-40.

Custom File Processing (CFP) Template Structure

A custom file processing (CFP) template imposes a simple structure on the code
generation process. The template, a code generation template (CGT) file, partitions the
code generated for each file into a number of sections. These sections are summarized
in Built-In CGT Tokens and Corresponding Code Sections and Subsections Defined for
Built-In Sections.

Code for each section is assembled in buffers and then emitted, in the order listed, to the
file being generated.

To generate a file section, your CFP template must first assemble the code to be
generated into a buffer. Then, to emit the section, your template calls the TLC function

LibSetSourceFileSection(FfileH, section, tmpBuf)
where

+ TFileHis a file reference to a file being generated.

+ section is the code section or subsection to which code is to be emitted. section must
be one of the section or subsection names listed in Subsections Defined for Built-In
Sections.

15-45

15 code Appearance

Determine the section argument as follows:

+ If Subsections Defined for Built-In Sections does not define subsections for a given
section, use the section name as the section argument.

+ If Subsections Defined for Built-In Sections defines one or more subsections for
a given section, you can use either the section name or a subsection name as the

section argument.

If you have defined a custom token denoting a custom section, do not call
LibSetSourceFileSection. Special API calls are provided for custom sections
(see “Generate a Custom Section” on page 15-55).

+ tmpBuf is the buffer containing the code to be emitted.

There is no requirement to generate all of the available sections. Your template need only
generate the sections you require in a particular file.

Note that legality or syntax checking is not performed on the custom code within each
section.

See “Generate Source and Header Files with a Custom File Processing (CFP) Template”
on page 15-50, for typical usage examples.

15-46

Change the Organization of a Generated File

Change the Organization of a Generated File

The files created during code generation are organized according to the general code
generation template. This template has the filename ert_code_template.cgt, and
1s specified by default in Code Generation > Templates pane of the Configuration
Parameters dialog box.

15-47

15 code Appearance

15-48

The following fragment shows the rtwdemo_mp¥.c file header that is generated using
this default template:

/*

* File: rtwdemo_mpf.c

*

* Code generated for Simulink model "rtwdemo_mpf-~.

*

* Model version :1.88

* Simulink Coder version : 8.0 (R2011a) 26-Aug-2010
* TLC version : 7.6 (Sep 3 2010)

* C/C++ source code generated on : Thu Sep 09 10:10:14 2010
*

* Target selection: ert._tlc

* Embedded hardware selection: Generic->32-bit Embedded Processor
* Code generation objectives: Unspecified

*

Validation result: Not run
*/

You can change the organization of generated files using code templates and data
templates. Code templates organize the files that contain functions, primarily. Data
templates organize the files that contain identifiers. In this procedure, you organize the
generated files, using the supplied code and data templates:

Display the active Templates configuration parameters.

2 Inthe Code templates section of the Templates pane, type
code_c_template.cgt into the Source file (*.c) templates text box.

3 Type code_h_template.cgt into the Header file (*.h) templates text box.

4 In the Data templates section, type data_c_template.cgt into the Source file
(*.c) templates text box.

5 Typedata_h_template.cgt into the Header file (*.h) templates text box, and
click Apply.

6 Click Generate Code. Now the files are organized using the templates you
specified. For example, the rtwdemo_mp¥. c file header now is organized like this:

/>

** FILE INFORMATION:

** Filename: rtwdemo_mpf.c
** File Creation Date: 09-Sep-2010

E

** ABSTRACT:

E

E

** NOTES:

E

*x

Change the Organization of a Generated File

** MODEL INFORMATION:

** Model Name: rtwdemo_mpF

** Model Description: Data packaging examples

** Model Version: 1.89

** Model Author: The MathWorks Inc. - Mon Mar 01 11:23:00 2004

*k

** MODIFICATION HISTORY:

** Model at Code Generation: ssulliva - Thu Sep 09 10:19:35 2010
Ex

** Last Saved Modification: ssulliva - Thu Sep 09 10:19:13 2010
Ex

*k

*%x/

15-49

15 code Appearance

Generate Source and Header Files with a Custom File Processing
(CFP) Template

15-50

In this section...

“Generate Code with a CFP Template” on page 15-50
“Analysis of the Example CFP Template and Generated Code” on page 15-52

“Generate a Custom Section” on page 15-55

“Custom Tokens” on page 15-57

This example shows you the process of generating a simple source (.C or .cpp) and
header (.h) file using the example CFP template. Then, it examines the template and the
code generated by the template.

The example CFP template, matlabroot/toolbox/rtw/targets/ecoder/
example_file_process.tlc, demonstrates some of the capabilities of the code template API,
including

* Generation of simple source (.c or .cpp) and header (.h) files

+ Use of buffers to generate file sections for includes, functions, and so on

+ Generation of includes, defines, into the standard generated files (for example,
model _h)

+ Generation of a main program module

Generate Code with a CFP Template

This section sets up a CFP template and configures a model to use the template in code
generation. The template generates (in addition to the standard model files) a source file
(timestwo.c or .cpp) and a header file (timestwo.h).

Follow the steps below to become acquainted with the use of CFP templates:

1 Copy the example CFP template, matlabroot/toolbox/rtw/targets/ecoder/
example_file_process.tle, to a folder outside of the MATLAB folder structure (that is,
not under matlabroot). If the folder is not on the MATLAB path or the TLC path,
then add it to the MATLAB path. It is good practice to locate the CFP template in
the same folder as your system target file, which is on the TLC path.

2 Rename the copied example_file process.tlc to
test_example_file_process.tlc.

Generate Source and Header Files with a Custom File Processing (CFP) Template

10
11
12

13

14

Open test_example_file_process.tlc into the MATLAB editor.

Uncomment the following line:

%% %assign ERTCustomFileTest = TLC_TRUE

It now reads:

%assign ERTCustomFileTest = TLC_TRUE

If ERTCustomFileTest is not assigned as shown, the CFP template is ignored in
code generation.

Save your changes to the file. Keep test _example_file_process.tlc open, so
you can refer to it later.

Open the rtwdemo_udt model.

Open the Simulink Model Explorer. Select the active configuration set of the model,
and open the Code Generation pane of the active configuration set.

Click the Templates tab.

Specify File customization template as test_example_file_process.tlc.
This is the file you previously edited and is now the specified CFP template for your
model.

Select the Generate code only option.
Click Apply.

Click Generate Code. During code generation, notice the following message in the
Diagnostic Viewer:

Warning: Overriding example ert_main.c!

This message is displayed because test_example_file_process.tlc generates
the main program module, overriding the default action of the ERT target. This is
explained in greater detail below.

The rtwdemo_udt model is configured to generate an HTML code generation report.
After code generation completes, view the report. Notice that the Generated Code
list contains the files timestwo.c, timestwo.h, and ert_main.c. These files were
generated by the CFP template. The next section examines the template to learn
how this was done.

Keep the model, the code generation report, and the
test_example_file process.tlc file open so you can refer to them in the next
section.

15-51

15 code Appearance

15-52

Analysis of the Example CFP Template and Generated Code

This section examines excerpts from test _example_Ffile_process.tlc and
some of the code it generates. Refer to the comments in matlabroot/rtw/c/tlc/mw/
codetemplatelib.tlc while reading the following discussion.

Generating Code Files

Source (.c or .cpp) and header (.h) files are created by calling LibCreateSourceFile,
as in the following excerpts:

%assign cFile = LibCreateSourceFile(*""Source', 'Custom’, "timestwo'™)

%assign hFile = LibCreateSourceFile(*"Header', ''Custom, "timestwo'™)

Subsequent code refers to the files by the file reference returned from
LibCreateSourceFile.

File Sections and Buffers

The code template API lets you partition the code generated to each file into sections,
tagged as Definitions, Includes, Functions, Banner, and so on. You can append
code to each section as many times as required. This technique gives you a great deal of
flexibility in the formatting of your custom code files.

Subsections Defined for Built-In Sections describes the available file sections and their
order in the generated file.

For each section of a generated file, use %openfile and %closefile to store the text
for that section in temporary buffers. Then, to write (append) the buffer contents to a
file section, call LibSetSourceFileSection, passing in the desired section tag and
file reference. For example, the following code uses two buffers (typesBuf and tmpBuf)
to generate two sections (tagged ""Includes' and ""Functions") of the source file
timestwo.c or .cpp (referenced as cFile):

%openfile typesBuf

#ifdef MATLAB_MEX_FILE
#include <tmwtypes._h>

#else

#include "'rtwtypes._h"

#endif

%closefile typesBuf

Generate Source and Header Files with a Custom File Processing (CFP) Template

%<LibSetSourceFileSection(cFile, " Includes", typesBuf)>
%openfile tmpBuf

/* Times two function */

real_T timestwofcn(real _T input) {
return (input * 2.0);

}

%closefile tmpBuf
%<LibSetSourceFileSection(cFile,"Functions",tmpBuf)>

These two sections generate the entire timestwo.c or .cpp file:

#ifdef MATLAB_MEX_FILE
#include <tmwtypes._h>

#else

#include "'rtwtypes._h"

#endif

/* Times two function */
FLOAT64 timestwofcn(FLOAT64 input)

{
return (input * 2.0);

}
Adding Code to Standard Generated Files

The timestwo.c or .cpp file generated in the previous example was independent

of the standard code files generated from a model (for example, model.c or .cpp,
model .h, and so on). You can use similar techniques to generate custom code within
the model files. The code template API includes functions to obtain the names of the
standard models files and other model-related information. The following excerpt calls
LibGetMdIPubHdrBaseName to obtain the name for the model _h file. It then obtains a
file reference and generates a definition in the Defines section of model .h:

%% Add a #define to the model®s public header file model.h

%assign pubName
%assign modelH

LibGetMdIPubHdrBaseName()
LibCreateSourceFile(""Header", "Simulink’, pubName)

%openfile tmpBuf

#define ACCELERATION 9.81

15-53

15 code Appearance

%closefile tmpBuf

%<LibSetSourceFileSection(modelH, "Defines", tmpBuf)>
Examine the generated rtwdemo_udt.h file to see the generated #define directive.
Customizing Main Program Module Generation

Normally, the ERT target determines whether and how to generate an ert_main.c

or .cpp module based on the settings of the Generate an example main program
and Target operating system options on the Templates pane of the Configuration
Parameters dialog box. You can use a CFP template to override the normal behavior and
generate a main program module customized for your target environment.

To support generation of main program modules, two TLC files are provided:

* bareboard_srmain.tlc: TLC code to generate an example single-rate main
program module for a bareboard target environment. Code is generated by a single
TLC function, FcnSingleTaskingMain.

+ bareboard_mrmain.tlc: TLC code to generate a multirate main program module
for a bareboard target environment. Code is generated by a single TLC function,
FcnMultiTaskingMain.

In the example CFP template file matlabroot/toolbox/rtw/targets/ecoder/
example_file_process.tlc, the following code generates either a single- or multitasking
ert_main.c or .cpp module. The logic depends on information obtained from the code
template API calls LiblsSingleRateModel and LiblsSingleTasking:

%% Create a simple main. Files are located in MATLAB/rtw/c/tlc/mw.

%if LiblsSingleRateModel() || LiblsSingleTasking()
%include "bareboard_srmain.tlc"
%<FcnSingleTaskingMain()>

%else
%include "bareboard_mrmain.tlc"”
Y%<FcnMultiTaskingMain()>

%endif

Note that bareboard_srmain.tlc and bareboard_mrmain.tlc use the code template
API to generate ert_main.c or .cpp.

When generating your own main program module, you disable the default generation of

ert_main.c or .cpp. The TLC variable GenerateSampleERTMain controls generation
of ert_main.c or .cpp. You can directly force this variable to TLC_FALSE. The

15-54

Generate Source and Header Files with a Custom File Processing (CFP) Template

examples bareboard_mrmain.tlc and bareboard_srmain.tlc use this technique, as
shown in the following excerpt from bareboard_srmain.tlc.

%if GenerateSampleERTMain
%assign CompiledModel .GenerateSampleERTMain = TLC_FALSE
%warning Overriding example ert_main.c!

%endif

Alternatively, you can implement a SelectCal Iback function for your target. A
SelectCal lback function is a MATLAB function that is triggered during model loading,
and also when the user selects a target with the System Target File browser. Your
SelectCal lback function should deselect and disable the Generate an example
main program option. This prevents the TLC variable GenerateSampleERTMain from
being set to TLC_TRUE.

See the “rtwgensettings Structure” section for information on creating a
SelectCal Iback function.

The following code illustrates how to deselect and disable the Generate an example
main program option in the context of a SelectCal Iback function.

siConfigUlSetval(hDlg, hSrc, "GenerateSampleERTMain®, "off");
slConfigUlSetEnabled(hDlg, hSrc, "GenerateSampleERTMain®,0);

Note Creation of a main program for your target environment requires some
customization; for example, in a bareboard environment you need to attach rt_OneStep
to a timer interrupt. It is expected that you will customize either the generated code,

the generating TLC code, or both. See “Guidelines for Modifying the Main Program” and
“Guidelines for Modifying rt_OneStep” for further information.

Generate a Custom Section

You can define custom tokens in a CGT file and direct generated code into an associated
built-in section. This feature gives you additional control over the formatting of

code within each built-in section. For example, you could add subsections to built-in
sections that do not already define subsections. Custom sections must be associated
with one of the built-in sections: Includes, Defines, Types, Enums, Definitions,
Declarations, or Functions. To create custom sections, you must

* Add a custom token to the code insertion section of your CGT file.

15-55

15 code Appearance

15-56

* In your CFP file:

+ Assemble code to be generated to the custom section into a buffer.

* Declare an association between the custom section and a built-in section, with the
code template API function LibAddSourceFileCustomSection.

+ Emit code to the custom section with the code template API function
LibSetSourceFileCustomSection.

The following code examples illustrate the addition of a custom token, Myincludes, to
a CGT file, and the subsequent association of the custom section Myincludes with the
built-in section Includes in a CFP file.

Note: If you have not already created custom CGT and CFP files for your model, copy the
default template files matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt and
matlabroot/toolbox/rtw/targets/ecoder/example_file_process.tlc to a work folder that is
outside the MATLAB folder structure but on the MATLAB or TLC path, rename them
(for example, add the prefix test_to each file), and update the Templates pane of the
Configuration Parameters dialog box to reference them.

First, add the token My includes to the code insertion section of your CGT file. For
example:

%<Includes>
%<Myincludes>
%<Defines>
%<Types>
%<Enums>
%<Definitions>
%<Declarations>
%<Functions>

Next, in the CFP file, add code to generate include directives into a buffer. For example,
in your copy of the example CFP file, you could insert the following section between the
Includes section and the Create a simple main section:

%% Add a custom section to the model"s C file model.c
%openfile tmpBuf

#include "moretablesl.h"
#include "moretables2.h"

Generate Source and Header Files with a Custom File Processing (CFP) Template

%closefile tmpBuf

%<LibAddSourceFileCustomSection(modelC, " Includes", " "Myincludes')>
%<LibSetSourceFileCustomSection(modelC, " "Myincludes", tmpBuf)>

The LibAddSourceFileCustomSection function call declares an association
between the built-in section Includes and the custom section Myincludes.
Myincludes is a subsection of Includes. The LibSetSourceFileCustomSection
function call directs the code in the tmpBuf buffer to the My includes section of the
generated file. LibSetSourceFileCustomSection is syntactically identical to
LibSetSourceFileSection.

In the generated code, the include directives generated to the custom section appear after
other code directed to Includes.

#include "'rtwdemo_udt._h"
#include "rtwdemo_udt_private.h"

/* #include "mytables_h" */
#include "moretablesl.h"
#include "moretables2.h"

Note: The placement of the custom token in this example CGT file is arbitrary. By
locating %<Myincludes> after %<Includes>, the CGT file specifies only that the
My includes code appears after Includes code.

Custom Tokens

Custom tokens are automatically translated to TLC syntax as a part of the build process.
To escape a token, that is to prepare it for normal TLC expansion, use the "' character.
For example, the token %<!TokenName> is expanded to %<TokenName> by the template
conversion program. You can specify valid TLC code, including TLC function calls: %<!
MyTLCFcn()>.

15-57

15 code Appearance

Comparison of a Template and lts Generated File

This figure shows part of a user-modified custom file processing (CFP) template and the
resulting generated code. The figure illustrates how you can use a template to:

+ Define what code the code generation software should add to the generated file
+ Control the location of code in the file

* Optionally insert comments in the generated file

Notice %<Includes>, for example, on the template. The term Includes is a symbol
name. A percent sign and brackets (%< >) must enclose every symbol name. You can
add the desired symbol name (within the %< > delimiter) at a particular location in
the template. This is how you control where the code generator places an item in the
generated file.

15-58

Comparison of a Template and Its Generated File

Template and Generated File

Portion of
Example Template Corresponding Portion of Generated File

/*#INCLUDES*/ (1)>\>
%<Includes>

26 /*#INCLUDES*/
27 #include "rtwdemo_codetemplate.h"

I"4DEFINES*/ (2)> None gg #include "rtwdemo_codetemplate_private.h"
! .

%<Defines> - 30 /*#DEFINES*/

#pragma string1 (3) 31 #pragma string

/"DEFINITIONS/ (4) > ™ 32 /"DEFINITIONS*/

%<Definitions> 33 /* Block states (auto storage) */

gpraDgn}a sttr'in92 Eg; \ 34 rtDWork;
©v<Declarations> 35
%<Functions> (7) 36 /* External output (fed by signals with auto storage) */
37 rty;
38
39 /* Real-time model */
40 rtM_;
— 41 *rtM = &rtM_;
42 #pragma string2
43

None 44 /* Model step function */
45 void rtwdemo_codetemplate_step(void)
46

48 /* local block i/o variables */

49

50 rtb_Switch;

51 rtb_RelOpt;

52

53 /* Sum: " incorporates:

54 * UnitDelay: "

55 */

56 rtb_Switch = ()(()rtDWork.X + 1U);
57

58 /* RelationalOperator: " */
59 rtb_RelOpt = (rtb_Switch != 16U);
60

61 /* Outport: " */
62 rtY.Out = rtb_RelOpt;

63

64 /* Switch: " */

65 if(rtb_RelOpt) {
66 } else {

67 rtb_Switch = 0U;
68}

69

70 /* Update for UnitDelay: " */
71 rtDWork.X = rtb_Switch;

72

73 /* (no update code required) */
— 74}

Mapping Template Specification to Code Generation

15-59

15 code Appearance

This part of the template...

Generates in the file...

Line

Description

Explanation

(1) |/*#INCLUDES*/
%<Includes>

26-28

An /*#INCLUDES*/
comment, followed
by #include
statements

The code generator adds the C/
C++ comment as a header, and
then interprets the %<Includes>
template symbol to list the
required #include statements

in the file. This code is first in
this section of the file because the
template entries are first.

(2) |/*#DEFINES*/
%<Defines>

30

A /*#DEFINES*/
comment, but no
#define statements

Next, the code generator places
the comment as a header for
#define statements, but the file
does not need #define. No code
1s added.

(3) |#pragma stringl

31

(5) |#pragma string2

42

#pragma statements

While the code generator requires
%<> delimiters for template
symbols, it can also interpret C/
C++ statements in the template
without delimiters. In this case,
the generator adds the specified
statements to the code, following
the order in which the statements
appear in the template.

(4) |/*DEFINITIONS*/
%<Definitions>

32-41

/*DEFINITIONS*/
comment, followed by
definitions

The code generator places the
comment and definitions in

the file between the #pragma
statements, according to the
order in the template. It also
inserts comments (lines 33 and
36) that are preset in the model's
Configuration Parameters dialog
box.

(6) |%<Declarations>

15-60

43

No declarations

The file needs no declarations,
so the code generator does not
generate declarations for this
file. The template does not have

Comparison of a Template and Its Generated File

This part of the template... Generates in the file... Explanation

Line Description

a comment to provide a header.
Line 43 is left blank.

(7) |%<Functions> 44-74 Functions Finally, the code generator adds
functions from the model, plus
comments that are preset in the
Configuration Parameters dialog
box. But it adds no comments

as a header for the functions,
because the template does

not have one. This code is last
because the template entry is
last.

For a list of template symbols and the rules for using them, see “Template Symbol
Groups” on page 15-74, “Template Symbols” on page 15-77, and “Rules for

Modifying or Creating a Template” on page 15-81. To set comment options, from the
Simulation menu, select Model Configuration Parameters. On the Configuration
Parameters dialog box, select the Code Generation > Comments pane. For details, see
“Configure Code Comments”.

15-61

15 code Appearance

Code Template APl Summary

Code Template API Functions summarizes the code template API. See the source code in
matlabroot/rtw/c/tle/mw/codetemplatelib.tlc for detailed information on the arguments,

return values, and operation of these calls.

Code Template API Functions

Function

Description

LibGetNumSourceFiles

Returns the number of created source files
(.cor .cpp and .h).

LibGetSourceFileTag

Returns <filename>_h and <filename>_c
for header and source files, respectively,
where Filename is the name of the model
file.

LibCreateSourceFile

Creates a new C or C++ file and returns its
reference. If the file already exists, simply
returns its reference.

LibGetFileRecordName

Returns a model file name (including the
path) without the extension.

LibGetSourceFileFromldx

Returns a model file reference based on its
index. This is useful for a common operation
on all files, such as to set the leading file
banner of all files.

LibSetSourceFileSection

Adds to the contents of a specified section
within a specified file (see also “Custom File
Processing (CFP) Template Structure” on
page 15-45).

LibIndentSourceFile

Indents a file (from within the TLC
environment).

LibCalIModelInitialize

Returns code for calling the model's
model initialize function (valid for ERT
only).

LibCal IModelStep

Returns code for calling the model's
model step function (valid for ERT only).

15-62

Code Template API Summary

Function

Description

LibCal IModelTerminate

Returns code for calling the model's
model terminate function (valid for ERT
only).

LibCallSetEventForThisBaseStep

Returns code for calling the model's set
events function (valid for ERT only).

LibWriteModelData

Returns data for the model (valid for ERT
only).

LibSetRTModelErrorStatus

Returns the code to set the model error
status.

LibGetRTModelErrorStatus

Returns the code to get the model error
status.

LiblsSingleRateModel Returns true if model is single rate and false
otherwise.

LibGetMode IName Returns name of the model (without an
extension).

LibGetMdISrcBaseName Returns the name of model's main source file

(for example, model .c or .cpp).

LibGetMdlPubHdrBaseName

Returns the name of model's public header
file (for example, model .h).

LibGetMdIPrvHdrBaseName

Returns the name of the model's
private header file (for example,
model private.h).

LiblsSingleTasking

Returns true if the model is configured for
single-tasking execution.

LibWriteModel Input

Returns the code to write to a particular root
input (that 1s, a model inport block). (valid
for ERT only).

LibWriteModelOutput

Returns the code to write to a particular root
output (that is, a model outport block). (valid
for ERT only).

LibWriteModel Inputs

Returns the code to write to root inputs (that
1s, all model inport blocks). (valid for ERT
only)

15-63

15 code Appearance

Function

Description

LibWriteModelOutputs

Returns the code to write to root outputs
(that 1s, all model outport blocks). (valid for
ERT only).

LibNumDiscreteSampleTimes

Returns the number of discrete sample
times in the model.

LibSetSourceFileCodeTemplate

Set the code template to be used for
generating a specified source file.

LibSetSourceFileOutputDirectory

Set the folder into which a specified source
file is to be generated.

LibAddSourceFileCustomSection

Add a custom section to a source file. The
custom section must be associated with
one of the built-in (required) sections:
Includes, Defines, Types, Enums,
Definitions, Declarations, or
Functions.

LibSetSourceFileCustomSection

Adds to the contents of a specified custom
section within a specified file. The custom
section must have been previously created
with LibAddSourceFileCustomSection

LibGetSourceFileCustomSection

Returns the contents of a specified custom
section within a specified file.

LibSetCodeTemplateCompliancelLevel

This function must be called from your CFP
template before other code template API
functions are called. Pass in 2 as the level
argument.

Note: Some MathWorks TLC files pass in 1
as the level argument. Currently, there is
no difference in handling of level 1 versus
level 2 by MathWorks software.

15-64

Generate Custom File and Function Banners

Generate Custom File and Function Banners

Using code generation template (CGT) files, you can specify custom file banners and
function banners for the generated code files. File banners are comment sections in

the header and trailer sections of a generated file. Function banners are comment
sections for each function in the generated code. Use these banners to add a company
copyright statement, specify a special version symbol for your configuration management
system, remove time stamps, and for many other purposes. These banners can contain
characters, which propagate to the generated code.

To specify banners, create a custom CGT file with customized banner sections. The build
process creates an executable TLC file from the CGT file. The code generation process
then invokes the TLC file.

You do not need to be familiar with TLC programming to generate custom banners. You
can modify example files that are supplied with the ERT target.

Note Prior releases supported direct use of customized TLC files as banner templates.
You specified these with the Source file (.c) banner template and Header file (.h)
banner template options of the ERT target. You can still use a custom TLC file banner
templates, however, you can now use CGT files instead.

ERT template options on the Code Generation > Templates pane of a configuration
set, in the Code templates section, support banner generation.

The options for function and file banner generation are:

+ “Code templates: Source file (*.c) template”: CGT file to use when generating source
(-c or .cpp) files. Place this file on the MATLAB path.

+ “Code templates: Header file (*.h) template”: CGT file to use when generating header
(.h) files. You must place this file on the MATLAB path. This file can be the same
template specified in the Code templates: Source file (*.c) template field, in which
case identical banners are generated in source and header files.

By default, the template for both source and header files is matlabroot/toolbox/rtw/
targets/ecoder/ert_code_template.cgt.

+ In each of these fields, click Browse to navigate to and select an existing CGT file
for use as a template. Click Edit to open the specified file into the MATLAB editor,
where you can customize it.

15-65

15 code Appearance

15-66

Generate Custom File and Function Banners

Create a Custom File and Function Banner Template

To customize a CGT file for custom banner generation, make a local copy of the default
code template and edit it, as follows:

AW N -

10

11
12
13
14

Activate the configuration set that you want to work with.
Open the Code Generation pane of the active configuration set.
Click the Templates tab.

By default, the code template specified in the Code templates: Source file (*.c)
template and Code templates: Header file (*.h) template fields is matlabroot/
toolbox/rtw/targets/ecoder/ert_code_template.cgt.

If you want to use a different template as your starting point, click Browse to locate
and select a CGT file.

Click Edit button to open the CGT file into the MATLAB editor.

Save a local copy of the CGT file. Store the copy in a folder that is outside of the
MATLAB folder structure, but on the MATLAB path. If required, add the folder to
the MATLAB path.

If you intend to use the CGT file with a custom target, locate the CGT file in a folder
under your target root folder.

Rename your local copy of the CGT file. When you rename the CGT file, update
the associated Code templates: Source file (*.c) template or Code templates:
Header file (*.h) template field to match the new file name.

Edit and customize the local copy of the CGT file for banner generation, using the
information provided in “Customize a Code Generation Template (CGT) File for File
and Function Banner Generation” on page 15-68.

Save your changes to the CGT file.
Click Apply to update the configuration set.
Save your model.

Generate code. Examine the generated source and header files to confirm that they
contain the banners specified by the template or templates.

15-67

15 code Appearance

Customize a Code Generation Template (CGT) File for File and Function

Banner Generation

This section describes how to edit a CGT file for custom file and function banner
generation. For a description of CGT files, see “Code Generation Template (CGT) Files”

on page 15-41.

Components of the File and Function Banner Sections in the CGT file

In a CGT file, you can modify the following sections: file banner, function banner, shared
utility function banner, and file trailer. Each section is defined by open and close tags.
The tags specific to each section are shown in the following table.

CGT File Section

Open Tag

Close Tag

File Banner

<FileBanner>

</FileBanner>

Function Banner

<FunctionBanner>

</FunctionBanner>

Shared-utility Banner

<SharedutilityBanner>

</SharedutilityBanner>

File Trailer

<FileTrailer>

</FileTrailer>

You can customize your banners by including tokens and comments between the
open and close tag for each section. Tokens are typically TLC variables, for example
<ModelVersion>, which are replaced with values in the generated code.

Note: Including C comment indicators, '/*' or a "*/', in the contents of your banner might
introduce an error in the generated code.

An open tag includes tag attributes. Enclose the value of the attribute in double quotes.
The attributes available for an open tag are:

+ width: specifies the width of the file or function banner comments in the generated
code. The default value is 80.

+ style: specifies the boundary for the file or function banner comments in the

generated code.

The open tag syntax is

as follows:

<OpenTag style = “style value” width = “num_width”>

15-68

Generate Custom File and Function Banners

The built-in style options for the style attribute are:

classic

/* single line comments */
/*
* multiple line comments
* second line
*/
classic_cpp

// single line comments
//

// multiple line comments
// second line

//

box

/ * * * * * /
/* banner contents */
/5> * * /
box_cpp

[//7/77777777/7777/7777/77/77/77/77777/777/7/777/7/7/7/7/77/77/7/77/77777
// banner contents //
L1171 7777777777777777777777777/7777/777/77777/7/77/7//77//7/7/7/77777
open_box

/’ * *
* banner contents

open_box_cpp

L1117 /77777777777777777/77/77/777777/77/77/77/77/77/77/7/7/777/7777
// banner contents
L1117 /777/7777777777777777/77/777777/77/77/77/77/77/7/7/7/777/7777

doxygen

/** single line comments */

/**
* multiple line comments
* second line

15-69

15 code Appearance

15-70

*/
+ doxygen_cpp

/// single line comments

//7/

/// multiple line comments
/// second line

//7/

+ doxygen_gt
/*! single line comments */

/*!

* multiple line comments
* second line

*/

+ doxygen_qgt_cpp

/7! single line comments

/7!

/7" multiple line comments
//!" second line

/7!

File Banner

This section contains comments and tokens for use in generating a custom file banner.
The file banner precedes C or C++ code generated by the model. If you omit the file
banner section from the CGT file, then no file banner emits to the generated code. The
following section is the file banner section provided with the default CGT file, matlabroot/
toolbox/rtw/targets/ecoder/ert_code_template.cgt.
L L

%% Custom Ffile banner section (optional)

%%

<FileBanner style="classic">

File: %<FileName>

Code generated for Simulink model %<ModelName>.

Model version : %<ModelVersion>
Simulink Coder version : %<RTWFileVersion>
TLC version : %<TLCVersion>

C/C++ source code generated on : %<SourceGeneratedOn>

Generate Custom File and Function Banners

%<CodeGenSettings>
</FileBanner>

Summary of Tokens for File Banner Generation

FileName Name of the generated file (for example,
"rtwdemo_udt.c").

FileType Either ""source™ or ""header". Designates whether
generated file is a .c or .cpp file or an .h file.

FileTag Given file names file.c or .cpp and File.h; the file
tags are "file_c' and "file_h", respectively.

Mode IName Name of generating model.

ModelVersion Version number of model.

RTWFileVersion Version number of model . rtw file.

RTWFileGeneratedOn Timestamp of model . rtw file.

TLCVersion Version of Target Language Compiler.

SourceGeneratedOn Timestamp of generated file.

CodeGenSettings Code generation settings for model: target language,

target selection, production hardware selection, test
hardware selection, code generation objectives (in priority
order), and Code Generation Advisor validation result.

Function Banner

This section contains comments and tokens for use in generating a custom function
banner. The function banner precedes C or C++ function generated during the build
process. If you omit the function banner section from the CGT file, the default function
banner emits to the generated code. The following section is the default function banner
section provided with the default CGT file, matlabroot/toolbox/rtw/targets/ecoder/
ert_code_template.cgt.

96%%%6%%%6%6%%%6%%%6%%%%6%%%6% % %6%6%%6%6% %% % %% %% %6% % %% %% % %% %% %%6% %% % %% % %% % %% %%6% % %% % %% %%
%% Custom function banner section (optional)

%% Customize function banners by using the following predefined tokens:

%% Y%<ModeIName>, %<FunctionName>, %<FunctionDescription>, %<Arguments>,

%% %<ReturnType>, %<GeneratedFor>, %<BlockDescription>.

%%

<FunctionBanner style="classic">

%<FunctionDescription>

%<BlockDescription>

</FunctionBanner>

15-71

15 code Appearance

15-72

Summary of Tokens for Function Banner Generation

FunctionName Name of function

Arguments List of function arguments

ReturnType Return type of function

Mode IName Name of generating model

FunctionDescription Short abstract about the function

GeneratedFor Full block path for the generated function
BlockDescription User input from the Block Description parameter of the

block properties dialog box. BlockDescription contains
an optional token attribute, style. The only valid value
forstyle is content_only, which is case-sensitive and
enclosed in double quotes. Use the content_only style
when you want to include only the block description
content that you entered in the block parameter dialog.
The syntax for the token attribute style is:

%<BlockDescription style = ”content_only”>

Shared Utility Function Banner

The shared utility function banner section contains comments and tokens for use in
generating a custom shared utility function banner. The shared utility function banner
precedes C or C++ shared utility function generated during the build process. If you omit
the shared utility function banner section from the CGT file, the default shared utility
function banner emits to the generated code. The following section is the default shared
utility function banner section provided with the default CGT file, matlabroot/toolbox/
rtw/targets/ecoder/ert_code_template.cgt.

0060609694044 AR AR A0 0606000604044 04004 AR A6 6606066606696 J694 V694694 6%36%

%% Custom shared utility function banner section (optional)

%% Customize banners for functions generated in shared location by using the

%% following predefined tokens: %<FunctionName>, %<FunctionDescription>,

%% %<Arguments>, %<ReturnType>.

%%

<SharedUtilityBanner style="classic">

%<FunctionDescription>
</ShareduUtilityBanner>

Summary of Tokens for Shared Utility Function Banner Generation

FunctionName Name of function

Generate Custom File and Function Banners

Arguments List of function arguments
ReturnType Return type of function
FunctionDescription Short abstract about function
File Trailer

The file trailer section contains comments for generating a custom file trailer. The file
trailer follows C or C++ code generated from the model. If you omit the file trailer section
from the CGT file, no file trailer emits to the generated code. The following section is the
default file trailer provided in the default CGT file.
o L e L e L e e e e e

%% Custom Ffile trailer section (optional)

%%

<FileTrailer style="classic">

File trailer for generated code.

[EOF]
</FileTrailer>

Tokens available for the file banner are available for the file trailer. See Summary of
Tokens for File Banner Generation.

15-73

15 code Appearance

Template Symbols and Rules

15-74

In this section...

“Introduction” on page 15-74

“Template Symbol Groups” on page 15-74

“Template Symbols” on page 15-77

“Rules for Modifying or Creating a Template” on page 15-81

Introduction

“Template Symbol Groups” on page 15-74 and “Template Symbols” on page 15-77
describe custom file processing (CFP) template symbols and rules for using them. The
location of a symbol in one of the supplied template files (code_c_template.cgt,
code_h_template.cgt, data c_template.cgt, or data_h_template.cgt)
determines where the items associated with that symbol are located in the corresponding
generated file. “Template Symbol Groups” on page 15-74 identifies the symbol

groups, starting with the parent (“Base”) group, followed by the children of each parent.
“Template Symbols” on page 15-77 lists the symbols alphabetically.

Template Symbol Groups
Symbol Group Symbol Names in This Group
Base (Parents) Declarations

Defines

Definitions
Documentation
Enums
Functions
Includes

Types

Declarations ExternalCalibrationLookuplD

Template Symbols and Rules

Symbol Group

Symbol Names in This Group

ExternalCalibrationLookup2D
ExternalCalibrationScalar

ExternalVariableScalar

Defines

LocalDefines

LocalMacros

Definitions

FilescopeCalibrationLookuplD
FilescopeCalibrationLookup2D
FilescopeCalibrationScalar
FilescopeVariableScalar
GlobalCalibrationLookuplD
GlobalCalibrationLookup2D
GlobalCalibrationScalar

GlobalVvariableScalar

15-75

15 code Appearance

15-76

Symbol Group

Symbol Names in This Group

Documentation

Abstract

Banner

Created

Creator

Date
Description
FileName
History
LastModiftiedDate
LastModifiedBy
Mode IName
ModelVersion
Modi fiedBy
ModifiedComment

ModifiedHistory

Notes

ToolVersion

Functions

CFunctionCode

Types

This parent has no children.

Template Symbols and Rules

Template Symbols

Symbol Name*

Symbol Group

Symbol
Scope

Symbol Description
(What the symbol puts in the
generated file)

Abstract

Documentation

N/A

User-supplied description of
the model or file. Placed in

the generated file based on

the Stateflow note, Simulink
annotation, or DocBlock on the
model.**

Banner

Documentation

N/A

Comments located near top of
the file. Contains information
that includes model and
software versions, and date file
was generated.

CFunctionCode

Functions

File

C/C++ functions. Must be at the
bottom of the template.

Created

Documentation

N/A

Date when model was created.
From Created on field on
Model Properties dialog box.

Creator

Documentation

N/A

User who created model. From
Created by field on Model
Properties dialog box.

Date

Documentation

N/A

Date file was generated. Taken
from computer clock.

Declarations

Base

Data declaration of a signal
or parameter. For example,
extern real T globalvar;.

Defines

Base

File

Required #defines of .h files.

Definitions

Base

File

Data definitions of signals or
parameters.

Description

Documentation

N/A

Description of model. From
Model description field on
Model Properties dialog box.**

15-77

15 code Appearance

Symbol Name* Symbol Group Symbol | Symbol Description
Scope (What the symbol puts in the

generated file)

Documentation Base N/A Comments about how to
interpret the generated files.

Enums Base File Enumerated data type
definitions.

ExternalCalibrationLookuplD|Declarations External |***

ExternalCalibrationLookup2D|Declarations External |***

ExternalCalibrationScalar |Declarations External |***

ExternalVariableScalar Declarations External |***

FileName Documentation |[N/A Name of the generated file.

FilescopeCal ibrationLookupl|Definitions File wkk

FilescopeCal ibrationLookup2|Definitions File *kk

FilescopeCalibrationScalar |Definitions File ki

FilescopeVariableScalar Definitions File Fkk

Functions Base File Generated function code.

GlobalCalibrationLookuplD |Definitions Global wkk

GlobalCalibrationLookup2D |Definitions Global wkk

GlobalCalibrationScalar Definitions Global wkk

GlobalVariableScalar Definitions Global wkk

History Documentation |N/A User-supplied revision history
of the generated files. Placed
in the generated file based on
the Stateflow note, Simulink
annotation, or DocBlock on the
model.**

Includes Base File #include preprocessor

directives.

15-78

Template Symbols and Rules

Symbol Name*

Symbol Group

Symbol
Scope

Symbol Description
(What the symbol puts in the
generated file)

LastModifiedDate

Documentation

N/A

Date when model was last
saved. From Last saved on
field on Model Properties dialog
box.

LastModifiedBy

Documentation

N/A

User who last saved model.
From Last saved by field on
Model Properties dialog box.

LocalDefines

Defines

File

#define preprocessor directives
from code-generation data
objects.

LocalMacros

Defines

File

C/C++ macros local to the file.

Mode IName

Documentation

N/A

Name of the model.

ModelVersion

Documentation

N/A

Version number of the Simulink
model. From Model version
field on Model Properties dialog
box.

Modi fiedBy

Documentation

N/A

Name of user who last modified
the model.

ModifiedComment

Documentation

N/A

Comment user enters in the
Modified Comment field on
the Log Change dialog box.
For more information, see “Log
Comments History”.

ModifiedHistory

Documentation

N/A

Text from Model history field
on Model Properties dialog
box.**

Notes

Documentation

N/A

User-supplied miscellaneous
notes about the model or
generated files. Placed in

the generated file based on

the Stateflow note, Simulink
annotation, or DocBlock on the
model.**

15-79

15 code Appearance

Symbol Name*

Symbol Group

Symbol
Scope

Symbol Description
(What the symbol puts in the
generated file)

ToolVersion

Documentation

N/A

A list of the versions of the
toolboxes used in generating the
code.

Types

Base

Data types of generated code.

* Symbol names must be enclosed between %< >. For example, %<Functions>.

** This symbol can be used to add a comment to the generated files. See “Add Global
Comments”. The code generator places the comment in each generated file whose
template has this symbol name. The code generator places the comment at the location
that corresponds to where the symbol name is located in the template file.

*** The description can be deduced from the symbol name. For example,
GlobalCalibrationScalar is a symbol that identifies a scalar. It contains data of
global scope that you can calibrate .

15-80

Template Symbols and Rules

Rules for Modifying or Creating a Template

The following are the rules for creating a MPF template. “Comparison of a Template and
Its Generated File” on page 15-58 illustrates several of these rules.

1

10

11

12

Place a symbol on a template within the %< > delimiter. For example, the symbol
named Includes should look like this on a template: %<Includes>. Note that
symbol names are case sensitive.

Place a symbol on a template where desired. Its location on the template determines
where the item associated with this symbol is located in the generated file. If no item
is associated with it, the symbol is ignored.

Place a C/C++ statement outside of the %< > delimiter, and on a different line than
a %< > delimiter, for that statement to appear in the generated file. For example,
#pragma message ('my text') in the template results in #pragma message
('my text'™) at the corresponding location in the generated file. Note that the
statement must be compatible with your C/C++ compiler.

Use the .cgt extension for every template filename. ("cgt" stands for code
generation template.)

Note that %% $Revision: 1.1.4.10.4.1 $ appears at the top of the MathWorks
supplied templates. This is for internal MathWorks use only. It does not need to be
placed on a user-defined template and does not show in a generated file.

Place a comment on the template between /* */ as in standard ANSI C*. This
results in /7*comment*/ on the generated file.

Each MPF template must have all of the Base group symbols, in predefined order.
They are listed in “Template Symbol Groups” on page 15-74. Each symbol in the
Base group is a parent. For example, Declarations is a parent symbol.

Each symbol in a non-Base group is a child. For example, LocalMacros is a child.

Except for Documentation children, children must be placed after their parent,
before the next parent, and before the Functions symbol.

Documentation children can be located before or after their parent in any order
anywhere in the template.

If a non-Documentation child is missing from the template, the code generator places
the information associated with this child at its parent location in the generated file.

If a Documentation child is missing from the template, the code generator omits the
information associated with that child from the generated file.

4. ANSI is a registered trademark of the American National Standards Institute, Inc.

15-81

15 code Appearance

Code Annotation for Justifying Polyspace Checks

15-82

With the Polyspace Code Prover™ product you can apply Polyspace verification to
Embedded Coder generated code. The software detects run-time errors in the generated
code and helps you to locate and fix model faults.

Polyspace might highlight overflows for certain operations that are legitimate because
of the way Embedded Coder implements these operations. Consider the following model
and the corresponding generated code.

32 /* Sum: "<Root>/Sum” incorporates:

33 * Inport: "<Root>/Inl-

34 * Inport: "<Root>/In2*"

35 */

36 qY_O0 = sat_add_U.Inl + sat_add_U.In2;

37 if ((sat_add_U.Inl < 0) && ((sat_add_U.In2 < 0) && (qY_0 >= 0))) {
38 qY_0 = MIN_int32_T;

39 } else {

40 if ((sat_add_U.Inl > 0) && ((sat_add_U.In2 > 0) && (qY_0 <= 0))) {
41 qY_0 = MAX_int32_T;

42 }

43 3}

Embedded Coder software recognizes that the largest built-in data type is 32-bit. It is not
possible to saturate the results of the additions and subtractions using MIN_INT32 and
MAX_INT32 and a bigger single-word integer data type. Instead the software detects the
results overflow and the direction of the overflow, and saturates the result.

If you do not provide justification for the addition operator on line 36, a Polyspace
verification generates an orange check that indicates a potential overflow. The
verification does not take into account the saturation function of lines 37 to 43. In
addition, the trace-back functionality of Polyspace Code Prover does not identify the
reason for the orange check.

To justify overflows from operators that are legitimate, on the Configuration
Parameters > Code Generation > Comments pane:

Code Annotation for Justifying Polyspace Checks

* Under Overall control, select the Include comments check box.

+ Under Auto generate comments, select the Operator annotations check box.

When you generate code, the Embedded Coder software annotates the code with
comments for Polyspace. For example:

32 /* Sum: "<Root>/Sum® incorporates:

33 * Inport: "<Root>/Inl*

34 * Inport: "<Root>/In2"

35 */

36 qY_O = sat_add_U.Inl +/*MW:0vOk*/ sat_add_U.In2;

When you run a verification using Polyspace Code Prover, the Polyspace software uses
the annotations to justify the operator-related orange checks and assigns the Not a
defect classification to the checks.

15-83

15 code Appearance

Manage Placement of Data Definitions and Declarations

15-84

In this section...

“Overview of Data Placement” on page 15-84
“Priority and Usage” on page 15-85
“Ownership Settings” on page 15-90
“Memory Section Settings” on page 15-91
“Data Placement Rules” on page 15-91
“Settings for a Data Object” on page 15-91

“Data Placement Rules and Results” on page 15-99

Overview of Data Placement

This chapter focuses on module packaging features (MPF) settings that are
interdependent. Their combined values, along with Simulink partitioning, determine the
file placement of data definitions and declarations, or data placement. This includes

* The number of files generated.

* Whether or not the generated files contain definitions for a model's global identifiers.
And, if a definition exists, the settings determine the files in which MPF places them.

* Where MPF places global data declarations (extern).

The following six MPF settings are distributed among the main procedures and form an
important interdependency:

+ The Data definition field on the Code Placement pane of the Configuration
Parameters dialog box.

+ The Data declaration field on the Code Placement pane of the Configuration
Parameters dialog box.

* The Owner field of the data object in the Model Explorer and the checkbox for Use
owner from data object for data definition placement on the Code Placement
pane of the Configuration Parameters dialog box. The term "ownership settings"
refers to these fields together.

+ The Definition file field of the data object on the Model Explorer.
+ The Header file field of the data object on the Model Explorer.
+ The Memory section field of the data object on the Model Explorer.

Manage Placement of Data Definitions and Declarations

Priority and Usage

+ “Overview” on page 15-85

+ “Read-Write Priority” on page 15-86

+ “Global Priority” on page 15-89

+ “Definition File, Header File, and Ownership Priorities” on page 15-90

Overview

There is a priority order among interdependent MPF settings. From highest to lowest,
the priorities are

* Definition File priority

* Header File priority

* Ownership priority

+ Read-Write priority or Global priority

Priority order varies inversely with frequency of use, as illustrated below. For example,
Definition File is highest priority but least used.

Override Global or Read-Write
for selected data object.

w

Highest priority Definition File Least used
A
Header File
Ownership
Read-Write Global
Y
Lowest priority Most used

MPF Settings Priority and Usage

15-85

15 code Appearance

15-86

Unless they are overridden, the Read-Write and Global priorities place in the generated
files all of the model's MPF-derived data objects that you selected using Data Object
Wizard. (See “Create Data Objects with Data Object Wizard” for details.) Before
generating the files, you can use the higher priority Definition file, Header file, and
Ownership, as desired, to override Read-Write or Global priorities for single data objects.
Most users will employ Read-Write or Global, without an override. A few users, however,
will want to do an override for certain data objects. We expect that those users whose
applications include multiple modules will want to use the Ownership priority.

The priorities are used only for those data objects that are derived from
Simulink.Signal and Simulink.Parameter, and whose custom storage classes are
specified using the Custom Storage Class Designer. (For details, see “Design Custom
Storage Classes and Memory Sections”.) Otherwise, the build process determines the
data placement.

Read-Write Priority

This is the lowest priority. Consider that a model consists of one or more Simulink
blocks or Stateflow diagrams. There can be subsystems within these. For the purpose of
illustration, think of a model with one top-level block called fuelsys. You double-clicked
the block and now see three subsystems labeled subsys1, subsys2 and subsys3, as
shown in the next figure. Signals a and b are outputs from the top-level block (Fuelsys).
Signal a is an input to subsysl and b is input to subsys2. Signal c is an output from
subsysl. Notice the other inputs and outputs (d and e). Signals a through e have
corresponding data objects.

As explained in “Data Definition and Declaration Management”, MPF provides you
with the means of selecting a data object that you want defined as an identifier in the
generated code. MPF also allows you to specify property values for each data object.

Manage Placement of Data Definitions and Declarations

Model
a —» subsys1 |—
c
g subsys3|—» e
d L
b —» subsys2 |—

t 1

fuelsys

The Generated Files

We generate code for this model. As shown in the figure below, this resultsina .c
source file corresponding to each of the subsystems. (In actual applications, there could
be more than one .c source file for a subsystem. This is based on the file partitioning
previously selected for the model. But for our illustration, we only need to show one

for each subsystem.) Data objects a through e have corresponding identifiers in the
generated files.

A .c source file has one or more functions in it, depending on the internal operations
(functions) of its corresponding subsystem. An identifier in a generated .c file has local
scope when it is used only in one function of that .c file. An identifier has file scope when
more than one function in the same .c file uses it. An identifier has global scope when
more than one of the generated files uses it.

A subsystem's source file contains the definitions for that subsystem's data objects that
have local scope or file scope. (These definitions are not shown in the figure.) But where
are the definitions and declarations for data objects of global scope? These are shown in
the next figure.

15-87

15 code Appearance

Model Generated Files
Results of Read-Write Priority
a —>»{ subsys1|— subsys1.c subsys3.c
int c; int e;
c _ extern int a; extern int c;
'subsys?;—r e extern int d;
r >
b — subsys2 |— Subsys2. ¢ .fuelsys.c
int d; int a;
extern int b; int b;
a b
t 1

fuelsys

15-88

For the Read-Write priority, this source file contains the definitions for the subsystem's
global data objects, if this is the file that first writes to the data object's address. Other
files that read (use) that data object only include a reference to it. This is why this
priority is called Read-Write. Since a read and a write of a file are analogous to input
and output of a model's block, respectively, there is another way of saying this. The
definitions of a block's global data objects are located in the corresponding generated file,
if that data object is an output from that block. The declarations (extern) of a block's
global data objects are located in the corresponding generated file, if that data object is
an input to that block.

Settings for Read-Write Priority

The generated files and what they include, as just described, occur when the Read-Write
priority is used. For this to be the case, the other priorities are turned off. That is,

+ The Data definition field on the Code Placement pane is set to Data defined in
source file.

* The Data declaration field on the Code Placement pane is set to Data declared
in source file.

Manage Placement of Data Definitions and Declarations

* The Owner field on the Model Explorer is blank, and the checkbox for the Use
owner from data object for data definition placement field on the Code
Placement pane is not checked.

+ Definition file and Header file on the Model Explorer are blank.

Global Priority

This has the same priority as Read-Write (the lowest) priority. The settings for this are
the same as for Read-Write Priority, except

* The Data definition field on the Code Placement pane is set to Data defined in
single separate source file.

+ The Data declaration field on the Code Placement pane is set to Data declared
in single separate header file.

The generated files that result are shown in the next figure. A subsystem's data objects
of local or file scope are defined in the .c source file where the subsystem's functions are
located (not shown). The data objects of global scope are defined in another .c file (called
global .c in the figure). The declarations for the subsystem's data objects of global scope
are placed in a .h file (called global .h).

For example, data objects of local and file scope for subsys1 are defined in subsysl.c.

Signal ¢ in the model is an output of subsysl and an input to subsys2. So c is used by
more than one subsystem and thus is a global data object. Because of the global priority,
the definition for c (int c;)isin global.c. The declaration for ¢ (extern int c;)is
in global .h. Since subsys?2 uses (reads) c, #include ""global.h" isin subsys2.c.

15-89

15 code Appearance

Model Generated Files
Results of Global Priority
a —>»| subsys1 |— subsysi.c subsys3.c
#include 'global.h'| | #include 'global.h'
C
subsys3|—» e
d > subsys2.c fuelsys.c
#include 'global.h'| [#include 'global.h'
b —{ subsys2 |—
- global.c global.h
a .
int a; extern int a;
T T int b; extern int b;
fuelsys int c;. extern int c;
int d; extern int d;
int e; extern int e;

Definition File, Header File, and Ownership Priorities

While the Read-Write and Global priorities operate on all MPF-derived data objects that
you want defined in the generated code, the remaining priorities allow you to override
the Read-Write or Global priorities for one or more particular data objects. There is a
high-to-low priority among these remaining priorities — Definition File, Header File, and
Ownership — for a particular data object, as shown in MPF Settings Priority and Usage

Ownership Settings

Ownership settings refers to the on or off setting specified using the Use owner from
data object for data definition placement checkbox on the Code Placement pane
of the Configuration Parameters dialog box, and the Owner field of a data object in the
Model Explorer. These settings do not control what files are generated. These settings

15-90

Manage Placement of Data Definitions and Declarations

only specify definitions and extern statements. There are four possible configurations,
as shown in “Ownership Settings” on page 15-100.

Memory Section Settings

Memory sections allow you to specify storage directives for a data object. As shown in
“Parameter and Signal Property Values”, the possible values for the Memory section
property of a parameter or signal object are Default, MemConst, MemVolatile or
MemConstVolatile.

If you specify a filename for Definition file, and select Default, MemConst,
MemVolati le or MemConstVolati le for the Memory section property, the code
generation software generates a .c file and an _h file. The .c file contains the definition
for the data object with the pragma statement or qualifier associated with the Memory
section selection. The .h file contains the declaration for the data object. The .h file can
be included, using the preprocessor directive #include, in files that need to reference
the data object.

You can add more memory sections. For more information, see “Design Custom Storage
Classes and Memory Sections” and “Memory Sections”.

Data Placement Rules

For a complete set of data placement rules in convenient tabular form, based on the
priorities discussed in this chapter, see “Data Placement Rules and Results” on page
15-99.

Settings for a Data Object

* “Introduction” on page 15-91

+ “Read-Write” on page 15-93

* “Ownership” on page 15-94

+ “Header File” on page 15-96

* “Definition File” on page 15-98

Introduction

“Settings and Resulting Generated Files” on page 15-100 provides example settings for
one data object of a model. Eight examples are listed so that you can see the generated

15-91

15 code Appearance

15-92

files that result from a wide variety of settings. Four examples from this table are
discussed below in more detail. These discussions provide information for understanding
settings you might choose. For illustration purposes, the four examples assume that we
are dealing with an overall system that controls engine idle speed.

The next figure shows that the software component of this example system consists of
two modules, IAC (Idle Air Control), and IO (Input-Output).

TAC (Idle Air Control) Module 10 Module

o T T 1 (External to MPF)
| Generated File for Chart spd_filt |

___________ |
I : : 10.c I
I _ I
| Depends on MPF Settings | | |/* Definitions*/ I
| Ll real T meas_spd = 0.0; | |
I : : real T iac_cmd = 0.0; | |
I I
| Il |
I . . (R I
| Generated File for Chart iac_ctrl | | 10.h |
| Il |
| | I |/* External Data*/ |
I Depends on MPF Settings : I [extern real T meas_spd;| |
| | : extern real T iac_cmd; :
I
| Il |
I o —————— — — — — — — — d e e e e e |

Engine Idle Speed Control System

The code in the I0 module controls the system's IO hardware. Code is generated only for
the IAC module. (Some other means produced the code for the IO module, such as hand-
coding.) So the code in 10 is external to MPF, and can illustrate legacy code. To simplify
matters, the IO code contains one source file, called 10.c, and one header file, called
10._h.

The IAC module consists of two Stateflow charts, spd_filt and 1ac_ctrl. The
spd_Tfi It chart has two signals (meas_spd) and Fi lt_spd), and one parameter (a).
The 1ac_ctrl chart also has two signals (Filt_spd and 1ac_cmd) and a parameter
(ref_spd). (The parameters are not visible in the top-level charts.) One file for each

Manage Placement of Data Definitions and Declarations

chart is generated. This example system allows us to illustrate referencing from file to
file within the MPF module, and model to external module. It also illustrates the case
where there is no such referencing.

meas_sp-:l% fiitt_spd

Iml

apd_filt

L | filt_spd I:t:][il iac_cmd

Out1

iac_chrl

Proceed to the discussion of the desired example settings:

+ “Read-Write” on page 15-93

+ “Ownership” on page 15-94

+ “Header File” on page 15-96

+ “Definition File” on page 15-98

Read-Write

These settings and the generated files that result are shown as Example Settings 1 in
“Settings and Resulting Generated Files” on page 15-100. As you can see from the

table, this example illustrates the case in which only one . c source file (for each chart) is
generated.

So, for the IAC model, select the following settings. Accept the Data defined in
source file in the Data definition field and the Data declared in source
file in the Data declaration field on the Code Placement pane of the Configuration
Parameters dialog box. Accept the default unchecked Use owner from data object
for data definition placement field. Accept the default blank settings for the Owner,
Definition file and Header file fields on the Model Explorer. For Memory section,
accept Default. Now the Read-Write priority is active. Generate code. The next figure
shows the results in terms of definition and declaration statements.

15-93

15 code Appearance

15-94

TAC (Idle Air Control) Module 10 Module

| .] (External to MPF)

| Generated File for Chart spd filt |
(I 1

: spd_filt.c | 10.¢ :

| /* Definitions*/ I | |/* pefinitions*/ I

I const r‘eal_T a=0.9; I I r-eal_T meas_spd = 0.0; I

I r‘eal_T fllt_Spd = 0.0; I I r-eal_T iac_cmd = 0.0; I

| real T meas_spd = 0.0; I I |

| L |

| . . b |

| Generated File for Chart iac_ctrl | | 10.h |

. I :

| iac ctrl.c | [I

| /* Definitions*/ | | | /* External Data*/ |

| const real T ref spd = 0.0; | | | extern real T meas_spd; |

I real T iac omd = 0.0 | | | extern real T iac_cmd; I

— — . H

[/*Declarations*/ I : :

I ; .

| extern real T filt_spd; I - - .

| I

______________ d

Engine Idle Speed Control System (Read-Write Example)

The code generator generated a spd_Filt.c for the spd_Filt chart and 1ac_ctrl.c
for the iac_ctrl chart. As you can see, MPF placed definitions of data objects for the
spd_Filtchartin spd_filt.c. It placed definitions of data objects for the 1ac_ctrl
chart in 1ac_ctrl.c.

However, notice real _T Filt_spd. This data object is defined in spd_Ffilt.c and
declared in 1ac_ctrl.c. That is, since the Read-Write priority is active, Filt_spd is
defined in the file that first writes to its address. And, it is declared in the file that reads
(uses) it. Further, real T meas_spd is defined in both spd_filt.c and the external
10.c. And, real _T iac_cmd is defined in both 1ac_ctrl.c and I10.c.

Ownership

See tables “Ownership Settings” on page 15-100 and “Settings and Resulting
Generated Files” on page 15-100. In the “Read-Write” on page 15-93, there are

several instances where the same data object is defined in more than one .c source file,
and there is no declaration (extern) statement. This would result in compiler errors

Manage Placement of Data Definitions and Declarations

during link time. But in this example, we configure MPF Ownership rules so that linking
can take place. Notice the Example Settings 2 row in “Settings and Resulting Generated
Files” on page 15-100. Except for the ownership settings, assume these are the settings
you made for the model in the IAC module. Since this example has no Definition file or
Header file specified, now Ownership takes priority. (If you specified a Definition file
or Header file, MPF ignores the ownership settings.)

On the Code Placement pane of the Configuration Parameters dialog box, check the box
for the Use owner from data object for data definition placement field. Open the
Model Explorer (by issuing the MATLAB command daexplr) and, for all data objects
except meas_spd and 1ac_cmd, type IAC in the Owner field (case sensitive). Then, only
for the meas_spd and 1ac_cmd data objects, type IO as their Owner (case sensitive).
Generate code.

15-95

15 code Appearance

The results are shown in the next figure. Notice the extern real T meas_spd
statement in spd_filt.c, and extern real _T iac_cmdin iac_ctrl.c. MPF placed
these declaration statements in the files where these data objects are used. This allows
the generated source files (spd_Ffilt.c and iac_ctrl.c) to be compiled and linked

with 10.c.
TAC (Idle Air Control) Module IO Module
| .) 1 (External to MPF)
Generated File for Chart spd_filt |
I pa_

___________ i |
| spd_filt.c I 10.c |
I /* Definitions*/ : I I
| const real T a = 0.9; | | |/* Definitions*/ I
I real T filt spd = 0.0; | |real_T meas_spd = 0.0; |
| /*Declarations*/ | | [real T iac_cmd = 0.0; |
| extern real T meas_spd; : | |
I [I
| . . b |
| Generated File for Chart iac_ctrl | I 10.h |

. I :

I iac ctrl.c | [I

| /* Definitions*/ | : /* External Data*/ |

[const real T ref spd = 0.0; | extern real T meas_spd; |

| /*Declarations*/ | : extern real_T iac_cmd; |

| extern real T filt_spd; I | :

I - .

| extern real T iac_cmd; I L X
I

e ———]

Engine Idle Speed Control System (Ownership Example)

Header File

These settings and the generated files that result are shown as Example Settings 3

in “Settings and Resulting Generated Files” on page 15-100. This example has no
Definition file specified. If you specified a Definition file, MPF ignores the Header
file setting. The focus of this example is to show how the Header file settings result in
the linking of the two chart source files to the external 1O files, shown in the next figure.
(Also, ownership settings will be used to link the two chart files with each other.)

As you can see in the figure, the meas_spd and 1ac_cmd identifiers are defined in 10.c
and declared in 10.h. Both of these identifiers are external to the generated .c files.

15-96

Manage Placement of Data Definitions and Declarations

You open the Model Explorer and select both the meas_spd and 1ac_cmd data objects.
For each of these data objects, in the Header file field, specify 10.h, since this is where
these two objects are declared. This setting allows the spd_filt.c source file to compile
and link with the external 10.c file.

Now we configure the ownership settings. In the Model Explorer, select the Filt_spd
data object and set its Owner field to 1AC. Then, on the Code Placement pane of the
Configuration Parameters dialog box, check the box for the Use owner from data
object for data definition placement field. Now the spd_Fi It source file links to the
iac_ctrl source file. Generate code. See the figure below.

IAC (Idle Air Control) Module 10 Module

[————————— — — — — —
| Generated File for Chart spd_filt : (External to MPF)

ey @ _—_—————————————— |
| spd_filt.c | I 10.c I
| /* Includes*/ | | I
| #include <IO.h> | | |/* Definitions*/ I
| /* Definitions*/ | | |real T meas_spd = 0.0; I
| const real T a = 0.9; | | |real_T iac_cmd = 0.0; I
| real T filt spd = 0.0; | | I
| - |

. . I
| Generated File for Chart iac_ctrl : | 10.h :
I iac_ctrl.c | I
| I Inoludest/ | | | /* External Data*/ |
I #include <I0.h> | | | extern real T meas_spd; |
: I DefinitiOIlws*/ | | | extern real T iac_cmd; |
I const real T ref_spd = 0.0; I : I
I /* Declarations*/ | L _!
I extern real T filt_spd; I
I

|
| I
______________ d

Engine Idle Speed Control System (Header File Example)

Since you specified the 10.h filename for the Header file field for the meas_spd and
iac_ctrl objects, the code generator assumed that their declarations are in 10.h.
So the code generator placed #include 10.h in each source file: spd_Ffilt.c and

15-97

15 code Appearance

15-98

iac_ctrl._c. So these two files will link with the external 10 files. Also, due to the
ownership settings that were specified, the code generator places the real _T filt_spd
= 0.0; definition in spd_Ffilt.c and declares the filt_spd identifier in iac_ctrl.c
with extern real T iac_cmd;. Consequently, the two source files will link together.

Definition File

These settings and the generated files that result are shown as Example Settings 4 in
“Settings and Resulting Generated Files” on page 15-100. Notice that a definition
filename is specified. The settings in the table only apply to the data object called a. You
have decided that you do not want this object defined in spd_Filt.c, the generated
source file for the spd_Ffi It chart. (There are many possible organizational reasons

one might want an object declared in another file. It is not important for this example to
specify the reason.)

For this example, assume the settings for all data objects are the same as those indicated
in “Header File” on page 15-96, except for the data object a. The description below
identifies only the differences that result from this.

Open the Model Explorer, and select data object a. In the Definition file field specify a
filename. Choose filter_constants.c. Generate code. The results are shown in the
next figure.

Manage Placement of Data Definitions and Declarations

TAC (Idle Air Control) Module 10 Module
_____________ -
| Generated File for Chart spd_filt | (External to MPF)
spd_filt.e @ =, ——_———————— -
I = I
| /* Includes*/ | : 10.c :
[#%nclude "IQ.h“ | | |/* Definitions*/ I
| #include "filter_constants.h | | |real_T meas_spd = 0.0; |
* 1 1 1 *
I /* Definitions*/ I | |real T iac_cmd = 0.0; |
| real T filt_spd = 0.0; | | |
: filter constants.c I |
| /* Definitions */ : I 10.h I
| const real T a = 0.9; | | |
| I | | /* External Data*/ |
| global.h I | | extern real T meas_spd; |
/* Declarations */ I | | extern real T iac_cmd; |
: extern real_T a; I | I
| ! !
| Generated File for Chart iac_ctrl | L -
I iac_ctrl.c |
I /* Includes*/ |
#include <IO.h>
I I
I /* Definitions*/ |
I constr real T ref_spd = 0.0; I
I /* Declarations*/ I
I extern real T filt_spd; I
I extern real T iac_cmd; I
- Q- - - il

Engine Idle Speed Control System (Definition File Example)
The code generator generates the same files as in the “Header File” on page 15-96,
and adds a new file, Filter_constants.c. Data object a now is defined in

filter_constants.c, rather than in the source file spd_Filt.c, as it is in the
example. This data object is declared with an extern statement in global .h

Data Placement Rules and Results

* “Ownership Settings” on page 15-100

15-99

15 code Appearance

“Settings and Resulting Generated Files” on page 15-100

“Data Placement Rules” on page 15-102

Ownership Settings
Row Enable Data Ownership Owner Setting Result*
Number |Checkbox
1 0] b Blank** Embedded Coder determines whether
the current model defines data.
2 OffF** A name is specified. | Embedded Coder determines whether
the current model defines data.
3 on Blank** Embedded Coder determines whether
the current model defines data.
4 On A name is specified. | The model specified in the Owner
setting defines data.
* See also “Ownership Settings” on page 15-90.
** Default.
Settings and Resulting Generated Files
Data Defined |Data Owner- Defined Header |Generated Files
In... Declared In... |ship* File** File
Example Source file |Source file |Blank Blank Blank -c/ .cpp source file
Settings 1
(Rd-Write
Example)
Example Source file [Source file |Name of |[Blank Blank -c/ .cpp source file
Settings 2 module
(Owner- ship specified
Example)
Example Source file |Source file |Blank Blank Desired |.c/.cpp source file
Settings 3 include -h definition file
(Header File filename
Example) specified.
Example Source file |Source file |Blank Desired Desired |.c/.cpp source file
Settings 4 definition |include

15-100

Manage Placement of Data Definitions and Declarations

Data Defined |Data Owner- Defined Header |Generated Files
In... Declared In... |ship* File** File
(Def. File filename |[filename |.c/.cpp definition
Example) specified. |specified. |file*
-h definition file*
Example Single Source file |Blank Blank Blank -c/ .cpp source file
Settings 5 separate global .c/ .cpp
source file
Example Single Single Blank Blank Blank -c/ .cpp source file
Settings 6 separate separate global .c/.cpp
source file |header file global .h
Example Single Single Name of |Blank Blank -c/ .cpp source file
Settings 7 separate separate module global .c/.cpp
source file |header file |specified global .h
Example Single Single Blank Blank Desired |.c/.cpp source file
Settings 8 separate separate include |[global.c/.cpp
source file |header file filename |global.h
specified. | .h definition file

* "Blank" in ownership setting means that the check box for the Use owner from data
object for data definition placement field on the Code Placement pane is OFF and
the Owner field on the Model Explorer is blank. "Name of module specified" can be a
variety of ownership settings as defined in “Ownership Settings” on page 15-100.

** The code generator generates a definition .c/.cpp file for every data object for
which you specified a definition filename (unless you selected #DEF INE for the Memory
section field). For example, if you specify the same definition filename for all data
objects, only one definition .c/.cpp file is generated. The code generator places

declarations in model . h by default, unless you specify Data declared in single
separate header file for the Data declaration option on the Code Generation
> Code Placement pane of the Configuration Parameter dialog box. If you select

that data placement option, the code generator places declarations in global . h. If

you specify a definition filename for each data object, the code generator generates one
definition .c/ .cpp file for each data object and places declarations in model . h by
default, unless you specify Data declared in single separate header file for
Data declaration. If you select that data placement option, the code generator places
declarations in global _h.

15-101

15 code Appearance

Note: If you generate C++ rather than C code, the .c files listed in the following table

will be . cpp files.

Data Placement Rules

Global Settings:

Override Settings for Specific

Results in Generated Files:

Data Object:
Storage Class Data |Data |Def. |Owner |Header |(Where |Where Dec.
Setting Def. Dec. File File Data Def. | Data Dec. |Inclusion
Is Is
mpt or Simulink Noncustom Storage Classes:
auto N/A N/A N/A N/A N/A Note 12 |model.h |Note 1
Exported-- N/A N/A N/A |N/A N/A model .c/model _.h |Note 1
Global
Imported-- N/A N/A N/A |N/A N/A None. model_- |Note 2
Extern, External private.h
Imported--
Extern--
Pointer
Simulink-- N/A N/A N/A N/A N/A Note 13 |model .h |Note 1
Global
mpt or Simulink Custom Storage Class: Imported Data:
Imported-- D/C D/C D/C N/A null None model_- |Note 3
FromFile private.h
Imported-- D/C D/C D/C N/A hdr.h None model_- |Note 4
FromFile private.h
Simulink Custom Storage Class: #define Data:
Define D/C D/C N/A N/A N/A N/A #define, |Noteb
model .h
mpt Custom Storage Class: #define Data:
Define D/C D/C N/A |N/A null N/A #define, |Note 5
model .h

15-102

Manage Placement of Data Definitions and Declarations

Global Settings:

Override Settings for Specific
Data Object:

Results in Generated Files:

Storage Class Data |Data |Def. |Owner |Header |[Where |Where Dec.
Setting Def. Dec. File File Data Def. | Data Dec. |Inclusion
Is Is

Define D/C D/C N/A N/A hdr.h N/A #define, |Note 6
model .h

mpt or Simulink Custom Storage Class: GetSet:

GetSet DIC [DIC [NA |N/A hdr.h [N/A |External |Note 4
hdr.h

mpt or Simulink Custom Storage Class: Bitfield, Struct:

Bitfield, D/C D/C N/A N/A N/A model .c{model .h |Note 7

Struct

mpt Custom Storage Class: Global, Const, ConstVolatile, Volatile:

Global, Const, |auto auto null null or null model .c{model.h |Note 1

Const-- locally

Volatile, owned

Volatile

Global, Const, |src auto (null null or null src.c |model.h |Notel

Const-- locally

Volatile, owned

Volatile

Global, Const, |sep auto null null or null gbl.c |[model.h |[Notel

Const-- locally

Volatile, owned

Volatile

Global, auto |[src null null or null model .c|src.c Note 8

Const, locally

Const-- owned

Volatile,

Volatile

15-103

15 code Appearance

Global Settings:

Override Settings for Specific
Data Object:

Results in Generated Files:

Storage Class Data |Data |Def. |Owner |Header |[Where |Where Dec.

Setting Def. Dec. File File Data Def. | Data Dec. |Inclusion
Is Is

Global, Const, |src src null null or null src.c |src.c Note 8

Const-- locally

Volatile, owned

Volatile

Global, Const, |sep src null null or null gbl.c |[src.c Note 8

Const-- locally

Volatile, owned

Volatile

Global, Const, |auto |[sep null null or null model .c|{gbl .h Note 9

Const-- locally

Volatile, owned

Volatile

Global, Const, |src sep null null or null src.c |gbl_.h Note 9

Const-- locally

Volatile, owned

Volatile

Global, Const, |sep sep null |null or null gbl.c |[gbl.h Note 9

Const-- locally

Volatile, owned

Volatile

Global, Const, |D/C D/C data.c |D/C null data.c |[See Note |Note 10

Const-- 10.

Volatile,

Volatile

Global, Const, [D/C D/C data.c |D/C hdr.h data.c |hdr.h Note 11

Const--

Volatile,

Volatile

15-104

Manage Placement of Data Definitions and Declarations

Global Settings:

Override Settings for Specific
Data Object:

Results in Generated Files:

Storage Class Data |Data |Def. |Owner |Header |[Where |Where Dec.

Setting Def. Dec. File File Data Def. | Data Dec. |Inclusion
Is Is

Global, Const, |auto |D/C null null hdr.h model .c|hdr.h Note 11

Const--

Volatile,

Volatile

Global, Const, |src D/C null null hdr.h src.c |hdr.h Note 11

Const--

Volatile,

Volatile

Global, Const, |sep D/C null null hdr.h gbl.c |hdr.h Note 11

Const--

Volatile,

Volatile

Global, Const, |D/C auto null External |null External imodel.h |Note 1

Const-- owner user--

Volatile, supplied

Volatile file

Global, Const, |D/C src null External |null External [src.c Note 8

Const-- owner user--

Volatile, supplied

Volatile file

Global, Const, |D/C sep null External |null External (gbl .h Note 9

Const-- owner user--

Volatile, supplied

Volatile file

Global, Const, |D/C D/C null External |header .h|External (hdr.h Note 11

Const-- owner user--

Volatile, supplied

Volatile file

15-105

15 code Appearance

Global Settings: |Override Settings for Specific |Results in Generated Files:
Data Object:
Storage Class Data |Data |Def. |Owner |Header |[Where |Where Dec.
Setting Def. Dec. File File Data Def. |Data Dec. |Inclusion
Is Is
Global, Const, [D/C D/C null External |header.h|External lhdr.h Note 11
Const-- owner user--
Volatile, supplied
Volatile file
mpt Custom Storage Class: Exported Data:
ExportTo-File [auto |auto |null |null null model .c/model _.h |Note 1
ExportTo-File |src auto |null null null src.c |model.h |[Notel
ExportTo-File [sep auto |null null null gbl.c |[model_h |Notel
ExportTo-File |auto |src null |null null model .c|src.c Note 8
ExportTo-File |src src null |null null src.c |src.c Note 8
ExportTo-File [sep src null null null gbl.c |(src.c Note 8
ExportTo-File |auto |[sep null null null model .c|{gbl .h Note 9
ExportTo-File |src sep null |null null src.c |[gbl.h Note 9
ExportTo-File [sep sep null |null null gbl.c |[gbl.h Note 9
ExportTo-File |D/C D/C data.gnull null data.c |See Note |[Note 10
10.
ExportTo-File [D/C D/C data.dgnull hdr.h model .c/hdr.h Note 11
ExportTo-File |auto |D/C null |null hdr.h src.c |hdr.h Note 11
ExportTo-File [sep D/C null null hdr.h gbl.c |hdr.h Note 11
Simulink Custom Storage Class: Default, Const, ConstVolatile, Volatile:
Default, auto auto N/A N/A N/A model .c{model .h |Note 1
Const, Const--
Volatile,
Volatile

15-106

Manage Placement of Data Definitions and Declarations

Global Settings:

Override Settings for Specific
Data Object:

Results in Generated Files:

Storage Class
Setting

Data
Dec.

Data
Def.

Def.
File

Owner

Header
File

Where
Data Def.
Is

Where
Data Dec.
Is

Dec.
Inclusion

Default,
Const, Const--
Volatile,
Volatile

Src auto

N/A

N/A

N/A

Src.c

model .h

Note 1

Default,
Const, Const--
Volatile,
Volatile

sep auto

N/A

N/A

N/A

gbl.c

model .h

Note 1

Default,
Const, Const--
Volatile,
Volatile

auto Src

N/A

N/A

N/A

model .c

Src.c

Note 8

Default,
Const, Const--
Volatile,
Volatile

Src Src

N/A

N/A

N/A

Src.cC

Src.c

Note 8

Default,
Const, Const--
Volatile,
Volatile

sep src

N/A

N/A

N/A

gbl.c

Src.c

Note 8

Default,
Const, Const--
Volatile,
Volatile

auto |[sep

N/A

N/A

N/A

model .c

gbl.h

Note 9

Default,
Const, Const--
Volatile,
Volatile

src sep

N/A

N/A

N/A

Src.c

gbl.h

Note 9

15-107

15 code Appearance

Global Settings: | Override Settings for Specific |Results in Generated Files:
Data Object:
Storage Class Data |Data |Def. |Owner |Header |[Where |Where Dec.
Setting Def. Dec. File File Data Def. | Data Dec. |Inclusion
Is Is
Default, sep sep N/A |N/A N/A gbl.c |[gbl.h Note 9
Const, Const--
Volatile,
Volatile
Simulink Custom Storage Class: Exported Data:
ExportTo-File |auto |auto |N/A |N/A null model .c/model _.h |Note 1
ExportTo-File |src auto |[N/A N/A null src.c |model.h |[Notel
ExportTo-File [sep auto |N/A [N/A null gbl.c |[model_h |Notel
ExportTo-File |auto |src N/A |N/A null model .c|src.c Note 8
ExportTo-File |src src N/A |N/A null src.c |src.c Note 8
ExportTo-File [sep src N/A |N/A null gbl.c |(src.c Note 8
ExportTo-File |auto |[sep N/A N/A null model .c|{gbl .h Note 9
ExportTo-File |src sep N/A |N/A null src.c |[gbl.h Note 9
ExportTo-File [sep sep N/A |N/A null gbl.c |[gbl.h Note 9
ExportTo-File |auto |D/C N/A N/A hdr_h model .c|hdr.h Note 11
ExportTo-File |src D/C N/A |N/A hdr._h src.c |hdr.h Note 11
ExportTo-File [sep D/C N/A N/A hdr.h gbl.c |hdr.h Note 11

Notes
In the previous table:
A Declaration Inclusion Approach is a file in which the header file that contains the
data declarations is included.
D/C stands for don't care.
Dec stands for declaration.
Def stands for definition.
gbl stands for global.

15-108

Manage Placement of Data Definitions and Declarations

* hdr stands for header.
* NJ/A stands for not applicable.
« null stands for field is blank.

+ sep stands for separate.

Note 1: model _h is included directly in all source files.

Note 2: model _private.h is included directly in all source files.

Note 3: extern is included in model_private.h, which is in source.c.

Note 4: header.h is included in model_private.h, which is in source.c.

Note 5: model .h is included directly in all source files that use #define.

Note 6: header .h is included in model . h, which is in source files that use #define.
Note 7: model .h is included in all source.c files.

Note 8: extern is inlined in source files where data is used.

Note 9: global .h is included in model . h, which is in all source files.

Note 10: When you specify a definition filename for a data object, a header file is not
generated for that data object. The code generator declares the data object according to
the data placement priorities.

Note 11: header.h is included in model . h, which is in all source files.

Note 12: Signal: Either not defined because it is expression folded, or local data, or
defined in a structure in model . c, all depending on model's code generation settings.
Parameter: Either inlined in the code, or defined in model _data.c.

Note 13: Signal: In a structure that is defined in model . c. Parameter: In a structure
that is defined in model _data.c.

15-109

15 code Appearance

Specify Delimiter for #Includes

15-110

Understanding the purpose of this procedure requires understanding the Header file
property of a data object, described in “Parameter and Signal Property Values”, and
applied in “Create mpt Data Objects with Data Object Wizard”. For a particular data
object, you can specify as the Header File property value a .h filename where that
data object will be declared. Then, in the IncludeFi le section of the generated file, this
-h file is indicated in a #include preprocessor directive.

Further, when specifying the filename as the Header file property value, you may
or may not place it within the double-quote or angle-bracket delimiter. That is, you can
specify it as Filename.h, "Ffilename.h", or <fFilename.h>. The code generator finds
every data object for which you specified a filename as its Header File property value
without a delimiter. By default, it assigns to each of these the double-quote delimiter.

This procedure allows you to specify the angle-bracket delimiter for these instead of the
default double-quote delimiter. See the figure below.

1 In the #include file delimiter field on the Code Placement pane of the
Configuration Parameters dialog box, select #include <header.h> instead of the
default #include "‘header.h".

2 Click Apply.

Enhance Readability of Code for Flow Charts

Enhance Readability of Code for Flow Charts

In this section...

“Appearance of Generated Code for Flow Charts” on page 15-111
“Convert If-Elseif-Else Code to Switch-Case Statements” on page 15-116

“Example of Converting Code to Switch-Case Statements” on page 15-118

Appearance of Generated Code for Flow Charts

When you use Embedded Coder software to generate code for models that include
Stateflow objects, the code from a flow chart resembles the samples that follow.

The following characteristics apply:

* By default, the generated code uses 1 T-elseif-else statements to represent
switch patterns. To convert the code to use switch-case statements, see “Convert
If-Elseif-Else Code to Switch-Case Statements” on page 15-116.

* By default, variables that appear in the flow chart do not retain their names in the
generated code. Modified identifiers guarantee that no naming conflicts occur.

* Traceability comments for the transitions appear between each set of /* and */

markers. To learn more about traceability, see “Trace Stateflow Objects in Generated
Code”.

15-111

15 code Appearance

[==1]
1

2
[== 2]
1

2

W =30}

=207

=103

15-112

Enhance Readability of Code for Flow Charts

if (modelname_U.Inl1 == 1.0) {
/* Transition: "<S1>:11" */
/* Transition: "<S1>:12" */
modelname_Y_.Outl = 10.0;

/* Transition: "<S1>:15" */
/* Transition: "<S1>:16" */
} else {

/* Transition: "<S1>:10" */

if (modelname_U.Inl1 == 2.0) {
/* Transition: "<S1>:13" */
/* Transition: "<S1>:14" */
modelname_Y_Outl = 20.0;

/* Transition: "<S1>:16" */
} else {
/* Transition: "<S1>:17" */
modelname_Y_Outl = 30.0;
b
3

Sample Code for a Decision Logic Pattern

15-113

15 code Appearance

LY = y+X}

for (sf_i = 0; sf_i < 10; sf_i++) {
/* Transition: "<S1>:40" */
/* Transition: "<S1>:41" */
modelname_B.y = modelname_B.y +
modelname_U.In1;

/* Transition: "<S1>:39% */

}

Sample Code for an lterative Loop Pattern

15-114

Enhance Readability of Code for Flow Charts

[exp == 1]

O

2

lexp ==2]

foutcome = 1;}

2

foutcome = 3}

foutcome = 2}

O
O

if (modelname_U.Inl ==

/* Transition:
/* Transition:
modelname_Y.Outl = 1.

/* Transition:
/* Transition:
/* Transition:
/* Transition:

} else {

/* Transition:

"<S1>:
"<S1>:

"<S1>:
"<S1>:
"<S1>:
"<S1>:

"<S1>:

1.0)
149"
150"

151"
152*
158~
159-

156"

{
*/
*/

*/
*/
*/
*/

*/

C

15-115

15 code Appearance

15-116

if (modelname_U.Inl1 == 2.0) {
/* Transition: "<S1>:153" */
/* Transition: "<S1>:154" */
modelname_Y_Outl = 2.0;

/* Transition: "<S1>:155" */
/* Transition: "<S1>:158" */
/* Transition: "<S1>:159" */

} else {
/* Transition: "<S1>:161" */
modelname_Y_Outl = 3.0;

}
}

Sample Code for a Switch Pattern

Convert If-Elseif-Else Code to Switch-Case Statements

When you generate code for embedded real-time targets, you can choose to convert
if-elseif-else code to switch-case statements. This conversion can enhance
readability of the code. For example, when a flow chart contains a long list of conditions,
the switch-case structure:

* Reduces the use of parentheses and braces

* Minimizes repetition in the generated code
How to Convert If-Elseif-Else Code to Switch-Case Statements

The following procedure describes how to convert generated code for the flow chart from
iT-elseif-else to switch-case statements.

Step |Task Reference
1 Verify that your flow chart follows the |“Verify the Contents of the Flow Chart”
rules for conversion. on page 15-120

2 Enable the conversion. “Enable the Conversion” on page
15-121

3 Generate code for your model. “Generate Code for Your Model” on
page 15-122

4 Troubleshoot the generated code. “Troubleshoot the Generated Code” on
page 15-122

Enhance Readability of Code for Flow Charts

Step |Task Reference

+ If you see switch-case
statements for your flow chart, you
can stop.

+ Ifyousee if-elseif-else
statements for your flow chart,
update the chart and repeat the
previous step.

Rules of Conversion

For the conversion to occur, the following rules must hold. LHS and RHS refer to the left-
hand side and right-hand side of a condition, respectively.

Construct Rules to Follow

Flow chart Must have two or more unique conditions, in addition to a default.

For more information, see “How the Conversion Handles Duplicate
Conditions” on page 15-117.

Each Must test equality only.
condition

Must use the same variable or expression for the LHS.

Note: You can reverse the LHS and RHS.

Each LHS Must be a single variable or expression.

Cannot be a constant.

Must have an integer or enumerated data type.

Cannot have any side effects on simulation.

For example, the LHS can read from but not write to global variables.
Each RHS Must be a constant.

Must have an integer or enumerated data type.

How the Conversion Handles Duplicate Conditions

If a flow chart has duplicate conditions, the conversion preserves only the first condition.
The code discards all other instances of duplicate conditions.

15-117

15 code Appearance

After removal of duplicates, two or more unique conditions must exist. If not, no
conversion occurs and the code contains all duplicate conditions.

Example of Generated Code Code After Conversion

if x=1) { switch (xX) {
blockl case 1:

} else if (x == 2) { blockl; break;
block2 case 2:

} else if (x == 1) { // duplicate block2; break;
block3 case 3:

} else if (x == 3) { block4; break;
block4 default:

} else if (x == 1) { // duplicate block6; break;
block5 }

} else {
block6

}

it (x==1) { No change, because only one
blockl unique condition exists

} else if (x == 1) { // duplicate
block2

} else {
block3

}

Example of Converting Code to Switch-Case Statements

Suppose that you have the following model with a single chart.

D e Y b i €

In1 Out1

Chart

The chart contains a flow chart and four MATLAB functions:

15-118

Enhance Readability of Code for Flow Charts

/* Traffic Controller */

[ight(intersection) == RED]

_ MATLAB Function
1) stop
2
[light{intersection) == YELLOW] MATLAB Function
slowdown
(1 =) istop()}
2
MATLAB Function
alerate(): slowdown();
{accelerate()} { Uit accelerate
“?1)" é‘"‘ /\y) MATLAB Function
color = light(x)

O

The MATLAB functions in the chart contain the code in the following table. In each case,

the Function Inline Option is Auto. For more information about function inlining, see
“Specify Graphical Function Properties”.

MATLAB Function Code
stop function stop
Y%#Hcodegen

coder.extrinsic("dispT);
disp("Not moving."*)

15-119

15 code Appearance

MATLAB Function Code
traffic_speed = 0;
slowdown function slowdown
%#codegen

coder.extrinsic("disp")
disp("Slowing down.")

traffic_speed = 1;

accelerate function accelerate
%#codegen
coder.extrinsic("dispT);
disp(“Moving along.")

traffic_speed = 2;

light function color = light(x)
Y%#codegen
if (x < 20)

color = TrafficLights.GREEN;
elseif (x >= 20 && x < 25)

color = TrafficLights.YELLOW;
else

color
end

TrafficLights_RED;

The output color of the function Iight uses the enumerated type TrafficLights. The
enumerated type definition in TrafficLights.mis:

classdef TrafficLights < Simulink. IntEnumType
enumeration
RED(0)
YELLOW(5)
GREEN(10)
end
end

For more information, see “Define Enumerated Data in a Chart”.
Verify the Contents of the Flow Chart

Check that the flow chart in your chart follows all the rules in “Rules of Conversion” on
page 15-117.

15-120

Enhance Readability of Code for Flow Charts

Construct

How the Construct Follows the Rules

Flow chart

Two unique conditions exist, in addition to the default:

+ [light(intersection) == RED]
* [light(intersection) == YELLOW]

Each condition

Each condition:

* Tests equality
+ Uses the same function call Fight(intersection) for the LHS

Each LHS Each LHS:
+ Contains a single expression
+ Is the output of a function call and therefore not a constant
+ Is of enumerated type TrafficLights, which you define
in TrafficLights.mon the MATLAB path (see “Define
Enumerated Data in a Chart”)
+ Uses a function call that has no side effects
Each RHS Each RHS:

+ Is an enumerated value and therefore a constant

+ Is of enumerated type TrafficLights

Enable the Conversion

Open the Model Configuration Parameters dialog box.

2 Inthe Code Generation pane, select ert.tlc for the System target file.

This step specifies an ERT-based target for your model.

In the Code Generation > Code Style pane, select the Convert if-elseif-else

patterns to switch-case statements check box.

Tip This conversion works on a per-model basis. If you select this check box, the
conversion applies to:

+ Flow charts in all charts of a model
+ MATLAB functions in all charts of a model

15-121

15 code Appearance

+ All MATLAB Function blocks in that model

Generate Code for Your Model

In the Code Generation pane of the Model Configuration Parameters dialog box, click
Build in the lower right corner.

Troubleshoot the Generated Code

The generated code for the flow chart appears something like this:

if (sf_color == RED) {
/* Transition: "<S1>:11" */
/* Transition: "<S1>:12" */
/* MATLAB Function "stop®": "<S1>:23" */
/* "<S1>:23:6" */
rtb_traffic_speed = 0;

/* Transition: "<S1>:15" */
/* Transition: "<S1>:16" */
} else {
/* Transition: "<S1>:10" */
/* MATLAB Function "light": "<S1>:19" */
if (ifelse_using_enums_U.Inl < 20.0) {
/* "<S1>:19:3" */
/* "<S§1>:19:4" */
sf_color = GREEN;
} else if ((ifelse_using_enums_U.Inl >= 20.0) &&
(ifelse_using_enums_U.Inl1 < 25.0)) {
/* "<S1>:19:5" */
/* "<S1>:19:6" */
st_color = YELLOW;
} else {
/* "<S1>:19:8" */
sf_color = RED;

}

if (sf_color == YELLOW) {
/* Transition: "<S1>:13" */
/* Transition: "<S1>:14" */
/* MATLAB Function "slowdown®: "<S1>:24" */
/* "<S1>:24:6" */
rtb_traffic_speed = 1;

15-122

Enhance Readability of Code for Flow Charts

/* Transition: "<S1>:16" */

} else {
/* Transition: "<S1>:17" */
/* MATLAB Function "accelerate®: "<S1>:25" */
/* "<S1>:25:6" */
rtb_traffic_speed = 2;

3

¥

Because the MATLAB function 1ight appears inlined, inequality comparisons appear in
these lines of code:

if (ifelse_using_enums_U.Inl < 20.0) {

} else if ((ifelse_using_enums_U.Inl >= 20.0) &&
(ifelse_using_enums_U.Inl1 < 25.0)) {

Because inequalities appear in the body of the if-elseif-else code for the flow chart,
the conversion to switch-case statements does not occur. To prevent this behavior, do
one of the following:

* Specify that the function 1ight does not appear inlined. See “Change the Inlining
Property for the Function” on page 15-123.

* Modify the flow chart. See “Modify the Flow Chart to Ensure Switch-Case
Statements” on page 15-125.

Change the Inlining Property for the Function

If you do not want to modify your flow chart, change the inlining property for the
function light:

1 Right-click the function box for 1ight and select Properties.

The properties dialog box appears.
2 For Function Inline Option, select Function.
3 Click OK to close the dialog box.

Note: You do not have to change the inlining property for the other three MATLAB
functions in the chart. Because the flow chart does not call those functions during
evaluation of conditions, the inlining property for those functions can remain Auto.

15-123

15 code Appearance

15-124

When you regenerate code for your model, the code for the flow chart now appears
something like this:

switch (ifelse_using_enums_light(ifelse_using_enums_U.In1)) {

}

case RED:

/* Transition: "<S1>:11" */

/* Transition: "<S1>:12" */

/* MATLAB Function "stop®: "<S1>:23" */
/* "<S1>:23:6" */
ifelse_using_enums_Y._Outl = 0.0;
/* Transition: "<S1>:15" */
/* Transition: "<S1>:16" */
break;

case YELLOW:

/* Transition: "<S1>:10" */

/* Transition: "<S1>:13" */

/* Transition: "<S1>:14" */

/* MATLAB Function “"slowdown®": "<S1>:24" */
/* "<S1>:24:6" */

ifelse_using_enums_Y._.Outl = 1.0;

/* Transition: "<S1>:16" */
break;

default:

/* Transition: "<S1>:17" */

/* MATLAB Function "accelerate®: "<S1>:25" */
/* "<S81>:25:6" */
ifelse_using_enums_Y._.Outl = 2.0;
break;

Because the MATLAB function 1ight no longer appears inlined, the conversion to
switch-case statements occurs. The switch-case statements provide the following
benefits to enhance readability:

The code reduces the use of parentheses and braces.

The LHS expression ifelse _using_enums_light(ifelse _using enums_U.Inl)
appears only once, minimizing repetition in the code.

Enhance Readability of Code for Flow Charts

Modify the Flow Chart to Ensure Switch-Case Statements

If you do not want to change the inlining property for the function 1ight, modify your
flow chart:

Add chart local data color_out with the enumerated type TrafficLights.
2 Replace each instance of light(intersection) with color_out.

3 Add the action {color_out = light(intersection)} to the default transition of
the flow chart.

The chart should now look something like this:

fcolor_out = light{intersection);}

MATLAB Function
[color_out == RED] stop
o 0
2 MATLAB Function

[color_put == YELLOW] slowdown

Ot—=0 {stop()}
2

MATLAB Function

accelerate
{;3 ceelerat E[:}I } '{5"3 WO E}.}

! MATLAB Function
' (e \5 color = light(x)
\ =

15-125

15 code Appearance

When you regenerate code for your model, the code for the flow chart uses switch-case
statements.

15-126

Source Code Generation

+ “Generating Code Using Embedded Coder®” on page 16-2
+ “Generate Code Modules” on page 16-10
+ “Generate Reentrant Code from Top-Level Models” on page 16-16

] 6 Source Code Generation

Generating Code Using Embedded Coder®

This example shows how to select a target for a Simulink® model, configure options,
generate C code for embedded systems, and view generated files.

1. Open the model.

model="rtwdemo_ rtwecintro”;
open_system(model)

INC @ sim_out 4’ * LIMIT

equal_to_count

YYYyY

r

+

(13— outp—»1)

Input Output
Amplifier

) switch_out

M |-

Algorithm Description

An g-hit counter feeds a triggered subsystem parameterized by constants INC, LIMIT, and RESET.
The ¥O for the model is Input and Output. The Amplifier subsysterm amplifies the input signal by
gain factor K, which is updated whenever signal equal_to_count is true.

Copyright 1994-2012 The MathWorks, Inc.

2. Open the Configuration Parameters dialog box from the model editor by clicking
Simulation > Model Configuration Parameters.

Alternately, type the following commands at the MATLAB® command prompt.

cs = getActiveConfigSet(model);

16-2

Generating Code Using Embedded Coder®

openDialog(cs);

3. Select the Code Generation node.

onfiguration Parameters: Configuration 3 il

Select: | —Target selection B
obear System target file: Ier‘t.tlc Browse...
-~ Data Import/Export

- Optimization Language: IC j

-~ Signals and Parame... | pascription: Embedded Coder
- Stateflow
EI-Diagnostics —Build process
- Sammple Time Compiler optimization level: IDptimizations off (faster builds) j
- Data Validity
--Type Conversion TLC options: I
- Connectivity Makefile configuration
- Compatibility
v
-Model Referencing ¥ Generate makefile
- Saving Make command: I make_rtw
g Template makefile: Ier‘t_deFauIt_th

- Hardware Implementati...
- Model Referencing
- Simulation Target

—Data specification override

2§ Code Generation I Ignore custom storage classes I Ignore test point signals
- Report 1
- Comments L i
Code Generation Advisor
- Symbols

-~ Custom Code Prioritized objectives: Unspecified Set objectives ... |
- Debug
- Interface Check model before generating code: |Off j Check model ... |

- SIL and PIL Verificat...
- Code Style I Generate code only Build |

- Templates
--Code Placement |

oK | Cancel Help | Apply |

4. In the Target Selection pane, click Browse to select a target.
You can generate code for a particular target environment or purpose. Some built-

in targeting options are provided using system target files, which control the code
generation process for a target.

16-3

] 6 Source Code Generation

16-4

Generating Code Using Embedded Coder®

E! System Target File Browser: ﬂ
Syatem Target File: Description:

asap2.tlc ASAM-ASAP2 Data Definition Target (B
autosar.tlc ATTOSAR

clee.tle
cleé gro.tlc

.EIt.th
ert_shrlib.tlc
grt.tlc

grt.tlc
grt_malloc.tlc
grt malloc.tlc
idelink ert.tlc
idelink grt.tlc
mpcS55exp.tlc
mpcSSopil.tle
mpeSSsrt.tle

mpcS55rt_grt.tle
J

Target Support Package (for use with

Target Support Package (for use with
Embedded Coder

Create Visual C/C++ Solutiom File for
Embedded Coder (host-based shared 1ib:
Generic Real-Time Target

Create Visual C/C++ Solutiomn File for
Generic Real-Time Target with dynamic
Create Visual C/C++ Solutiom File for
Embedded IDE Link ERT

Embedded IDE Link GRT

Target Support Package (for use with

Target Support Package (for use with

Target Support Package (for use with

Target Support Package [(for use witij:]
3

Full Name: C:\awinimatlabh e\ chert\ert.tlc
Template Makefile: ert_default_tmf

Make Command: make_rtw

oK Cancel Help Apply

5. Select the Embedded Real-Time (ERT) target and click Apply.

The ERT target includes a utility to specify and prioritize code generation settings based

on your application objectives.

6. In the Code Generation Advisor pane, click Set Objectives.

16-5

1 6 Source Code Generation

You can set and prioritize objectives for the generated code. For example, while code
traceability might be a very important criterion for your application, you might not want
to prioritize it at the cost of code execution efficiency.

Code Generation Advisor

Prioritized objectives: Execution efficiency, Traceability Set objectives ... |
Check model before generating code: IOn (proceed with warnings) j Check model ... |
™ Generate code only Build | i

7. In the Set Objectives pane, select Execution efficiency and Traceability. Click
OK.

You can select and prioritize a combination of objectives before generating code.

E! Set Objectives - Code Generation Advisor x|

— Description

Select and prioritize your code generation objectives. You can add custom
objectives, for details, see the documentation.

Available objectives Selected objectives - prioritized
ROM efficiency Execution efficiency
RAM efficien Traceabili

5 I+ o t|
Safety precaution
Debugging =

*=| +

MISRA-C:2004 guidelines b J

0K Cancel | Help

8. In the Code Generation pane, click Build to generate code.

16-6

Generating Code Using Embedded Coder®

9. View the code generation report that appears.

The report includes rtwdemo_rtwecintro.c, associated utility and header files, and
traceability and validation reports.

-loix
== ===l | Code Generation Report for
i rtwdemo_rtwecintro

Subsystem Report
Code Interface Report

Traceability Report

Generated Files

Summary

Code generation for model "rtwdemo_rtwecintro.mdl”.

Model version : 1.257
Simulink Coder version : 8.0 (R2011a Prerelease) 05-Nov-2010

[-1 Main f'h_} C source code generated on : Fri Dec 032 11:52:45 2010
ert main.c
. Configuration settings at the time of code generation: click to open
[-1 Model files Code generation objectives:
rtwdemo rtwecintro.c
rtwdemo rtwecintro.h 1. Execution efficiency

2. Traceability
[+] Utility files (1)
Validation result: Passed (8), Warning (1), Error (0]

oK I Help

The figure below contains a portion of rtwdemo_rtwecintro.c

16-7

1 6 Source Code Generation

-
W Step function for model: rtwdemo_rtwecintro M. o A)
-
File: twdemo_rtwecintro.c B
1 /* Model step function #*/
2 volid rtwdemo rtwecintro step (void)
7 |
4 boolean T rth equal to count;
& A* Sum: "<Root>/Sum' Incorporates:
7 * Constant: "<Root>/INC'
g *# DUnitDelay: '<Root>/X'
i a */
10 reDWork.X = (uintg T) (17 + (uwint32 T)rtDWork.X):
f 11 |
| 12 /* RelationalOperator: '<Root>/Rellpt' incorporates: i
1z * (Constant: "<Root>/LIMIT"'
14 */ 1
| 15 rtb_equal to_count = (rtDWork.X != 16); N
I s
17 S* Outputs for Triggersd SubSystem: '"<Root>/Amplifisr' incorporates:
18 * TriggerPort: '«<51>/Trigger’
158 */
20 if (rtbk equal to_count && (rtPreviCSigState.Rmplifier Trig ZCE != PO5_ZCSIG))
21 { £
2z S* Outport: '<Root>/COutput' incorporates:
23 * Gain: '<S51>/Gain’
24 * Inport: '<Root>/Input’ I
25 */
2& rt¥.0utput = rtU.Input << 1;
27 }
28 i
29 rtPreviCSig5State.Amplifier Trig ZCE = (uint8 T) (rtb_egqual to_count ? (int32_T)
30 PO5_ZC3IG : (int32_T)ZIERC ZIC5IG):
31 I
32 /* End of Outputs for SubSystem: '<Root>/Amplifier’ =*/
33
34 A% Switch: "<Root>/Switch' #*/
35 if (!rtb_egqual to_count) { (]
38 /* Update for UnitDelay: '<Root>/X' incorporates:
37 * Constant: "<Root>/RESET" i
38 74
39 reDWork.X = 00;
40 } i
41
4z /* End of Switch: '"<Root>/Switch' */
PER LM
s

Generating Code Using Embedded Coder®

10. Close the model.

bdclose(model)
rtwdemoclean;

16-9

] 6 Source Code Generation

Generate Code Modules

16-10

In this section...

“Introduction” on page 16-10
“Generated Code Modules” on page 16-10
“User-Written Code Modules” on page 16-13

“Customize Generated Code Modules” on page 16-13

Introduction

This section summarizes the code modules and header files that make up a Embedded
Coder program and describes where to find the code modules and header files.

The easiest way to locate and examine the generated code files is to use the HTML code
generation report. The code generation report provides a table of hyperlinks that you
click to view the generated code in the MATLAB Help browser. For more information, see

“Traceability in Code Generation Report”.

Generated Code Modules

The Embedded Coder software creates a build folder in your working folder to store
generated source code. The build folder also contains object files, a makefile, and other
files created during the code generation process. The default name of the build folder is

model ert_rtw.

Embedded Coder File Packaging summarizes the structure of source code generated by
the Embedded Coder software.

Generate Code Modules

Embedded Coder File Packaging

File

Description

model .c or .cpp

Contains entry points for code implementing the model
algorithm (for example, model step, model initialize, and
model_terminate).

model_private.h

Contains local macros and local data that are required by the

model and subsystems. This file is included in the model.c file as a
#include statement. You do not need to include model private.h
when interfacing handwritten code to the generated code of a model.

model.h

Declares model data structures and a public interface to the model
entry points and data structures. Also provides an interface to the
real-time model data structure (model M) with accessor macros.
model .h is included in the subsystem .c or .cpp files of the model.

If you are interfacing your handwritten code to generated code for
one or more models, include model . h for each of those models.

model data.c or .cpp
(conditional)

model data.c or .cpp is conditionally generated. It contains

the declarations for the parameters data structure, the constant
block I/0 data structure, and any zero representations for the
model structure data types. If these data structures and zero
representations are not used in the model, model data.c or .cpp
1s not generated. These structures and zero representations are
declared extern in model .h.

model types.h

Provides forward declarations for the real-time model data structure
and the parameters data structure. Function declarations of
reusable functions might need these declarations. Also provides type
definitions for user-defined types used by the model.

rtwtypes.h

Defines data types, structures, and macros required by Embedded
Coder generated code. Most other generated code modules also
require these definitions. For more information, see “rtwtypes.h and
Shared Utility Code”.

multiword_types.h

Contains type definitions for wide data types and their chunks. File
1s generated when multiword data types are used or when you select
one or more of the following in the Configuration Parameters dialog
box on the Code Generation > Interface pane:

+ MAT-file logging

16-11

] 6 Source Code Generation

File

Description

+ External mode from the Interface list

model_reference_types.}

Contains type definitions for timing bridges. File is generated for a
model reference target or a model containing model reference blocks.

builtin_typeid_types.h

Defines an enumerated type corresponding to built-in data types.
File is generated when you select one or more of the following in the
Configuration Parameters dialog box on the Code Generation >
Interface pane:

+ MAT-file logging
+ C API from the Interface list

zero_crossing_types.h

Contains zero-crossing definitions for models with triggered
subsystems where the trigger is rising, falling, or either. File
1s generated only if required by the model.

ert_main.cor -cpp

If the Generate an example main program option is on, this

(optional) file is generated. (This option is on by default.) See “Generate an
example main program”.

rtmodel _h If the Generate an example main program option is off, this file

(optional) is generated. (See “Generate an example main program”.)

rtmodel . h contains #include directives required by the
rt_main.cor rt_cppclass_main.cpp static main program
module. Because the static main program module is not created at
code generation time, it includes rtmodel . h to access model-specific
data structures and entry points.

For more information, see “Static Main Program Module”.

model capi.cor .cpp
model_capi.h
(optional)

Provides data structures that enable a running program to access
model signals, states, and parameters without external mode. To
learn how to generate and use the model_capi.cor .cpp and -h
files, see “Data Interchange Using the C API” in the Simulink Coder
documentation.

You can customize the generated set of files in several ways:

+ File packaging formats: Specify the number of source files generated for your
model. In the Configuration Parameter dialog box, on the Code Generation >

16-12

Generate Code Modules

Code Placement pane, specify the File packaging format parameter. For more
information, see “Customize Generated Code Modules” on page 16-13.

* Nonvirtual subsystem code generation: Instruct the code generation software to
generate separate functions, within separate code files, for nonvirtual subsystems.
You can control the names of the functions and of the code files. For further
information, see “Code Generation of Subsystems”.

+ Custom storage classes: Use custom storage classes to partition generated data
structures into different files based on file names that you specify. For further
information, see “Introduction to Custom Storage Classes”.

* Module Packaging Features (MPF): Direct the generated code into a required set of .C
or .cpp and .h files, and control the internal organization of the generated files. For
details, see “Data, Function, and File Definition”.

User-Written Code Modules

Code that you write to interface with generated model code usually includes a customized
main module (based on a main program provided by the code generation software), and
may also include interrupt handlers, device driver blocks and other S-functions, and
other supervisory or supporting code.

Establish a working folder for your own code modules. Put your working folder on the
MATLAB path. Minimally, you must also modify the ERT template makefile and system
target file so that the build process can find your source and object files. If you want to
generate code for a particular microprocessor or development board and deploy the code
on target hardware with a cross-development system, make more extensive modifications
to the ERT target files.

For information on how to customize the ERT target for your production requirements,
see “Target Development”.

Customize Generated Code Modules

Embedded Coder software provides a configuration parameter to specify how the
generated source code is packaged into files. The configuration parameter “File
packaging format” drop-down list options are located in the Configuration Parameter
dialog box, on the Code Generation > Code Placement pane, in the Code Packaging
section. The options are: Modular, Compact (with separate data file), and
Compact. Generated Files According to File Packaging Format shows the files generated
for each file packaging format and the files that have been removed.

16-13

] 6 Source Code Generation

Generated Files According to File Packaging Format

File Packaging Format Generated Files Removed Files
Modular (default) model .c None

subsystem files (optional)
model.h

model types.h

model private.h

model data.c

(conditional)
Compact (with model .c model private.h
separate data file)

model .h model_types.h (conditional,

see below)

model data.c

(conditional)
Compact model .c model data.c

model _h model_private.h

model_types.h (conditional,
see below)

The code generation process places the content of the removed files as follows:

Removed File Generated Content In File
model private.h model .c and model .h
model types.h model _h
model data.c model.c

You can specify a different file packaging format for each referenced model.

If you specify Shared code placement as Shared location on the Code Generation
> Interface pane of the Configuration Parameter dialog box, the code generation
process generates separate files for utility code in a shared location, regardless of the file

16-14

Generate Code Modules

packaging format. If you specify the Shared code placement as Auto, the generated
code for utilities is dependent on the file packaging format as follows:
* Modular: Some shared utility files are in the build directory

+ Compact (with separate data Tile): Utility code is generated in model.c
* Compact: Utility code is generated in model .c

File packaging formats Compact and Compact (with separate data file)
generate model_types.h for models containing:

* A Model Variants block or a Variant Subsystem block. The model types.h file

includes preprocessor directives defining the variant objects associated with a variant
block.

+ Custom storage classes specifying a separate header file. The model types.h file
includes the #include call to the external header file.

File packaging formats Compact and Compact (with separate data file) are not
compatible with the following:

A model containing a subsystem, which is configured to generate separate source files

* A model containing a noninlined S-function

+ A model for which Shared code placement is set to Auto, which uses data objects
for which Data scope is set to Exported

16-15

] 6 Source Code Generation

Generate Reentrant Code from Top-Level Models

16-16

To generate reentrant multi-instance code from a model, select Reusable function
code interface packaging. When you select the Reusable function code interface for an
ERT-based model:

By default, the generated model . c source file does not contain an allocation function
that dynamically allocates model data for each instance of the model. Use the Use
dynamic memory allocation for model initialization option to control whether
an allocation function is generated.

The generated code passes the real-time model data structure in, by reference, as an
argument to model step and the other model entry point functions.

The real-time model data structure is exported with the model .h header file.

By default, root-level input and output arguments are passed to the reusable model
entry-point functions as individual arguments. Use the Pass root-level I/0O as
parameter to control whether root-level input and output arguments are included
in the real-time model data structure that is passed to the functions, passed as
individual arguments, or passed as references to an input structure and an output
structure.

To configure an ERT-based model to generate reusable, reentrant code:

1

In the Code Generation > Interface pane of the Configuration Parameters dialog
box, set Code interface packaging to the value Reusable function. This action
enables the parameters Multi-instance code error diagnostic, Pass root-level I/
O as, and Use dynamic memory allocation for model initialization.

Examine the setting of Multi-instance code error diagnostic. Leave the
parameter at its default value Error unless you have a specific need to alter the
severity level for diagnostics displayed when a model violates requirements for
generating multi-instance code.

Configure Pass root-level I/0 as to control how root-level model input and output
are passed to model_step and the other generated model entry-point functions.

When you set Code interface packaging to Reusable function, model data
(such as block I/0, DWork, and parameters) is packaged into the real-time model
data structure, and the model structure is passed to the model entry-point functions.
If you set Pass root-level I/O as to Part of model data structure, the
root-level model input and output also are packaged into the real-time model data
structure.

Generate Reentrant Code from Top-Level Models

4 If you want the generated model code to contain a function that dynamically
allocates memory for model instance data, select the option Use dynamic memory
allocation for model initialization. If you do not select this option, the generated
code statically allocates memory for model data structures.

5 Generate model code.

6 Examine the model entry-point function interfaces in the generated files and the
HTML code generation report. For more information about generating and calling
model entry-point functions, see “Entry-Point Functions and Scheduling”.

For an example of a model configured to generate reusable, reentrant code, open the
example model rtwdemo_reusable. Click the button View Interface Configuration and
examine the Code interface parameters on the Code Generation > Interface pane.

Code interface packaging: |Reusable function v| Multi-instance code error diagnostic: |Error -
Pass root-level I/O as: ‘Part of model data structure "
Classic call interface Use dynamic memory allocation for model initialization

| Single output/update function Terminate function required

16-17

Report Generation

“Reports for Code Generation” on page 17-2

“HTML Code Generation Report Extensions” on page 17-3

“HTML Code Generation Report Location” on page 17-5

“HTML Code Generation Report for Referenced Models” on page 17-6
“Search Code Generation Report” on page 17-7

“Generate a Code Generation Report” on page 17-8

“Generate Code Generation Report After Build Process” on page 17-9
“Open Code Generation Report” on page 17-11

“Generate Code Generation Report Programmatically” on page 17-13
“View Code Generation Report in Model Explorer” on page 17-14
“Package and Share the Code Generation Report” on page 17-16
“Traceability in Code Generation Report” on page 17-18

“View Code Metrics and Definitions in the Generated Code” on page 17-20
“Web View of Model in Code Generation Report” on page 17-21

“Analyze the Generated Code Interface” on page 17-25

“Static Code Metrics” on page 17-38

“Generate Static Code Metrics Report for Simulink Model” on page 17-41
“Generate a Static Code Metrics Report for MATLAB Code” on page 17-47
“Analyze Code Replacements in the Generated Code” on page 17-52

“Document Generated Code with Simulink Report Generator” on page 17-54

17 Report Generation

Reports for Code Generation

17-2

Simulink Coder software provides an HTML code generation report so that you can view
and analyze the generated code. When your model is built, the code generation process
produces an HTML file that is displayed in an HTML browser or in the Model Explorer.
The code generation report includes:

The Summary section lists version, date, and code generation objectives information.
The Configuration settings at the time of code generation link opens a
none