
Embedded Coder®

User's Guide

R2015a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Embedded Coder® User's Guide
© COPYRIGHT 2011–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

April 2011 Online only New for Version 6.0 (Release 2011a)
September 2011 Online only Revised for Version 6.1 (Release 2011b)
March 2012 Online only Revised for Version 6.2 (Release 2012a)
September 2012 Online only Revised for Version 6.3 (Release 2012b)
March 2013 Online only Revised for Version 6.4 (Release 2013a)
September 2013 Online only Revised for Version 6.5 (Release 2013b)
March 2014 Online only Revised for Version 6.6 (Release 2014a)
October 2014 Online only Revised for Version 6.7 (Release 2014b)
March 2015 Online only Revised for Version 6.8 (Release 2015a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

http://www.mathworks.com/support/bugreports/

v

Contents

Model Architecture and Design

Modeling Environment
1

Set Up Your Modeling Environment 1-2

Application Objectives
2

Guidelines and Standards
3

What Are the Standards and Guidelines? 3-2

MAAB Guidelines . 3-4

MISRA C Guidelines . 3-5

IEC 61508 Standard . 3-7
Apply Simulink and Embedded Coder to the IEC 61508

Standard . 3-7
Check for IEC 61508 Standard Compliance Using the

Model Advisor . 3-7
Validate Traceability . 3-7

vi Contents

ISO 26262 Standard . 3-9
Apply Simulink and Embedded Coder to the ISO 26262

Standard . 3-9
Check for ISO 26262 Standard Compliance Using the

Model Advisor . 3-9
Validate Traceability . 3-7

EN 50128 Standard . 3-11
Apply Simulink and Embedded Coder to the EN 50128

Standard . 3-11
Check for EN 50128 Standard Compliance Using the

Model Advisor . 3-11
Validate Traceability . 3-7

DO-178C Standard . 3-13
Apply Simulink and Embedded Coder to the DO-178C

Standard . 3-13
Check for Standard Compliance Using the Model

Advisor . 3-13
Validate Traceability . 3-7

Patterns for C Code
4

About Modeling Patterns . 4-3

Prepare a Model for Code Generation 4-4
Configure a Signal . 4-4
Configure Input and Output Ports 4-4
Initialize States . 4-5
Set Up Configuration Parameters for Code Generation . 4-5
Set Up an Example Model With a Stateflow Chart 4-6
Set Up an Example Model With a MATLAB Function

Block . 4-7

Data Declaration . 4-8
C Construct . 4-8
Declare a Variable for a Block Parameter Using a Data

Object . 4-8
C Construct . 4-9

vii

Declare a Variable for a Signal using a Data Object . . . 4-9

Data Type Conversion . 4-11
C Construct . 4-11
Modeling Patterns . 4-11
Modeling Pattern for Data Type Conversion — Simulink

Block . 4-11
Modeling Pattern for Data Type Conversion — Stateflow

Chart . 4-12
Modeling Pattern for Data Type Conversion — MATLAB

Function Block . 4-12
Other Type Conversions in Modeling 4-13

Type Qualifiers . 4-14
Modeling Patterns for Type Qualifiers 4-14
Using a Tunable Parameter in the Base Workspace . . . 4-14
Use a Data Object of the Const Custom Storage Class 4-15

Relational and Logical Operators 4-16
Modeling Patterns for Relational and Logical Operators 4-16
Modeling Pattern for Relational or Logical Operators —

Simulink Blocks . 4-16
Modeling Pattern for Relational and Logical Operators —

Stateflow Chart . 4-17
Modeling Pattern for Relational and Logical Operators —

MATLAB Function Block . 4-18

Bitwise Operations . 4-20
Simulink Bitwise-Operator Block 4-20
Stateflow Chart . 4-21
MATLAB Function Block . 4-22

If-Else . 4-23
C Construct . 4-23
Modeling Patterns . 4-23
Modeling Pattern for If-Else: Switch block 4-24
Modeling Pattern for If-Else: Stateflow Chart 4-26
Modeling Pattern for If-Else: MATLAB Function Block 4-28

Switch . 4-29
C Construct . 4-29
Modeling Patterns . 4-29
Modeling Pattern for Switch: Switch Case block 4-30

viii Contents

Modeling Pattern for Switch: MATLAB Function block 4-33
Convert If-Elseif-Else to Switch statement 4-34

For Loop . 4-35
C Construct . 4-35
Modeling Patterns: . 4-35
Modeling Pattern for For Loop: For-Iterator Subsystem

block . 4-36
Modeling Pattern for For Loop: Stateflow Chart 4-38
Modeling Pattern for For Loop: MATLAB Function

block . 4-40

While Loop . 4-41
C Construct . 4-41
Modeling Patterns . 4-41
Modeling Pattern for While Loop: While Iterator

Subsystem block . 4-42
Modeling Pattern for While Loop: Stateflow Chart . . . 4-45
Modeling Pattern for While Loop: MATLAB Function

Block . 4-48

Do While Loop . 4-51
C Construct . 4-51
Modeling Patterns . 4-51
Modeling Pattern for Do While Loop: While Iterator

Subsystem block . 4-52
Modeling Pattern for Do While Loop: Stateflow Chart . 4-55

Function Call . 4-58
C Construct . 4-58
Procedure . 4-58
Results . 4-59

Function Prototyping . 4-60
C Construct . 4-60
Modeling Patterns . 4-60
Function Call Using Graphical Functions 4-60
Control Function Prototype of the model_step Function 4-62

External C Functions . 4-63
C Construct . 4-63
Modeling Patterns . 4-63
Use the Legacy Code Tool to Create S-functions 4-63

ix

Use a Stateflow Chart to Make Calls to C Functions . . 4-65
Using a MATLAB Function Block to Make Calls to C

Functions . 4-66

Macro Definitions (#define) . 4-69
C Construct . 4-69
Modeling Patterns . 4-69
Use a 'Define' Custom Storage Class 4-69
Use a Custom Header File . 4-70

Conditional Inclusions (#if / #endif) 4-72

Typedef . 4-73
C Construct . 4-73
Procedure . 4-73
Results . 4-74

Structures for Parameters . 4-75
C Construct . 4-75
Procedure . 4-75
Results . 4-76

Structures for Signals . 4-77
C Construct . 4-77
Modeling Patterns . 4-77
Structure for Signals Using a 'Struct' Custom Storage

Class . 4-77
Structure for Signals Using a Simulink Non-Virtual Bus

Object . 4-78

Nested Structures . 4-80
C Construct . 4-80
Procedure . 4-80
Results . 4-82

Bitfields . 4-84
C Construct . 4-84
Procedure . 4-84
Results . 4-85

Arrays for Parameters . 4-86
C Construct . 4-86
Procedure . 4-86

x Contents

Results . 4-87

Arrays for Signals . 4-88
C Construct . 4-88
Procedure . 4-88
Results . 4-88

Pointers for Signals . 4-90
C Construct . 4-90
Procedure . 4-90
Results . 4-90

Pointers Using Simulink Data Objects 4-91
C Construct . 4-91
Procedure . 4-91
Results . 4-91

Variant Systems
5

About Variant Systems . 5-2

Why Generate Code for Variant Systems? 5-3

Generate Preprocessor Conditionals for Variant
Systems . 5-4

Define Variant Controls . 5-4
Configure Model for Generating Preprocessor Conditional

Directives . 5-5
Build Your Model . 5-6

Review Code Variants in Code Generation Report 5-7

Generate Code for Model Variants 5-8

Generate Code for Variant Subsystems 5-10
Open Example Model . 5-10
Define Variant Controls . 5-10
Configure Model for Generating Preprocessor Conditional

Directives . 5-12

xi

View Generated Code . 5-13

Restrictions on Variant Subsystem Code Generation . 5-15

Special Considerations for Generating Preprocessor
Conditionals . 5-17

Limitations on Generating Code for Variants 5-18

Generated Code Components Not Compiled
Conditionally . 5-19

Scheduling Considerations
6

Use Discrete and Continuous Time 6-2
Support for Discrete and Continuous Time Blocks 6-2
Support for Continuous Solvers 6-2
Support for Stop Time . 6-2

Optimize Multirate Multitasking Operation on RTOS
Targets . 6-4

Overview . 6-4
Use rtmStepTask . 6-5
Scheduling Code for Multirate Multitasking on

VxWorks . 6-5
Suppress Redundant Scheduling Calls 6-6

Data, Function, and File Definition

Data Definition and Declaration Management
7

Overview of Data Objects . 7-2

xii Contents

Create Simulink and mpt Data Objects 7-3
Ways to Create Data Objects . 7-3
Create Data Objects with Data Object Wizard 7-4
Create mpt Data Objects with Data Object Wizard . . . 7-10
Simulink and mpt Data Object Comparison 7-10
Create Data Objects from External Data Source 7-15

Create Data Objects for a Model 7-18
Use Data Object Wizard . 7-18
Inspect Data Objects . 7-22
Generate and Inspect Code . 7-23

Define Global Data Objects in Separate File 7-25

Define Global Data Objects in Separate Files 7-27

Save and Load Data Objects . 7-28

Data Types
8

What Are User-Defined Data Types? 8-2

Control File Placement of User-Defined Types 8-4
Data Scope and Header File . 8-4
Macro Guards . 8-5

Create and Apply User-Defined Data Types 8-7

Create Data Type Alias in Generated Code 8-10
Export Type Definition . 8-10
Import Type Definition . 8-11

Create a Fixed-Point Data Type 8-14

Use single Data Type as Default for Underspecified
Types . 8-16

Specify Persistence Level for Signals and Parameters 8-19

xiii

Buses . 8-22
About Buses and Code Generation 8-22
Set Bus Diagnostics . 8-23
Optimize Virtual and Nonvirtual Buses 8-23
Use Single-Rate and Multi-Rate Buses 8-26
Set Bus Signal Initial Values 8-31
Use Buses with Atomic Subsystems 8-35

Rename Built-In Data Types . 8-40

Register mpt User Object Types 8-42
Introduction . 8-42
Register mpt User Object Types Using

sl_customization.m . 8-42
mpt User Object Type Customization Using

sl_customization.m . 8-44

Data Type Replacement . 8-46
Replace Built-In Data Types . 8-46
Programmatically Replace Built-In Data Types 8-50

Replace Names of Built-In Types in Code 8-52
Explore Example Model . 8-52
Replace Data Type Names . 8-53
Replace Data Type Limit Identifiers 8-54
Generate Code with Replacement Names 8-55

Data Type Replacement Limitations 8-56

Specify Boolean and Data Type Limit Identifiers 8-58
Data Type Limit Identifiers . 8-58
Boolean Identifiers . 8-59
Boolean and Data Type Limit Identifier Header Files . 8-59

Module Packaging Tool (MPT) Data Objects
9

MPT Data Object Properties . 9-2

xiv Contents

Custom Storage Classes
10

Introduction to Custom Storage Classes 10-2
Custom Storage Class Memory Sections 10-3
Custom Storage Classes and Data Class Packages . . . 10-3
Custom Storage Class Examples 10-3

Resources for Defining Custom Storage Classes 10-5

Simulink Package Custom Storage Classes 10-6

Design Custom Storage Classes and Memory
Sections . 10-9

Create Packages for Custom Storage Class Definitions 10-9
Use Custom Storage Class Designer 10-9
Edit Custom Storage Class Properties 10-15
Use Custom Storage Class References 10-20
Protect Custom Storage Class Definitions 10-24
Create and Edit Memory Section Definitions 10-25
Use Memory Section References 10-28

Apply Custom Storage Classes 10-31
About Applying Custom Storage Classes 10-31
Apply Custom Storage Classes to Parameters 10-32
Apply Custom Storage Classes to Signals 10-33
Custom Storage Classes Using Signal Objects 10-34
Custom Storage Classes Using Embedded Signal

Objects . 10-35
Specify Custom Storage Classes Using GUI 10-42
Specify Custom Storages Classes Using API 10-44

Control Data Code by Creating Custom Storage Class 10-48
Explore Example Model . 10-48
Create Data Class Package . 10-48
Create Custom Storage Class 10-49
Apply Custom Storage Class 10-50
Generate Code . 10-51

Generate Code with Custom Storage Classes 10-53
Grouped Custom Storage Classes 10-56

xv

Define Advanced Custom Storage Classes Types 10-57
Introduction . 10-57
Create Your Own Parameter and Signal Classes 10-57
Create Custom Attributes Classes for Custom Storage

Classes . 10-57
Write TLC Code for Custom Storage Classes 10-58
Register Custom Storage Class Definitions 10-58

GetSet Custom Storage Class . 10-61
About GetSet Custom Storage Class 10-61
GetSet Custom Storage Class Properties 10-61
Apply the GetSet Custom Storage 10-62
GetSet Custom Storage Class Restrictions 10-62
Increase Code Efficiency With GetSet CSC 10-62

Custom Storage Class Implementation 10-65

Custom Storage Class Limitations 10-66

User Package Registration
11

About Data Object Wizard and User Packages 11-2

Register User Packages Using sl_customization.m . . . 11-3

User Package Customization Using
sl_customization.m . 11-5

Function and Class Interfaces
12

Function Prototype Control . 12-2
About Function Prototype Control 12-2
Configure Function Prototypes Using Graphical

Interfaces . 12-3

xvi Contents

Sample Procedure for Configuring Function
Prototypes . 12-13

Configure Function Prototypes Programmatically . . . 12-18
Sample Script for Configuring Function Prototypes . . 12-22
Verify Generated Code for Customized Functions . . . 12-22
Function Prototype Control Limitations 12-23

C++ Class Interface Control . 12-25
About C++ Class Interface Control 12-25
Simple Use of C++ Class Control 12-26
Customize C++ Class Interfaces Using Graphical

Interfaces . 12-32
Customize C++ Class Interfaces Programmatically . . 12-47
Configure Step Method for Model Class 12-49
Specify Custom Storage Class for C++ Class Code

Generation . 12-50
Model Class Copy Constructor and Assignment

Operator . 12-51
C++ Class Interface Control Limitations 12-52

Atomic Subsystem Code . 12-55
About Nonvirtual Subsystem Code Generation 12-55
Configure Subsystem for Generating Modular Function

Code . 12-56
Modular Function Code for Nonvirtual Subsystems . . 12-61
Nonvirtual Subsystem Modular Function Code

Limitations . 12-66

Memory Sections
13

About Memory Sections . 13-2
What Are Memory Sections? . 13-2

Requirements for Defining Memory Sections 13-3

Define Memory Sections . 13-5
Edit Memory Section Properties 13-5
Specify the Memory Section Name 13-6

xvii

Specify a Qualifier for Custom Storage Class Data
Definitions . 13-7

Specify Comment and Pragma Text 13-7
Surround Individual Definitions with Pragmas 13-7
Include Identifier Names in Pragmas 13-8

Configure Memory Sections . 13-9

Declare Constant Data as Volatile 13-10

Apply Memory Sections . 13-13
Assign Memory Sections to Custom Storage Classes . 13-13
Apply Memory Sections to Model-Level Functions and

Internal Data . 13-15
Apply Memory Sections to Atomic Subsystems 13-17

Generated Code with Memory Sections 13-21
Sample ERT-Based Model with Subsystem 13-21

Model-Level Data Structures . 13-23
Model-Level Functions . 13-23
Subsystem Function . 13-24

Code Generation

Configuration
14

Application Objectives . 14-2

High-Level Code Generation Objectives 14-3

Determine Model Configuration for Specified
Objectives . 14-5

Configure Model for Code Generation Objectives Using
Code Generation Advisor . 14-6

xviii Contents

Configure Model for Code Generation Objectives Using
Configuration Parameters Dialog Box 14-10

Configure Code Generation Objectives
Programmatically . 14-14

Check Objectives in Referenced Models 14-15

Checking Model and Configuration with Model
Advisor . 14-16

Check Model During Code Generation 14-17

Create Custom Objectives . 14-18
Specify Parameters in Custom Objectives 14-18
Specify Checks in Custom Objectives 14-19
Determine Checks and Parameters in Existing

Objectives . 14-19
How to Create Custom Objectives 14-21

Code Generation Targets . 14-24
About Target Selection . 14-24
Select an ERT Target . 14-25
Customize an ERT Target . 14-26
Configure Support for Numeric Data 14-26
Configure Support for Time Values 14-26
Support for Non-inlined S-Functions 14-27
Configure Model Function Generation and Argument

Passing . 14-27
Set Up Support for Code Reuse 14-29
Configure a Code Replacement Library 14-31

Configuration Variations . 14-32

Wizard . 14-33
Configure and Optimize Model with Configuration Wizard

Blocks . 14-33
Add a Configuration Wizard Block 14-34
Use Configuration Wizard Blocks 14-36
Create a Custom Configuration Wizard Block 14-36

xix

Code Appearance
15

Add Custom Comments to Generated Code 15-3

Add Custom Comments for Signal or Parameter
Identifiers . 15-5

Add Global Comments . 15-7
Use a Simulink DocBlock to Add a Comment 15-7
Use a Simulink Annotation to Add a Comment 15-10
Use a Stateflow Note to Add a Comment 15-10
Use Sorted Notes to Add Comments 15-11

Specify Comment Style . 15-13

Customize Generated Identifier Naming Rules 15-14
Apply Naming Rules to Identifiers Globally 15-14
Apply Naming Rules to Simulink Data Objects 15-15

Identifier Format Control . 15-19

Control Name Mangling in Generated Identifiers . . . 15-22
Minimize Name Mangling . 15-22

Avoid Identifier Name Collisions with Referenced
Models . 15-24

Use Model Advisor to Detect Identifier Names Changed
During Code Generation . 15-24

Maintain Traceability for Generated Identifiers 15-26

Exceptions to Identifier Formatting Conventions . . . 15-27

Identifier Format Control Parameters Limitations . . 15-28

Control Code Style . 15-30
Control Parentheses in Generated Code 15-31
Control Indentation Style in Generated Code 15-31
Control Cast Expressions in Generated Code 15-33

xx Contents

Customize Code Organization and Format 15-38
Custom File Processing Components 15-38
Custom File Processing Configuration 15-39

Specify Templates For Code Generation 15-40

Code Generation Template (CGT) Files 15-41
Default CGT file . 15-41
CGT File Structure . 15-41
Built-In Tokens and Sections 15-42
Subsections . 15-43

Custom File Processing (CFP) Templates 15-45
Custom File Processing (CFP) Template Structure . . 15-45

Change the Organization of a Generated File 15-47

Generate Source and Header Files with a Custom File
Processing (CFP) Template 15-50

Generate Code with a CFP Template 15-50
Analysis of the Example CFP Template and Generated

Code . 15-52
Generate a Custom Section . 15-55
Custom Tokens . 15-57

Comparison of a Template and Its Generated File . . 15-58
Template and Generated File 15-59

Code Template API Summary 15-62

Generate Custom File and Function Banners 15-65
Create a Custom File and Function Banner Template 15-67
Customize a Code Generation Template (CGT) File for File

and Function Banner Generation 15-68

Template Symbols and Rules . 15-74
Introduction . 15-74
Template Symbol Groups . 15-74
Template Symbols . 15-77
Rules for Modifying or Creating a Template 15-81

Code Annotation for Justifying Polyspace Checks . . 15-82

xxi

Manage Placement of Data Definitions and
Declarations . 15-84

Overview of Data Placement 15-84
Priority and Usage . 15-85
Ownership Settings . 15-90
Memory Section Settings . 15-91
Data Placement Rules . 15-91
Settings for a Data Object . 15-91
Data Placement Rules and Results 15-99

Specify Delimiter for #Includes 15-110

Enhance Readability of Code for Flow Charts 15-111
Appearance of Generated Code for Flow Charts 15-111
Convert If-Elseif-Else Code to Switch-Case

Statements . 15-116
Example of Converting Code to Switch-Case

Statements . 15-118

Source Code Generation
16

Generating Code Using Embedded Coder® 16-2

Generate Code Modules . 16-10
Introduction . 16-10
Generated Code Modules . 16-10
User-Written Code Modules 16-13
Customize Generated Code Modules 16-13

Generate Reentrant Code from Top-Level Models . . . 16-16

Report Generation
17

Reports for Code Generation . 17-2

xxii Contents

HTML Code Generation Report Extensions 17-3

HTML Code Generation Report Location 17-5

HTML Code Generation Report for Referenced
Models . 17-6

Search Code Generation Report 17-7

Generate a Code Generation Report 17-8

Generate Code Generation Report After Build
Process . 17-9

Open Code Generation Report 17-11
Limitation . 17-11

Generate Code Generation Report Programmatically 17-13

View Code Generation Report in Model Explorer . . . 17-14

Package and Share the Code Generation Report 17-16
Package the Code Generation Report 17-16
View the Code Generation Report 17-17

Traceability in Code Generation Report 17-18

View Code Metrics and Definitions in the Generated
Code . 17-20

Web View of Model in Code Generation Report 17-21
About Model Web View . 17-21
Generate HTML Code Generation Report with Model Web

View . 17-21
Model Web View Limitations 17-24

Analyze the Generated Code Interface 17-25
Code Interface Report Overview 17-25
Generating a Code Interface Report 17-26
Navigating Code Interface Report Subsections 17-28
Interpreting the Entry Point Functions Subsection . . 17-29
Interpreting the Inports and Outports Subsections . . 17-32
Interpreting the Interface Parameters Subsection . . . 17-34

xxiii

Interpreting the Data Stores Subsection 17-35
Code Interface Report Limitations 17-36

Static Code Metrics . 17-38
About Static Code Metrics . 17-38
Static Code Metrics Analysis 17-38

Generate Static Code Metrics Report for Simulink
Model . 17-41

Generate a Static Code Metrics Report for MATLAB
Code . 17-47

Generate a Static Code Metrics Report Using the
MATLAB Coder App . 17-47

Enable a Static Code Metrics Report at the Command
Line . 17-50

Analyze Code Replacements in the Generated Code . 17-52

Document Generated Code with Simulink Report
Generator . 17-54

Generate Code for the Model 17-55
Open the Report Generator . 17-55
Set Report Name, Location, and Format 17-57
Include Models and Subsystems in a Report 17-58
Customize the Report . 17-59
Generate the Report . 17-60

Code Replacement for Simulink Models
18

What Is Code Replacement? . 18-2

Code You Can Replace From Simulink Models 18-4
About Code You Can Replace 18-4
Math Functions – Simulink Support 18-4
Math Functions – Stateflow Support 18-10
Memory Functions . 18-15
Nonfinite Functions . 18-16
Mutex and Semaphore Functions 18-17

xxiv Contents

Lookup Table Functions . 18-18
Operators . 18-18

Code Replacement Libraries . 18-23

Code Replacement Terminology 18-25

Code Replacement Limitations 18-28

Replace Code Generated from Simulink Models 18-29

Choose a Code Replacement Library 18-32
About Choosing a Code Replacement Library 18-32
Explore Available Code Replacement Libraries 18-32
Explore Code Replacement Library Contents 18-32

Deployment

Desktops
19

Shared Object Libraries . 19-2
About Host-Based Shared Libraries 19-2
Generate Shared Library Version of Model Code 19-3
Create Application Code to Use Shared Library 19-3
Host-Based Shared Library Limitations 19-7

Real-Time and Embedded Systems
20

Standalone Programs (No Operating System) 20-2
About Standalone Program Execution 20-2
Generate a Standalone Program 20-2
Standalone Program Components 20-3

xxv

Main Program . 20-3
rt_OneStep and Scheduling Considerations 20-4
Static Main Program Module 20-10
Rate Grouping Compliance and Compatibility Issues . 20-17

Operating System Integration 20-21

Processor Support Packages . 20-22

Export Code Generated from Model to External
Application

21
Export Function-Call Subsystems 21-2

Exporting Function-Call Subsystems 21-2
Requirements for Exporting Function-Call

Subsystems . 21-3
Techniques for Exporting Function-Call Subsystems . . 21-5
Optimize Exported Function-Call Subsystems 21-7
Export Functions That Depend on Elapsed Time 21-7
Function-Call Subsystem Export 21-8
Function-Call Subsystems Export Limitations 21-11

Control Generation of Function Prototypes 21-12

C++ Class Interface Control . 21-14

Code Replacement Customization for Simulink
Models

22
What Is Code Replacement Customization? 22-3

Code You Can Replace From Simulink Models 22-4
About Code You Can Replace 22-4
Math Functions – Simulink Support 22-4

xxvi Contents

Math Functions – Stateflow Support 22-10
Memory Functions . 22-15
Nonfinite Functions . 22-16
Mutex and Semaphore Functions 22-17
Operators . 22-18

Code Replacement Match and Replacement Process 22-22

Code Replacement Customization Limitations 22-24

Develop a Code Replacement Library 22-26

Quick Start Library Development 22-27

Identify Code Replacement Requirements 22-37
Mapping Information Requirements 22-37
Build Information Requirements 22-38
Registration Information Requirements 22-38

Prepare for Code Replacement Library Development 22-40

Define Code Replacement Mappings 22-42
Defining Code Replacement Mappings 22-42
Define Mappings Interactively with the Code Replacement

Tool . 22-43
Define Mappings Programmatically 22-46

Specify Build Information for Replacement Code . . . 22-59
Build Information . 22-59
Specify Build Information Interactively with the Code

Replacement Tool . 22-60
Specify Build Information Programmatically 22-62

Register Code Replacement Mappings 22-68
Code Replacement Library Registration 22-68
Create Registration File Interactively with the Code

Replacement Tool . 22-69
Create Registration File Programmatically 22-71
Register a Code Replacement Library 22-73
Registration Files That Define Multiple Code Replacement

Libraries . 22-73
Registration Files That Define Code Replacement Library

Hierarchies . 22-74

xxvii

Troubleshoot Code Replacement Library
Registration . 22-76

Code Replacement Hits and Misses 22-77

Verify Code Replacements . 22-78
Code Replacement Table Validation 22-78
Validate Table Definition File 22-78
Review Library Content . 22-79
Review Table Content . 22-80
Review Code Replacements . 22-82

Troubleshoot Code Replacement Misses 22-87
Miss Reason Messages . 22-87
Analyze and Correct Code Replacement Misses 22-88

Deploy Code Replacement Library 22-93

Math Function Code Replacement 22-94

Memory Function Code Replacement 22-96

Nonfinite Function Code Replacement 22-99

Semaphore and Mutex Function Replacement 22-102

Algorithm-Based Code Replacement 22-109

Lookup Table Function Code Replacement 22-112
Lookup Table Algorithm Replacement 22-112
Lookup Table Function Signatures 22-112
Interactive Mapping with Code Replacement Tool . . 22-117
Programmatic Specification 22-122
Sample Code Replacement Definition for the lookup2D

Function . 22-129

Data Alignment for Code Replacement 22-132
Code Replacement Data Alignment 22-132
Specify Data Alignment Requirements for Function

Arguments . 22-132
Provide Data Alignment Specifications for Compilers 22-134
Basic Example of Code Replacement Data Alignment 22-138

xxviii Contents

Replace MATLAB Functions with Custom Code Using
coder.replace . 22-142

Replace coder.ceval Calls to External Functions . . 22-144
External Function Calls and coder.ceval 22-144
Example Files . 22-144
Interactive External Function Call Replacement

Specification with Code Replacement Tool 22-146
Programmatic External Function Call Replacement

Specification . 22-147

Replace MATLAB Functions Specified in MATLAB
Function Blocks . 22-150

Reserved Identifiers and Code Replacement 22-154

Customize Matching and Replacement Process for
Functions . 22-156

Customize Code Matching and Replacement for
Functions . 22-157

Scalar Operator Code Replacement 22-161

Addition and Subtraction Operator Code
Replacement . 22-164

Algorithm Options . 22-164
Interactive Specification with Code Replacement Tool 22-165
Programmatic Specification 22-165
Algorithm Classification . 22-165
Limitations . 22-167

Small Matrix Operation to Processor Code
Replacement . 22-169

Matrix Multiplication Operation to MathWorks BLAS
Code Replacement . 22-174

Matrix Multiplication Operation to ANSI/ISO C BLAS
Code Replacement . 22-182

Remap Operator Output to Function Input 22-189

xxix

Customize Matching and Replacement Process for
Operators . 22-192

Create the Entry . 22-192
Test the Entry . 22-197

Fixed-Point Operator Code Replacement 22-199
Fixed-Point Operator Entries 22-199
Fixed-Point Numbers and Arithmetic 22-203
Addition . 22-203
Subtraction . 22-204
Multiplication . 22-204
Division . 22-205
Data Type Conversion (Cast) 22-206
Shift . 22-206

Binary-Point-Only Scaling Code Replacement 22-209

Slope Bias Scaling Code Replacement 22-213

Net Slope Scaling Code Replacement 22-217
Multiplication and Division with Saturation 22-217
Multiplication and Division with Rounding Mode and

Additional Implementation Arguments 22-220

Equal Slope and Zero Net Bias Code Replacement . 22-225

Data Type Conversions (Casts) and Operator Code
Replacement . 22-229

Casts from int32 To int16 22-229
Casts Using Net Slope . 22-230

Shift Left Operations and Code Replacement 22-234
Shift Lefts for int16 Data 22-234
Shift Lefts Using Net Slope 22-235

Code Replacement Customization for MATLAB
Code

23
What Is Code Replacement Customization? 23-3

xxx Contents

Code You Can Replace from MATLAB Code 23-4
About Code You Can Replace 23-4
Math Functions . 23-4
Memory Functions . 23-9
Operators . 23-10

Code Replacement Match and Replacement Process 23-14

Code Replacement Customization Limitations 23-15

Develop a Code Replacement Library 23-16

Quick Start Library Development 23-17

Identify Code Replacement Requirements 23-27
Mapping Information Requirements 23-37
Build Information Requirements 23-38
Registration Information Requirements 23-38

Prepare for Code Replacement Library Development 23-30

Define Code Replacement Mappings 23-31
Defining Code Replacement Mappings 23-42
Define Mappings Interactively with the Code Replacement

Tool . 23-43
Define Mappings Programmatically 23-46

Specify Build Information for Replacement Code . . . 23-48
Build Information . 23-59
Specify Build Information Interactively with the Code

Replacement Tool . 23-60
Specify Build Information Programmatically 23-62

Register Code Replacement Mappings 23-57
Code Replacement Library Registration 23-57
Create Registration File Interactively with the Code

Replacement Tool . 23-58
Create Registration File Programmatically 23-60
Register a Code Replacement Library 23-62
Registration Files That Define Multiple Code Replacement

Libraries . 23-62
Registration Files That Define Code Replacement Library

Hierarchies . 23-63

xxxi

Troubleshoot Code Replacement Library
Registration . 23-65

Code Replacement Hits and Misses 23-66

Verify Code Replacements . 23-67
Code Replacement Table Validation 23-67
Validate a Table Definition File 23-67
Review Library Content . 23-68
Review Table Content . 23-69
Review Code Replacements . 23-71

Troubleshoot Code Replacement Misses 23-76
Miss Reason Messages . 23-76
Analyze and Correct Code Replacement Misses 23-77

Deploy Code Replacement Library 23-82

Math Function Code Replacement 23-83

Memory Function Code Replacement 23-85

Specify In-Place Code Replacement 23-87
In-Place Code Replacement . 23-87
Argument Specification Requirements 23-87
Interactive Argument Replacement Specification with

Code Replacement Tool . 23-87
Programmatic Argument Replacement Specification . 23-91

Replace MATLAB Functions with Custom Code Using
coder.replace . 23-94

Replace coder.ceval Calls to External Functions 23-96
External Function Calls and coder.ceval 23-96
Example Files . 23-96
Interactive External Function Call Replacement

Specification with Code Replacement Tool 23-98
Programmatic External Function Call Replacement

Specification . 23-99

Reserved Identifiers and Code Replacement 23-102

xxxii Contents

Customize Matching and Replacement Process for
Functions . 23-104

Scalar Operator Code Replacement 23-106

Addition and Subtraction Operator Code
Replacement . 23-108

Algorithm Options . 23-108
Interactive Specification with Code Replacement Tool 23-109
Programmatic Specification 23-109
Algorithm Classification . 23-109
Limitations . 23-111

Small Matrix Operation to Processor Code
Replacement . 23-113

Matrix Multiplication Operation to MathWorks BLAS
Code Replacement . 23-117

Matrix Multiplication Operation to ANSI/ISO C BLAS
Code Replacement . 23-124

Remap Operator Output to Function Input 23-131

Customize Matching and Replacement Process for
Operators . 23-134

Fixed-Point Operator Code Replacement 23-140
Fixed-Point Operator Entries 23-140
Fixed-Point Numbers and Arithmetic 23-144
Addition . 23-144
Subtraction . 23-145
Multiplication . 23-145
Division . 23-146
Data Type Conversion (Cast) 23-147
Shift . 23-147

Binary-Point-Only Scaling Code Replacement 23-150

Slope Bias Scaling Code Replacement 23-154

Net Slope Scaling Code Replacement 23-158
Multiplication and Division with Saturation 23-158

xxxiii

Multiplication and Division with Rounding Mode and
Additional Implementation Arguments 23-161

Equal Slope and Zero Net Bias Code Replacement . 23-165

Data Type Conversions (Casts) and Operator Code
Replacement . 23-169

Shift Left Operations and Code Replacement 23-174

Performance

Configuration
24

Configure Code Optimizations . 24-2

Specify Global Variable Localization 24-5

Set Hardware Implementation Parameters 24-6

Use External Mode with the ERT Target 24-7
Memory Management . 24-7
Generation of Pure Integer Code with External Mode . 24-8

Code Execution Profiling
25

Execution Profiling for Generated Code 25-2

Code Execution Profiling for SIL and PIL 25-5

Configure Code Execution Profiling for SIL and PIL . 25-6

xxxiv Contents

Execution Profiling for Atomic Subsystems and Model
Reference Hierarchies . 25-8

View and Compare Code Execution Times 25-10

Analyze Code Execution Data 25-16

Tips and Limitations . 25-18
Triggered Model Block . 25-18
Outliers in Execution Time Profiles 25-18
Hardware-Specific Timer . 25-18
Task Context Switching Due to Preemption 25-18
Data Type Replacement Support 25-19

Code Execution Profiling for MATLAB Coder
26

Execution Time Profiling for SIL and PIL 26-2

Generate Execution Time Profile 26-3

View Execution Time Profile . 26-4

Analyze Execution Time Data . 26-7
Extract Execution Time Data for Kalman Estimator

Code . 26-7

Data Copy Reduction
27

Optimize Global Variable Usage 27-2
Minimize Global Data Access 27-3
Use Global to Hold Temporary Results 27-8

Reuse Block Outputs in the Generated Code 27-12
Reuse Global Block Outputs 27-12

xxxv

Virtualized Output Ports Optimization 27-16

Control Signal Storage . 27-18

Signal Reuse for Root-Level Model Inputs and
Outputs . 27-19

Reuse Root-Level I/O Signals 27-19

Buffer Reuse for Model Block Boundary and Unit
Delay . 27-24

Signal Reuse for Model Block Boundary 27-24
Buffer Reuse for Unit Delay Block 27-25

Execution Speed
28

Remove Initialization Code . 28-2

Eliminate Zero Initialization Code for Internal Data . 28-3

Generate Pure Integer Code If Possible 28-6

Disable MAT-File Logging . 28-7

Simplify Multiply Operations In Array Indexing 28-8
Generated Code Results . 28-8

Replace boolean with Specific Integer Data Type . . . 28-12

Memory Usage
29

Optimize Generated Code Using Minimum and
Maximum Values . 29-2

Configure Your Model . 29-2
Optimize Generated Code Using Specified Minimum and

Maximum Values . 29-3

xxxvi Contents

Limitations . 29-7

Flat Structures for Reusable Subsystem Parameters . 29-9

Reduce Global Variables in Nonreusable Subsystem
Functions . 29-13

Generate void-void Function 29-13
Generate Function with Arguments 29-14

Optimize Generated Code By Packing Boolean Data Into
Bitfields . 29-16

Optimize Generated Code By Passing Reusable
Subsystem Outputs as Individual Arguments 29-19

Verification

Code Tracing
30

What Is Code Tracing? . 30-2
Traceable Objects . 30-2
Basic Workflow for Using Traceability 30-3

Traceability Tags . 30-5

Trace Code to Model Objects Using Hyperlinks 30-6

Trace Model Objects to Generated Code 30-8

Trace Stateflow Objects in Generated Code 30-11
Bidirectional Traceability for States and Transitions . 30-11
Bidirectional Traceability for State Transition Tables 30-13
Bidirectional Traceability for Truth Table Blocks . . . 30-16
Bidirectional Traceability for Graphical Functions . . . 30-18
Code-to-Model Traceability for Events 30-19
Model-to-Code Traceability for Junctions 30-20

xxxvii

Format of Traceability Comments for Stateflow
Objects . 30-21

Reload Existing Traceability Information 30-25

Customize Traceability Reports 30-26

Generate a Traceability Matrix 30-28

Traceability Limitations . 30-29

Component Verification
31

Component Verification in the Target Environment . . 31-2

Goals of Component Verification 31-3

Maximizing Code Portability and Configurability . . . 31-4

Simplifying Code Integration and Maximizing Code
Efficiency . 31-5

Running Component Tests . 31-6

Component Verification With a Real-Time Target
Environment

32
About Real-Time Software Component Verification . . 32-2

Real-Time Software Component Testing 32-4

xxxviii Contents

Numerical Equivalence Checking
33

About SIL and PIL Simulations 33-2
What are SIL and PIL Simulations? 33-2
Why Use SIL and PIL . 33-3
How SIL and PIL Simulations Work 33-4
Comparison of SIL and PIL Simulation 33-5

Choose a SIL or PIL Approach 33-7
Verify Top Model Code . 33-8
Verify Referenced Model Code 33-9
Verify Subsystem Code . 33-9

Configure a SIL or PIL Simulation 33-10
Top-Model SIL or PIL Simulation 33-10
Model Block SIL or PIL Simulation 33-12
Use a SIL or PIL Block . 33-13
Check the SIL or PIL Configuration 33-14

Top Model Simulation Using SIL or PIL 33-17

Referenced Model Simulation Using SIL or PIL 33-18

Verify Internal Signals of a Component 33-20

Simulation Mode Override Behavior in Model Reference
Hierarchy . 33-21

Code Interfaces for SIL and PIL 33-23
Code Interface for Top-Model SIL or PIL 33-23
Code Interface for Model Block SIL or PIL 33-24

Configure Hardware Implementation Settings for
SIL . 33-25

Choose Hardware Implementation Approach 33-25
Portable Word Sizes . 33-25
Test Hardware . 33-28
Production hardware . 33-29

Debug Code During SIL Simulations 33-30

xxxix

Prevent Code Changes in Multiple SIL and PIL
Simulations . 33-33

PIL Customization for Target Environment 33-35
Target Connectivity Configurations for PIL 33-35
Target Connectivity API Components 33-35
Communications rtiostream API 33-36

Create PIL Target Connectivity Configuration 33-38
Create a Connectivity API Implementation 33-38
Test an rtiostream Driver 33-39
Synchronize Host and Target 33-41
Specify Hardware Timer . 33-42
Register a Connectivity API Implementation 33-44
Target Connectivity API Examples 33-44

View Test Harness in Code Generation Report 33-46

SIL and PIL Simulation Support and Limitations . . . 33-48
About SIL and PIL Simulation Support and

Limitations . 33-49
Code Source Support . 33-50
Block Support . 33-52
Configuration Parameters Support 33-55
I/O Support . 33-61
Hardware Implementation Support 33-71
Other Feature Support . 33-73

Programmatic Code Generation Verification 33-74
Code Generation Verification API Overview 33-74
Verify Numerical Equivalence with CGV 33-74
Verify Numerical Equivalence Between Two Modes of

Execution of a Model . 33-75
Plot Output Signals . 33-80

xl Contents

Software-in-the-Loop Execution for MATLAB
Coder

34
Code Verification Through Software-in-the-Loop and

Processor-in-the-Loop Execution 34-2

Software-in-the-Loop Execution Using the MATLAB
Coder App . 34-4

Software-in-the-Loop Execution From Command
Line . 34-6

SIL Execution of Code Generated for a Kalman
Estimator . 34-6

Code Debugging During SIL Execution 34-9

PIL Customization for Target Environment 34-12
Target Connectivity Configurations for PIL 34-12
Target Connectivity PIL API Components 34-12
Communications rtiostream API 34-13

Create PIL Target Connectivity Configuration 34-15
Create a Connectivity API Implementation 34-15
Test an rtiostream Driver 34-16
Synchronize Host and Target 34-41
Specify Hardware Timer . 34-19
Register a Connectivity API Implementation 34-44

Processor-in-the-Loop Execution Using the MATLAB
Coder App . 34-22

Processor-in-the-Loop Execution From Command
Line . 34-25

PIL Execution of Code Generated for a Kalman
Estimator . 34-25

SIL/PIL Execution Support and Limitations 34-30

xli

Code Coverage
35

Code Coverage in SIL and PIL Simulations 35-2

Configure SIL and PIL Code Coverage 35-3

View Code Coverage Information at the End of SIL or
PIL Simulations . 35-5

Configure Code Coverage Programmatically 35-8

Code Coverage Summary and Annotations 35-10
LDRA Testbed Coverage . 35-10
BullseyeCoverage Information 35-12

Code Coverage Tool Support . 35-15

Code Coverage for PIL . 35-16
PIL Support for LDRA Testbed 35-16
PIL Support for BullseyeCoverage 35-17

Tips and Limitations . 35-18
Compiler and Platform Support for SIL 35-18
Right-Click Subsystem Build Unsupported for Code

Coverage . 35-18
BullseyeCoverage License Wait 35-18
Current Working Folder Cannot be UNC Path 35-18
Characters in matlabroot and File Path 35-18
Header Files with Identical Names 35-19
Code Coverage for Source Files in Shared Utility

Folders . 35-19
BullseyeCoverage Behavior with Inline Macros 35-19
SIL and PIL Simulations with Open LDRA Testbed . 35-20
PIL Zero Coverage LDRA Testbed Annotations 35-20
Modify Legacy Code . 35-20
IDE Link Does Not Support LDRA Testbed 35-20

xlii Contents

Embedded IDEs and Embedded Targets

Getting Started with Embedded Targets
36

Embedded Coder Supported Hardware 36-2

Project and Build Configurations for Embedded
Targets

37
Model Setup . 37-2

Block Selection . 37-2
Configure Target Hardware Resources 37-3
Configuration Parameters . 37-5
Model Reference . 37-12

IDE Projects . 37-13
Support for Third Party Products 37-13
Code Generation and Build . 37-13

Makefiles for Software Build Tool Chains 37-15
What is the XMakefile Feature 37-15
Using Makefiles to Generate and Build Software 37-17
Making an XMakefile Configuration Operational 37-20
Creating a New XMakefile Configuration 37-20
XMakefile User Configuration dialog 37-26

Verification and Profiling Generated Code
38

PIL Simulation for IDE and Toolchain Targets 38-2
Overview . 38-2

xliii

PIL Approaches . 38-3
Communications . 38-7
Running Your PIL Application to Perform Simulation and

Verification . 38-13
Performing a Model Block PIL Simulation via SCI Using

Makefiles . 38-13
Definitions . 38-17
PIL Issues and Limitations . 38-17

Code Execution Profiling for IDE and Toolchain
Targets . 38-19

Execution Time Profiling . 38-19
Stack Profiling . 38-19

Perform Execution Time Profiling for IDE and Toolchain
Targets . 38-22

Execution Profiling During Standalone Execution . . . 38-22
Execution Profiling During PIL Simulation 38-25

Perform Stack Profiling with IDE and Toolchain
Targets . 38-27

Processor-Specific Optimizations for Embedded
Targets

39
Replace Code for Embedded Targets 39-2

Using a Processor-Specific Code Replacement Library to
Optimize Code . 39-2

Process of Determining Optimization Effects Using Real-
Time Profiling Capability . 39-2

Working with Texas Instruments Code Composer
Studio 3.3 IDE

40
Set Up . 40-2

xliv Contents

Code Composer Studio . 40-3
Using Code Composer Studio with Embedded Coder

Software . 40-3
Default Project Configuration 40-3

Getting Started . 40-5
Overview . 40-5
Verifying Your Code Composer Studio Installation . . . 40-8

IDE Automation Interface . 40-9
Getting Started with IDE Automation Interface 40-9
Getting Started with RTDX . 40-25
Constructing ticcs Objects . 40-42
ticcs Properties and Property Values 40-43
Overloaded Functions for ticcs Objects 40-43
ticcs Object Properties . 40-44
Function List . 40-50

IDE Project Generator . 40-53
Introducing IDE Project Generator 40-53
IDE Project Generator and Board Selection 40-53
Generate an IDE Project . 40-55
Model Reference . 40-58

Exporting Filter Coefficients from FDATool 40-62
About FDATool . 40-62
Preparing to Export Filter Coefficients to Code Composer

Studio Projects . 40-63
Exporting Filter Coefficients to Your Code Composer

Studio Project . 40-66
Preventing Memory Corruption When You Export

Coefficients to Processor Memory 40-71

Using Makefiles with Code Composer Studio 3.x 40-77
Introduction . 40-77
Set Up XMakefile for CCSv3 40-77
Prepare Your Model for CCSv3 and Makefiles 40-78
Create Target Configuration File in CCSv3 40-79
Load and Run the Embedded Software 40-79

Reported Limitations and Tips 40-81
Example Programs Do Not Run Well with Incorrect GEL

Files . 40-81

xlv

Changing Values of Local Variables Does Not Work . 40-82
Code Composer Studio Cannot Find a File After You Halt

a Program . 40-82
C54x XPC Register Can Be Modified Only Through the PC

Register . 40-84
Working with More Than One Installed Version of Code

Composer Studio . 40-84
Changing CCS Versions During a MATLAB Session . 40-85
MATLAB Hangs When Code Composer Studio Cannot

Find a Board . 40-85
Using Mapped Drives . 40-86
Uninstalling Code Composer Studio 3.3 Prevents

Embedded Coder From Connecting 40-86
PostCodeGenCommand Commands Do Not Apply to IDE

Projects . 40-87

Setting Up Code Composer Studio (ert.tlc System Target
File) . 40-88

Prepare Your Model for CCSv3.3 40-88
Prepare Your Model for CCSv4/5/6 40-88

IDE Link Frequently Asked Question: Why do I get an
error when I invoke TICCS? 40-90

Why do I get an error when I invoke TICCS? 40-90
How can I fix this problem? 40-90
What happens if I click Deselect All when CCS prompts

that 'New components were detected'? 40-92
How do I use CCS Component Manager to enable IDE

Link Components? . 40-92

Working with Texas Instruments Code Composer
Studio 4 & 5 IDE

41
Set Up . 41-2

Code Composer Studio . 41-3
Feature Support . 41-3

xlvi Contents

Getting Started . 41-4
Verifying Your Code Composer Studio Installation . . . 41-4
Learning About Makefiles . 41-4

Using Makefiles with Code Composer Studio 4/5 41-5
Introduction . 41-5
Set Up XMakefile for CCSv4/5 41-5
Prepare Your Model for CCSv4/5 and Makefiles 41-6
Create Target Configuration File in CCSv4/5 41-7
Configure Windows Path for TI Debug Server Scripting

(DSS) . 41-7
Load and Run the Embedded Software Using DSS . . . 41-8

Reported Limitations and Tips 41-11
Example Programs Do Not Run well with Incorrect GEL

Files . 41-11
PostCodeGenCommand Commands Do Not Apply to IDE

Projects . 41-11

Code Generation from MATLAB Code

Build Configuration for Code Generation from
MATLAB Code

42
Specify Comment Style for C/C++ Code 42-2

Specify Comment Style Using the MATLAB Coder
App . 42-2

Specify Comment Style Using the Command-Line
Interface . 42-3

Specify Indent Style for C/C++ Code 42-4
Specify Indent Style Using the MATLAB Coder App . . 42-5
Specify Indent Style Using the Command-Line

Interface . 42-5

xlvii

Generate Custom File and Function Banners for C/C++
Code . 42-6

Code Generation Template Files for MATLAB 42-9
Default CGT File . 42-9
CGT File Structure . 42-9
Components of the CGT File Sections 42-11

Customize Generated Identifiers 42-20
Customize Identifiers Using the MATLAB Coder App 42-20
Customize Generated Identifiers Using the Command

Line Interface . 42-21

Control Signed Left Shifts in Generated Code 42-23
Control Signed Left Shifts Using the MATLAB Coder

App . 42-23
Control Signed Left Shifts Using the Command-Line

Interface . 42-23

Control Data Type Casts in Generated Code 42-25
Specify Casting Mode Using the MATLAB Coder App 42-26
Specify Casting Mode Using the Command-Line

Interface . 42-27

Code Replacement for MATLAB Code
43

What Is Code Replacement? . 43-2

Code You Can Replace from MATLAB Code 43-4
About Code You Can Replace 43-4
Math Functions . 43-4
Memory Functions . 43-9
Operators . 43-10

Code Replacement Libraries . 43-15

Code Replacement Terminology 43-17

Code Replacement Limitations 43-20

xlviii Contents

Replace Code Generated from MATLAB Code 43-21

Choose a Code Replacement Library 43-24
About Choosing a Code Replacement Library 43-24
Explore Available Code Replacement Libraries 43-24
Explore Code Replacement Library Contents 43-32

Verification of Code Generated from MATLAB
Code

44
Highlight Potential Data Type Issues in a Report 44-2

Enable Highlight Option Using the MATLAB Coder
App . 44-3

Enable Highlight Option Using the Command Line
Interface . 44-4

Find Potential Data Type Issues in Generated Code . . 44-5
Data Type Issues Overview . 44-5
Enable Highlighting of Potential Data Type Issues . . . 44-5
Find and Address Cumbersome Operations 44-6
Find and Address Expensive Rounding 44-8
Find and Address Expensive Comparison Operations . 44-9

Model Architecture and Design

1

Modeling Environment

1 Modeling Environment

1-2

Set Up Your Modeling Environment

When developing a system, use a combination of products to model each system
component based on the domain to which it applies.

The following table guides you to information and examples that pertain to use of the
Embedded Coder® product to meet goals for specific domains.

Goals Related Product Information Examples

Generate a software
design description

“Code Generation”
in the Simulink
Report Generator™
documentation

rtwdemo_codegenrpt

Trace model
requirements to
generated code

“Requirements
Traceability” in the
Simulink Verification
and Validation™
documentation

rtwdemo_requirements

Implement
application on fixed-
point processors

“Data Types and Scaling”
and “Fixed-Point Code
Generation” in the
Fixed-Point Designer™
documentation

rtwdemo_fixpt1

rtwdemo_fuelsys_fxp_publish

rtwdemo_dspanc_fixpt

Use an integrated
development
environment (IDE)
to integrate an
application on a
target processor
automatically

“Program Building,
Interaction, and
Debugging” topics in
the Embedded Coder
documentation

“Program Building,
Interaction, and
Debugging” and Desktop
Targets topics in
the Simulink Coder
documentation

In rtwdemos, select one of the
following folders: Desktop IDEs,
Desktop Targets, Embedded IDEs,
or Embedded Targets

2

Application Objectives

The first step in applying Embedded Coder configuration options to the application
development process is to consider how your application objectives, particularly with
respect to efficiency, traceability, and safety, map to code generation options in a model
configuration set.

Parameters that you set in the Solver, Data Import/Export, Diagnostics, and Code
Generation panes of the Configuration Parameters dialog box affect the behavior of a
model in simulation and the code generated for the model.

Consider questions such as the following:

• What settings might help you debug your application?
• What is the highest objective for your application — efficiency, traceability,

debugging, safety precaution, or some other criteria?
• What is the second highest objective?
• Can the objective at the start of the project differ from the objective required for the

end result? What tradeoffs can you make?

After you answer these questions:

1 Define your objectives in the configuration set. For more information, see “High-
Level Code Generation Objectives” on page 14-3.

2 Use the Code Generation Advisor to identify parameter values that are not
configured for the objectives that you selected. For more information, see “Determine
Model Configuration for Specified Objectives” on page 14-5.

3

Guidelines and Standards

• “What Are the Standards and Guidelines?” on page 3-2
• “MAAB Guidelines” on page 3-4
• “MISRA C Guidelines” on page 3-5
• “IEC 61508 Standard” on page 3-7
• “ISO 26262 Standard” on page 3-9
• “EN 50128 Standard” on page 3-11
• “DO-178C Standard” on page 3-13

3 Guidelines and Standards

3-2

What Are the Standards and Guidelines?

If your application has mission-critical development and certification goals, your models
or subsystems and the code generated for them might need to comply with one or more of
the standards and guidelines listed in the following table.

Standard or Guidelines Organization For More Information, See...

Guidelines: Use of MATLAB®,
Simulink, and Stateflow®

software for control algorithm
modeling – MathWorks
Automotive Advisory Board
(MAAB) Guidelines

MAAB • Control Algorithm Modeling
Guidelines Using MATLAB,
Simulink, and Stateflow
Software: PDF, Word

• Develop Models and Code
That Comply with “MAAB
Guidelines” on page 3-4

Guidelines: Use of the C
Language in Critical Systems
(MISRA C®a)

Motor Industry Software
Reliability Association
(MISRA)

• MISRA C website
• Technical Solution 1-1IFP0W on

the MathWorks website
• Develop Models and Code

That Comply with “MISRA C
Guidelines” on page 3-5

Standard: AUTomotive
Open System ARchitecture
(AUTOSAR)

AUTOSAR Development
Partnership

• Publications and specifications
available from the AUTOSAR
website

• AUTOSAR Support from
Embedded Coder on the
MathWorks website

• “AUTOSAR Standard”
• Embedded Coder “AUTOSAR”

documentation
Standard: IEC 61508,
Functional safety of electrical/
electronic/ programmable
electronic safety-related
systems

International
Electrotechnical Commission

• IEC functional safety zone
website

• IEC 61508 Support in MATLAB
and Simulink

http://www.mathworks.com/automotive/standards/docs/MAAB_Style_Guideline_Version3p00_pdf.zip
http://www.mathworks.com/automotive/standards/docs/MAAB_Style_Guideline_Version3p00_pdf.zip
http://www.mathworks.com/automotive/standards/docs/MAAB_Style_Guideline_Version3p00_pdf.zip
http://www.mathworks.com/industries/auto/maab.html
http://www.mathworks.com/automotive/standards/docs/MAAB_Style_Guideline_Version3p00_pdf.zip
http://www.mathworks.com/automotive/standards/docs/MAAB_Style_Guideline_Version3p00_doc.zip
http://www.misra.org.uk/
http://www.misra.org.uk/
http://www.misra.org.uk/
http://www.misra-c.com/
http://www.mathworks.com/support/solutions/data/1-1IFP0W.html
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.mathworks.com/hardware-support/autosar.html
http://www.mathworks.com/hardware-support/autosar.html
http://www.iec.ch/
http://www.iec.ch/
http://www.iec.ch/zone/fsafety/
http://www.iec.ch/zone/fsafety/
http://www.mathworks.com/solutions/automotive/standards/iec-61508.html
http://www.mathworks.com/solutions/automotive/standards/iec-61508.html

 What Are the Standards and Guidelines?

3-3

Standard or Guidelines Organization For More Information, See...

• Develop Models and Code
That Comply with “IEC 61508
Standard” on page 3-7

Standard: ISO 26262, Road
Vehicles - Functional Safety

International Organization
for Standardization

• ISO 26262 Support in MATLAB
and Simulink

• Develop Models and Code
That Comply with “ISO 26262
Standard” on page 3-9

Standard: EN 50128, Railway
applications — Software for
railway control and protection
systems

European Committee
for Electrotechnical
Standardization

• Develop Models and Code
That Comply with “EN 50128
Standard” on page 3-11

Standard: DO-178C, Software
Considerations in Airborne
Systems and Equipment
Certification

Radio Technical Commission
for Aeronautics (RTCA)

• Develop Models and Code
That Comply with “DO-178C
Standard” on page 3-13

a. MISRA® and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the MISRA Consortium.

http://www.iso.org/iso/home.html
http://www.iso.org/iso/home.html
http://www.mathworks.com/automotive/standards/iso-26262.html
http://www.mathworks.com/automotive/standards/iso-26262.html
http://www.cenelec.eu/
http://www.cenelec.eu/
http://www.cenelec.eu/
http://www.rtca.org/
http://www.rtca.org/

3 Guidelines and Standards

3-4

MAAB Guidelines

The MathWorks Automotive Advisory Board (MAAB) involves major automotive OEMs
and suppliers in the process of evolving MathWorks controls, simulation, and code
generation products, including Simulink, Stateflow, and Simulink Coder. An important
result of the MAAB has been the “MAAB Control Algorithm Modeling” guidelines.

If you have a Simulink Verification and Validation product license, you can check that
your Simulink model or subsystem, and the code that you generate from it, complies
with MAAB guidelines. To check your model or subsystem, open the Simulink Model
Advisor. Navigate to By Product > Simulink Verification and Validation >
Modeling Standards > MathWorks Automotive Advisory Board Checks and run
the MathWorks Automotive Advisory Board checks.

For more information on using the Model Advisor, see “Run Model Checks” in the
Simulink documentation.

http://www.mathworks.com/products/simverification/

 MISRA C Guidelines

3-5

MISRA C Guidelines

The Motor Industry Software Reliability Association (MISRA2) has established
“Guidelines for the Use of the C Language in Critical Systems” (MISRA C). For general
information about MISRA C, see www.misra-c.com.

In 1998, MIRA Ltd. published MISRA C (MISRA C:1998) to provide a restricted subset
of a standardized, structured language that met Safety Integrity Level (SIL) 2 and
higher. A major update based on feedback was published in 2004 (MISRA C:2004),
followed by a minor update in 2007 known as Technical Corrigendum (TC1). In 2007,
MISRA also published the MISRA AC AGC standard, “MISRA AC AGC: Guidelines
for the Application of MISRA-C:2004 in the Context of Automatic Code Generation.”
MISRA AC AGC does not change MISRA C:2004 rules, rather it modifies the adherence
recommendation. For more information about MISRA C, see www.misra-c.com.

Embedded Coder and Simulink offer capabilities to minimize the potential for MISRA C
rule violations, especially rules deemed applicable by MISRA AC AGC.

To configure a model or subsystem so that the code generator is most likely to produce
MISRA C:2004 compliant code, use the Code Generation Advisor. For more information,
refer to:

• “High-Level Code Generation Objectives”
• “Determine Model Configuration for Specified Objectives”

The Model Advisor also checks that you developed your model or subsystem to increase
the likelihood of generating MISRA C:2004 compliant code. To check your model or
subsystem:

1 Open the Model Advisor.
2 Navigate to By Task > Modeling Guidelines for MISRA-C:2004.
3 Run the following checks:

• “Check configuration parameters for MISRA-C:2004 compliance”
• “Check for blocks not recommended for MISRA-C:2004 compliance”
• “Identify blocks that generate expensive fixed-point and saturation code”
• “Check for bitwise operations on signed integers”

2. MISRA and MISRA C are registered trademarks of MIRA Ltd., held on behalf of the MISRA Consortium.

http://www.misra-c.com
http://www.misra-c.com

3 Guidelines and Standards

3-6

For more information about using the Model Advisor, see “Run Model Checks” in the
Simulink documentation.

For information about using Embedded Coder software within MISRA C guidelines, see
Technical Solution 1-1IFP0W on the MathWorks website.

http://www.mathworks.com/support/solutions/data/1-1IFP0W.html

 IEC 61508 Standard

3-7

IEC 61508 Standard

In this section...

“Apply Simulink and Embedded Coder to the IEC 61508 Standard” on page 3-7
“Check for IEC 61508 Standard Compliance Using the Model Advisor” on page 3-7
“Validate Traceability” on page 3-7

Apply Simulink and Embedded Coder to the IEC 61508 Standard

Applying Model-Based Design to a safety-critical system requires extra consideration
and rigor so that the system adheres to defined safety standards. IEC 61508, Functional
safety of electrical/electronic/programmable electronic safety related systems, is such
a standard. Because the standard was published when most software was coded by
hand, the standard needs to be mapped to Model-Based Design technologies. For
further information about MathWorks support for IEC 61508, see IEC 61508 Support in
MATLAB and Simulink.

MathWorks provides an IEC Certification Kit product that you can use to certify
MathWorks code generation and verification tools for projects based on the IEC 61508
standard. For more information, see http://www.mathworks.com/products/iec-61508/.

Check for IEC 61508 Standard Compliance Using the Model Advisor

If you have a Simulink Verification and Validation product license, you can check that
your Simulink model or subsystem and the code that you generate from it complies with
selected aspects of the IEC 61508 standard by running the Simulink Model Advisor.
Navigate to By Product > Simulink Verification and Validation > Modeling
Standards > IEC 61508, ISO 26262, and EN 50128 Checks or By Task > Modeling
Standards for IEC 61508 and run the “IEC 61508, ISO 26262, and EN 50128 Checks”.

For more information on using the Model Advisor, see “Run Model Checks” in the
Simulink documentation.

Validate Traceability

Typically, applications that require certification require some level of traceability
between requirements, models, and corresponding code.

http://www.mathworks.com/solutions/automotive/standards/iec-61508.html
http://www.mathworks.com/solutions/automotive/standards/iec-61508.html
http://www.mathworks.com/products/iec-61508/
http://www.mathworks.com/products/simverification/

3 Guidelines and Standards

3-8

To... Use...

Associate requirements documents
with objects in Simulink models

The “Requirements Traceability” that is
available if you have a Simulink Verification and
Validation license.

Trace model blocks and subsystems to
generated code

The Model-to-code traceability option when
generating an HTML report during the code
generation or build process.

Trace generated code to model blocks
and subsystems

The Code-to-model traceability option when
generating an HTML report during the code
generation or build process.

 ISO 26262 Standard

3-9

ISO 26262 Standard
In this section...

“Apply Simulink and Embedded Coder to the ISO 26262 Standard” on page 3-9
“Check for ISO 26262 Standard Compliance Using the Model Advisor” on page 3-9
“Validate Traceability” on page 3-7

Apply Simulink and Embedded Coder to the ISO 26262 Standard

Applying Model-Based Design to a safety-critical system requires extra consideration
and rigor so that the system adheres to defined functional safety standards. ISO 26262,
Road Vehicles - Functional Safety, is such a standard. For further information about
MathWorks support for ISO 26262, see ISO 26262 Support in MATLAB and Simulink.

MathWorks provides an IEC Certification Kit product that you can use to qualify
MathWorks code generation and verification tools for projects based on the ISO 26262
standard. For more information, see http://www.mathworks.com/products/iso–26262/.

Check for ISO 26262 Standard Compliance Using the Model Advisor

If you have a Simulink Verification and Validation product license, you can check that
your Simulink model or subsystem and the code that you generate from it complies with
selected aspects of the ISO 26262 standard by running the Simulink Model Advisor.
Navigate to By Product > Simulink Verification and Validation > Modeling
Standards > IEC 61508, ISO 26262, and EN 50128 Checks or By Task > Modeling
Standards for ISO 26262 and run the “IEC 61508, ISO 26262, and EN 50128 Checks”.

For more information on using the Model Advisor, see “Run Model Checks” in the
Simulink documentation.

Validate Traceability

Typically, applications that require certification require some level of traceability
between requirements, models, and corresponding code.

To... Use...

Associate requirements documents
with objects in Simulink models

The “Requirements Traceability” that is
available if you have a Simulink Verification and
Validation license.

http://www.mathworks.com/automotive/standards/iso-26262.html
http://www.mathworks.com/products/iec-61508/
http://www.mathworks.com/products/simverification/

3 Guidelines and Standards

3-10

To... Use...

Trace model blocks and subsystems to
generated code

The Model-to-code traceability option when
generating an HTML report during the code
generation or build process.

Trace generated code to model blocks
and subsystems

The Code-to-model traceability option when
generating an HTML report during the code
generation or build process.

 EN 50128 Standard

3-11

EN 50128 Standard

In this section...

“Apply Simulink and Embedded Coder to the EN 50128 Standard” on page 3-11
“Check for EN 50128 Standard Compliance Using the Model Advisor” on page 3-11
“Validate Traceability” on page 3-7

Apply Simulink and Embedded Coder to the EN 50128 Standard

Applying Model-Based Design to a safety-critical system requires extra consideration
and rigor so that the system adheres to defined safety standards. EN 50128, Railway
applications — Software for railway control and protection systems, is such a standard.

MathWorks provides an IEC Certification Kit product that you can use to certify
MathWorks code generation and verification tools for projects based on the EN 50128
standard. For more information, see http://www.mathworks.com/products/iec-61508/.

Check for EN 50128 Standard Compliance Using the Model Advisor

If you have a Simulink Verification and Validation product license, you can check that
your Simulink model or subsystem and the code that you generate from it complies with
selected aspects of the EN 50128 standard by running the Simulink Model Advisor.
Navigate to By Product > Simulink Verification and Validation > Modeling
Standards > IEC 61508, ISO 26262, and EN 50128 Checks or By Task > Modeling
Standards for EN 50128 and run the “IEC 61508, ISO 26262, and EN 50128 Checks”.

For more information on using the Model Advisor, see “Run Model Checks” in the
Simulink documentation.

Validate Traceability

Typically, applications that require certification require some level of traceability
between requirements, models, and corresponding code.

To... Use...

Associate requirements documents
with objects in Simulink models

The “Requirements Traceability” that is
available if you have a Simulink Verification and
Validation license.

http://www.mathworks.com/products/iec-61508/
http://www.mathworks.com/products/simverification/

3 Guidelines and Standards

3-12

To... Use...

Trace model blocks and subsystems to
generated code

The Model-to-code traceability option when
generating an HTML report during the code
generation or build process.

Trace generated code to model blocks
and subsystems

The Code-to-model traceability option when
generating an HTML report during the code
generation or build process.

 DO-178C Standard

3-13

DO-178C Standard

In this section...

“Apply Simulink and Embedded Coder to the DO-178C Standard” on page 3-13
“Check for Standard Compliance Using the Model Advisor” on page 3-13
“Validate Traceability” on page 3-7

Apply Simulink and Embedded Coder to the DO-178C Standard

Applying Model-Based Design to a high-integrity system requires extra consideration
and rigor so that the system adheres to defined safety standards. DO-178C Software
Considerations in Airborne Systems and Equipment Certification is such a standard. A
supplement to DO-178C, DO-331, provides guidance on the use of Model-Based Design
technologies. MathWorks provides a DO Qualification Kit product that you can use to
qualify MathWorks verification tools for projects based on the DO-178C, DO-331, and
related standards. For more information, see http://www.mathworks.com/products/
do-178/.

For information about Model-Based Design and MathWorks support of aerospace and
defense industry standards, see http://www.mathworks.com/aerospace-defense/ .

Check for Standard Compliance Using the Model Advisor

If you have a Simulink Verification and Validation product license, you can check that
your Simulink model or subsystem and the code that you generate from it complies
with selected aspects of the DO-178C standard by running the Simulink Model Advisor.
Navigate to By Product > Simulink Verification and Validation > Modeling
Standards > DO-178C/DO-331 Checks or By Task > Modeling Standards for
DO-178C/DO-331 and run the DO-178C/DO-331 checks.

For more information on using the Model Advisor, see “Run Model Checks” in the
Simulink documentation.

Validate Traceability

Typically, applications that require certification require some level of traceability
between requirements, models, and corresponding code.

http://www.mathworks.com/products/do-178/
http://www.mathworks.com/products/do-178/
http://www.mathworks.com/aerospace-defense/
http://www.mathworks.com/products/simverification/

3 Guidelines and Standards

3-14

To... Use...

Associate requirements documents
with objects in Simulink models

The “Requirements Traceability” that is
available if you have a Simulink Verification and
Validation license.

Trace model blocks and subsystems to
generated code

The Model-to-code traceability option when
generating an HTML report during the code
generation or build process.

Trace generated code to model blocks
and subsystems

The Code-to-model traceability option when
generating an HTML report during the code
generation or build process.

4

Patterns for C Code

• “About Modeling Patterns” on page 4-3
• “Prepare a Model for Code Generation” on page 4-4
• “Data Declaration” on page 4-8
• “Data Type Conversion” on page 4-11
• “Type Qualifiers” on page 4-14
• “Relational and Logical Operators” on page 4-16
• “Bitwise Operations” on page 4-20
• “If-Else” on page 4-23
• “Switch” on page 4-29
• “For Loop” on page 4-35
• “While Loop” on page 4-41
• “Do While Loop” on page 4-51
• “Function Call” on page 4-58
• “Function Prototyping” on page 4-60
• “External C Functions” on page 4-63
• “Macro Definitions (#define)” on page 4-69
• “Conditional Inclusions (#if / #endif)” on page 4-72
• “Typedef” on page 4-73
• “Structures for Parameters” on page 4-75
• “Structures for Signals” on page 4-77
• “Nested Structures” on page 4-80
• “Bitfields” on page 4-84
• “Arrays for Parameters” on page 4-86
• “Arrays for Signals” on page 4-88
• “Pointers for Signals” on page 4-90

4 Patterns for C Code

4-2

• “Pointers Using Simulink Data Objects” on page 4-91

 About Modeling Patterns

4-3

About Modeling Patterns

Several standard methods are available for setting up a model to generate specific C
constructs in your code. For preparing your model for code generation, some of these
methods include: configuring signals and ports, initializing states, and setting up
configuration parameters for code generation. Depending on the components of your
model, some of these methods are optional. Methods for configuring a model to generate
specific C constructs are organized by category, for example, the Control Flow category
includes constructs if-else, switch, for, and while. Refer to the name of a construct
to see how you should configure blocks and parameters in your model. Different modeling
methodologies are available, such as Simulink blocks, Stateflow charts, and MATLAB
Function blocks, to implement a C construct.

Model examples have the following naming conventions:

Model Components Naming Convention

Inputs u1, u2, u3, and so on
Outputs y1, y2, y3, and so on
Parameters p1, p2, p3, and so on
States x1, x2, x3, and so on

Input ports are named to reflect the signal names that they propagate.

4 Patterns for C Code

4-4

Prepare a Model for Code Generation

In this section...

“Configure a Signal” on page 4-4
“Configure Input and Output Ports” on page 4-4
“Initialize States” on page 4-5
“Set Up Configuration Parameters for Code Generation” on page 4-5
“Set Up an Example Model With a Stateflow Chart” on page 4-6
“Set Up an Example Model With a MATLAB Function Block” on page 4-7

Configure a Signal

1 Create a model in Simulink. For more information, see “Modeling Basics”.
2 Right-click a signal line. Select Properties. For more information about the Signal

Properties dialog box, see “Signal Properties”.
3 Enter a signal name for the Signal name parameter.
4 On the same Signal Properties dialog box, select the Code Generation tab. Use

the drop down menu for the Storage class parameter to specify a storage class.
Examples in this chapter use Exported Global.

Note: Alternatively, on the Signal Properties dialog box, select Signal name must
resolve to Simulink signal object. Then create a signal data object in the base
workspace with the same name as the signal. See “Create Simulink and mpt Data
Objects” for more information on creating data objects in the base workspace.
(Examples use mpt.Signal and specify the Storage class as ExportedGlobal.

Configure Input and Output Ports

1 In your model,

Double-click an Inport or Outport block. A Block Parameters dialog box opens.
2 Select the Signal Attributes tab.
3 Specify the Port dimensions and Data type. Examples leave the default value for

Port dimensions as —1 (for inherited) and Data type as Inherit: auto.

 Prepare a Model for Code Generation

4-5

Initialize States

1 Double-click a block.
2 In the Block Parameters dialog box, select the Main tab.
3 Specify the Initial conditions and Sample time. For more information, see “

Specify Sample Time”.
4 Select the State Attributes pane. Specify the state name. See “Discrete Block State

Naming in Generated Code”.
5 You can also use the Data Object Wizard for creating data objects. A part of this

process initializes states. See “Create Data Objects with Data Object Wizard”.

Set Up Configuration Parameters for Code Generation

1 Open the Configuration Parameter dialog box by selecting Simulation > Model
Configuration parameters. You can also use the keyboard shortcut Ctrl+E.

2 Open the Solver pane and select

• Solver type: Fixed-Step
• Solver: discrete (no continuous states)

3 Open the Optimization > Signals and Parameters pane, and select the Inline
parameters parameter.

4 Open the Code Generation pane, and specify ert.tlc as the System Target
File.

5 Clear Generate makefile.
6 Select Generate code only.
7 Enable the HTML report generation by opening the Code Generation >

Report pane and selecting Create code generation report, Launch report
automatically, and Code-to-model. Enabling the HTML report generation is
optional.

8 Click Apply and then OK to exit.

4 Patterns for C Code

4-6

Set Up an Example Model With a Stateflow Chart

Follow this general procedure to create a simple model containing a Stateflow chart.

1 From the Stateflow > Chart library, add a Stateflow chart to your model .
2 Add Inport blocks and Outport blocks according to the example model.
3 Open the Stateflow Editor by performing one of the following:

• Double-click the Stateflow chart.
• Press Ctrl+R.

4 Select Chart > Add Inputs & Outputs > Data Input from Simulink to add the
inputs to the chart. A Data dialog box opens for each input.

5 Specify the Name (u1, u2, ...) and the Type (Inherit: Same as Simulink)
for each input, unless specified differently in the example. Click OK.

Click Apply and close each dialog box.
6 Select Chart > Add Inputs & Outputs > Data Output from Simulink to add the

outputs to the chart. A Data dialog opens for each output.
7 Specify the Name (y1, y2, ...) and Type (Inherit: Same as Simulink) for

each output, unless specified differently in the example. Click OK.
8 Click Apply and close each dialog box.
9 In the Stateflow Editor, create the Stateflow diagram specific to the example.
10 The inputs and outputs appear on the chart in your model.
11 Connect the Inport and Outport blocks to the Stateflow Chart.
12 Configure the input and output signals; see “Configure a Signal” on page 4-4.

 Prepare a Model for Code Generation

4-7

Set Up an Example Model With a MATLAB Function Block

1 Add the number of Inport and Outport blocks according to a C construct example
included in this chapter.

2 From the Simulink User-defined Functions library drag a MATLAB Function block
into the model.

3 Double-click the block. The MATLAB Function Block Editor opens. Edit the function
to implement your application.

4 Click File > Save and close the MATLAB Function Block Editor.
5 Connect the Inport and Outport blocks to the MATLAB Function block. See

“Configure a Signal” on page 4-4.
6 Save your model.

4 Patterns for C Code

4-8

Data Declaration

C Construct

int32 p1 = 3;

Declare a Variable for a Block Parameter Using a Data Object

You can specify certain block parameters as a variable. If you define the variable as a
data object, the variable is global. Where the variable is declared in the generated code
depends on the custom storage class that you choose (and whether you select Inline
Parameters on the Optimization > Signals and Parameters pane). If you choose
Inline Parameters, then the data object name is used in the generated code. If you did
not choose Inline Parameters, the generated code creates a global structure that stores
all of the parameters. For more information on how to create a data object, see “Create
and Apply User-Defined Data Types”.

There are several methods for configuring data objects:

• For a model with many parameters, use the Data Object Wizard, which analyzes
your model and finds the unresolved data objects and data types. You can then create
the data objects in the Data Object Wizard. The procedure for using the Data Object
Wizard for a parameter is similar to the procedure for a signal. For an example, see
“Declare a Variable for a Signal using a Data Object” on page 4-9.

• To add, delete, edit, and configure data objects, use the base workspace in the Model
Explorer.

• To create and configure data objects, use the MATLAB command line.

The following example demonstrates how to create a data object using the Model
Explorer. The declaration statement in the generated code is as follows:

int Kp = 3;

1 Create a model containing a Constant block and a Gain block.
2 Press Ctrl+E to open the Configuration Parameters dialog box.

3 On the Optimization > Signals and Parameters pane of the Configuration
Parameter dialog box, select Inline parameters.

4 Click Apply and OK. The Configuration Parameter dialog box closes.

 Data Declaration

4-9

5 In your model, double-click the Constant block. The Block Parameters dialog box
opens.

6 In the Value field, enter a variable name. In this example, the variable name is p1.
7 In your model, double-click the Gain block. The Block Parameters dialog box opens.
8 In the Value field, enter a variable name. In this example, the variable name is p2.
9 Press Ctrl+H to open the Model Explorer. On the Model Hierarchy pane, select the

base workspace.
10 Add two mpt parameter objects. Select Add > Add Custom. On the Contents of:

Base Workspace pane, you see the parameters.
11 Double-click each mpt.Parameter object and change their names to p1 and p2.
12 Click the p1 parameter. The data object parameters are displayed in the right pane

of the Model Explorer.
13 In the Value field, enter 3 for p1. For the Data type, select int32. Because you

chose an mpt parameter, the Storage Class is already set to Global(Custom).
14 In the Value field, enter 5 for p2. For the Data type, select int32.
15 Press Ctrl+B to generate code.

In the model.c file you see:

int32 p1 = 3;

int32 p2 = 5;

Note: Depending on the storage class, the global variable is represented differently in the
generated code. For more information, see “Parameter Objects”.

C Construct

int p1 = 3;

Declare a Variable for a Signal using a Data Object

1 Create a model and label the signals.
2 Open the Data Object Wizard. In the Simulink Editor, select Code > Data

Objects > Data Object Wizard. If you are not familiar with creating Simulink
Data Objects using the wizard, refer to “Data Object Wizard” .

4 Patterns for C Code

4-10

3 Click Find. The list of unresolved parameters and objects populates the Data Object
Wizard. You can do mass edits for identical data objects.

4 Select the signals individually or select all signals by clicking Check All.
5 From the parameter Choose package for selected data objects drop-down list,

select the mpt package. Click Apply Package. When you open the Model Explorer
the data objects appear in the base workspace.

6 In the base workspace, click the p1 data object . The data object parameters appear
in the right pane of the Model Explorer.

7 From the Data type drop-down list, select int16.
8 You can also specify the storage class. The data object is an mpt.Parameter object,

therefore the Storage Class is automatically set to Global (Custom).

Note: The Storage class alters the data object implementation in the generated code.
For more information, see “Signal Objects for Code Generation”.

 Data Type Conversion

4-11

Data Type Conversion

C Construct

 y1 = (double)u1;

Modeling Patterns

• “Modeling Pattern for Data Type Conversion — Simulink Block” on page 4-11
• “Modeling Pattern for Data Type Conversion — Stateflow Chart” on page 4-12
• “Modeling Pattern for Data Type Conversion — MATLAB Function Block” on page

4-12

Modeling Pattern for Data Type Conversion — Simulink Block

One method to create a data type conversion is to use a Data Type Conversion block from
the Simulink > Commonly Used Blocks library.

ex_data_type_SL

1 From the Commonly Used Blocks library, drag a Data Type Conversion block into
your model and connect to the Inport and Outport blocks.

2 Double-click on the Data Type Conversion block to open the Block Parameters dialog
box.

3 Select the Output data type parameter as double.
4 Press Ctrl+B to build the model and generate code.

The generated code appears in ex_data_type_SL.c, as follows:

int32_T u1;

real_T y1;

void ex_data_type_SL_step(void)

{

 y1 = (real_T)u1;

4 Patterns for C Code

4-12

}

The Embedded Coder type definition for double is real_T.

Modeling Pattern for Data Type Conversion — Stateflow Chart

Stateflow Chart Type Conversion

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on page 4-6 .
This example contains one Inport block and one Outport block.

2 Name the example model ex_data_type_SF.
3 Double-click the Inport block and select the Signal Attributes tab. Specify the

Data Type as int32 from the drop down menu.
4 Double-click the Outport block and select the Signal Attributes tab. Specify the

Data Type as Inherit: auto from the drop down menu.
5 Press Ctrl+B to build the model and generate code.

Results

The generated code appears in ex_data_type_SF.c, as follows:
int32_T u1;

real_T y1;

void ex_data_type_SF_step(void)

{

 y1 = (real_T)u1;

}

Modeling Pattern for Data Type Conversion — MATLAB Function Block

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function Block” on
page 4-7 . This example model contains one Inport block and one Outport block.

 Data Type Conversion

4-13

2 Name the model ex_data_type_ML_Func.
3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = typeconv(u1)

y1 = double(u1);

end

4 Press Ctrl+B to build the model and generate code.

Results

The generated code appears in ex_data_type_ML_func.c, where real32_T is a float
and real_T is a double. Type conversion occurs across assignments.
real32_T u1;

real_T y1;

void ex_data_type_ML_func_step(void)

{

 y1 = u1;

}

Other Type Conversions in Modeling

Type conversions can also occur on the output of blocks where the output variable is
specified as a different data type. For example, in the Gain block, you can select the
Inherit via internal rule parameter to control the output signal data type. Another
example of type conversion can occur at the boundary of a Stateflow chart. You can
specify the output variable as a different data type.

4 Patterns for C Code

4-14

Type Qualifiers

Modeling Patterns for Type Qualifiers

• “Using a Tunable Parameter in the Base Workspace” on page 4-14
• “Use a Data Object of the Const Custom Storage Class” on page 4-15

Using a Tunable Parameter in the Base Workspace

A tunable parameter is a block parameter whose value can be changed at runtime. The
storage class property of a parameter specifies how the parameter is declared in the
generated code.

ex_type_qual

Procedure

1 Create a model containing a Constant block and an Outport block.
2 Double-click the Constant block. In the Constant value field, enter the parameter

name p1 .
3 In the base workspace, create a MATLAB variable for p1 and specify its Value as

9.8 and its Data type as double.
4 Press Ctrl+E to open the Configuration Parameters dialog box and select the

Optimization > Signals and Parameters pane.
5 Select the Inline parameters parameter, which activates the Configure button.
6 Click the Configure button to open the Model Parameter Configuration dialog box.
7 To declare a tunable parameter, from the Source list, select the variable p1.
8 Click the Add to table button to add p1 to the Global (tunable) parameters

section.
9 Click the Storage Class and select Exported Global.
10 Click the Storage Type Qualifier arrow and select const.

 Type Qualifiers

4-15

11 Click Apply to save the changes.
12 Press Ctrl+B to build the model and generate code.

Results

The generated code appears in ex_type_qual.c as follows:
/* Exported block parameters */

 const real_T p1 = 9.8; /* Variable: p1

 * Referenced by: '<Root>/Constant'

 */

Use a Data Object of the Const Custom Storage Class

One way to create a type qualifier in the generated code is to create a data object and
specify a custom storage class. Use the previous model, ex_type_qual, for this example.
Specify p1 differently as follows:

Procedure

1 Press Ctrl+H to open the Model Explorer. On the Model Hierarchy pane, select the
base workspace.

2 Select Add > Add Custom to add an mpt parameter object. The parameter is
displayed in the Contents of: Base Workspace pane.

3 Double-click the mpt.Parameter object and change the Name to p1.
4 Click the p1 parameter which displays the data object parameters on the right pane

of the Model Explorer.
5 In the Value field, enter 9.8 for p1. Specify the Data type as auto for 64–bit

double.
6 You can use the different type qualifiers by selecting a custom storage class from the

Storage class list. For this example, select ConstVolatile (custom).
7 In the Configuration Parameters dialog box, on the Optimization > Signals and

Parameters pane, select the Inline parameters.
8 Press Ctrl+B to build the model and generate code.

Results

The generated code produces the type qualifier in ex_type_qual.c:

const volatile real_T p1 = 9.8;

4 Patterns for C Code

4-16

Relational and Logical Operators

Modeling Patterns for Relational and Logical Operators

• “Modeling Pattern for Relational or Logical Operators — Simulink Blocks” on page
4-16

• “Modeling Pattern for Relational and Logical Operators —Stateflow Chart” on page
4-17

• “Modeling Pattern for Relational and Logical Operators — MATLAB Function Block”
on page 4-18

Modeling Pattern for Relational or Logical Operators — Simulink Blocks

ex_logical_SL

Procedure

1 From the Logic and Bit Operations library, drag a Logical Operator block into
your model.

2 Double-click the block to configure the logical operation. Set the Operator field to
OR.

3 Name the blocks, as shown in the model ex_logical_SL.
4 Connect the blocks and name the signals, as shown in the model ex_logical_SL.
5 Press Ctrl+B to build the model and generate code.

Note: You can use the above procedure to implement relational operators by replacing
the Logical Operator block with a Relational Operator block.

 Relational and Logical Operators

4-17

Results

Code implementing the logical operator OR is in the ex_logical_SL_step function in
ex_logical_SL.c:

/* Exported block signals */

 boolean_T u1; /* '<Root>/u1' */

 boolean_T u2; /* '<Root>/u2' */

 boolean_T y1; /* '<Root>/Logical Operator'*/

 /* Logic: '<Root>/Logical Operator' incorporates:

 * Inport: '<Root>/u1'

 * Inport: '<Root>/u2'

 */

 y1 = (u1 || u2);

Modeling Pattern for Relational and Logical Operators —Stateflow Chart

ex_logical_SF/Logical Operator Stateflow Chart

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on page 4-6.
This example model contains two Inport blocks and one Outport block.

2 Name the example model ex_logical_SF.
3 In the Stateflow Editor, specify the Data Type for y1 as Boolean.
4 In the Stateflow Editor, create the Stateflow diagram as shown. The relational

or logical operation actions are on the transition from one junction to another.
Relational statements specify conditions to conditionally allow a transition. In that
case, the statement would be within square brackets.

5 Press Ctrl+B to build the model and generate code.

4 Patterns for C Code

4-18

Results

Code implementing the logical operator OR is in the ex_logical_SF_step function in
ex_logical_SF.c:

boolean_T u1; /* '<Root>/u1' */

boolean_T u2; /* '<Root>/u2' */

boolean_T y1; /* '<Root>/Chart' */

void ex_logical_SF_step(void)

{

 y1 = (u1 || u2);

}

Modeling Pattern for Relational and Logical Operators — MATLAB
Function Block

This example demonstrates the MATLAB Function block method for incorporating
operators into the generated code using a relational operator.

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function Block” on
page 4-7 . This example model contains two Inport blocks and one Outport block.

2 Name the example model ex_rel_operator_ML.
3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = fcn(u1, u2)

y1 = u1 > u2;

end

4 Press Ctrl+B to build the model and generate code.

Results

Code implementing the relational operator '>' is in the ex_rel_operator_ML_step
function in ex_rel_operator_ML.c:

real_T u1; /* '<Root>/u1' */

real_T u2; /* '<Root>/u2' */

boolean_T y; /* '<Root>/MATLAB Function' */

void ex_rel_operator_ML_step(void)

 Relational and Logical Operators

4-19

{

 y = (u1 > u2);

 }

4 Patterns for C Code

4-20

Bitwise Operations

Simulink Bitwise-Operator Block

ex_bit_logic_SL

Procedure

1 Drag a Bitwise Operator block from the Logic and Bit Operations library into
your model.

2 Double-click the block to open the Block Parameters dialog.
3 Select the type of Operator. In this example, select AND.
4 In order to perform Bitwise operations with a bit-mask, select Use bit mask.

Note: If another input uses Bitwise operations, clear the Use bit mask parameter
and enter the number of input ports.

5 In the Bit Mask field, enter a decimal number. Use bin2dec or hex2dec to convert
from binary or hexadecimal. In this example, enter hex2dec('D9').

6 Name the blocks, as shown in, model ex_bit_logic_SL.
7 Connect the blocks and name the signals, as shown in, model ex_bit_logic_SL.
8 Press Ctrl+B to build the model and generate code.

Results

Code implementing the logical operator OR is in the ex_bit_logic_SL_step function
in ex_bit_logic_SL.c:

uint8_T u1;

 Bitwise Operations

4-21

uint8_T y1;

void ex_bit_logic_SL_step(void)

{

 y1 = (uint8_T)(u1 & 217);

}

Stateflow Chart

ex_bit_logic_SF/Bit_Logic Stateflow Chart

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on page 4-6.
This example contains one Inport block and one Outport block.

2 Name the example model ex_bit_logic_SF.
3 From the Stateflow Editor, select Tools > Explore to open the Model Explorer.
4 In the Model Explorer, on the right pane, select Enable C-bit operations.
5 In the Stateflow Editor, create the Stateflow diagram, ex_bit_logic_SF/

Bit_Logic.
6 Press Ctrl+B to build the model and generate code.

Results

Code implementing the logical operator OR is in the ex_bit_logic_SF_step function
in ex_bit_logic_SF.c:

uint8_T u1;

uint8_T y1;

void bit_logic_SF_step(void)

{

 y1 = (uint8_T)(u1 & 0xD9);

4 Patterns for C Code

4-22

}

MATLAB Function Block

In this example, to demonstrate the MATLAB Function block method for implementing
bitwise logic into the generated code, use the bitwise OR, '|'.

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function Block” on
page 4-7. This example model contains two Inport blocks and one Outport block.

2 Name your model ex_bit_logic_ML.
3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = fcn(u1, u2)

y1 = bitor(u1, u2);

end

4 Press Ctrl+B to build the model and generate code.

Results

Code implementing the bitwise operator OR is in the ex_bit_logic_ML_step function
in ex_bit_logic_ML.c:

uint8_T u1;

uint8_T u2;

uint8_T y1;

void ex_bit_logic_ML_step(void)

{

 y1 = (uint8_T)(u1 | u2);

}

 If-Else

4-23

If-Else

C Construct

if (u1 > u2)

{

 y1 = u1;

}

else

{

 y1 = u2;

}

Modeling Patterns

• “Modeling Pattern for If-Else: Switch block” on page 4-24
• “Modeling Pattern for If-Else: Stateflow Chart” on page 4-26
• “Modeling Pattern for If-Else: MATLAB Function Block” on page 4-28

4 Patterns for C Code

4-24

Modeling Pattern for If-Else: Switch block

One method to create an if-else statement is to use a Switch block from the Simulink
> Signal Routing library.

Model ex_if_else_SL

Procedure

1 Drag the Switch block from the Simulink>Signal Routing library into your model.
2 Connect the data inputs and outputs to the block.
3 Drag a Relational Operator block from the Logic & Bit Operations library into your

model.
4 Connect the signals that are used in the if-expression to the Relational Operator

block. The order of connection determines the placement of each signal in the if-
expression.

5 Configure the Relational Operator block to be a greater than operator.
6 Connect the controlling input to the middle input port of the Switch block.
7 Double-click the Switch block and set Criteria for passing first input to u2~=0.

The software selects u1 if u2 is TRUE; otherwise u2 passes.
8 Enter Ctrl+B to build the model and generate code.

Results

The generated code includes the following ex_if_else_SL_step function in the file
ex_if_else_SL.c:

 If-Else

4-25

 /* External inputs (root inport signals with auto storage) */

 ExternalInputs U;

 /* External outputs (root outports fed by signals with auto storage) */

 ExternalOutputs Y;

 /* Model step function */

 void ex_if_else_SL_step(void)

 {

 /* Switch: '<Root>/Switch' incorporates:

 * Inport: '<Root>/u1'

 * Inport: '<Root>/u2'

 * Outport: '<Root>/y1'

 * RelationalOperator: '<Root>/Relational Operator'

 */

 if (U.u1 > U.u2) {

 Y.y1 = U.u1;

 } else {

 Y.y1 = U.u2;

 }

 }

4 Patterns for C Code

4-26

Modeling Pattern for If-Else: Stateflow Chart

ex_if_else_SF/Chart

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on page 4-6.
This example model contains two Inport blocks and one Outport block.

2 Name your model ex_if_else_SF.
3 When configuring your Stateflow chart, select Chart > Add Patterns > Decision >

If-Else. The Stateflow Pattern dialog opens. Fill in the fields as follows:

Description If-Else (optional)
If condition u1 > u2

If action y1 = u1

Else action y1 = u2

4 Press Ctrl+B to build the model and generate code.

Results

The generated code includes the following ex_if_else_SF_step function in the file
If_Else_SF.c:
 /* External inputs (root inport signals with auto storage) */

 ExternalInputs U;

 /* External outputs (root outports fed by signals with auto storage) */

 ExternalOutputs Y;

 /* Model step function */

 If-Else

4-27

 void ex_if_else_SF_step(void)

 {

 /* Stateflow: '<Root>/Chart' incorporates:

 * Inport: '<Root>/u1'

 * Inport: '<Root>/u2'

 * Outport: '<Root>/y1'

 */

 /* Gateway: Chart */

 /* During: Chart */

 /* Transition: '<S1>:14' */

 /* If-Else */

 if (U.u1 > U.u2) {

 /* Transition: '<S1>:13' */

 /* Transition: '<S1>:12' */

 Y.y1 = U.u1;

 /* Transition: '<S1>:11' */

 } else {

 /* Transition: '<S1>:10' */

 Y.y1 = U.u2;

 }

 /* Transition: '<S1>:9' */

 }

4 Patterns for C Code

4-28

Modeling Pattern for If-Else: MATLAB Function Block

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function Block” on
page 4-7. This example model contains two Inport blocks and one Outport block.

2 Name your model ex_if_else_ML.
3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = fcn(u1, u2)

if u1 > u2;

 y1 = u1;

else y1 = u2;

end

4 Press Ctrl+B to build the model and generate code.

Results

The generated code includes the following ex_if_else_ML_step function in the file
ex_if_else_ML.c:
 /* External inputs (root inport signals with auto storage) */

 ExternalInputs U;

 /* External outputs (root outports fed by signals with auto storage) */

 ExternalOutputs Y;

 /* Model step function */

 void ex_if_else_ML_step(void)

 {

 /* MATLAB Function Block: '<Root>/MATLAB Function' incorporates:

 * Inport: '<Root>/u1'

 * Inport: '<Root>/u2'

 * Outport: '<Root>/y1'

 */

 /* MATLAB Function 'MATLAB Function': '<S1>:1' */

 if (U.u1 > U.u2) {

 /* '<S1>:1:4' */

 /* '<S1>:1:5' */

 Y.y1 = U.u1;

 } else {

 /* '<S1>:1:6' */

 Y.y1 = U.u2;

 }

 }

 Switch

4-29

Switch

C Construct

switch (u1)

{

 case 2:

 y1 = u2;

 break;

 case 3:

 u3;

 break;

 default:

 y1 = u4;

 break;

}

Modeling Patterns

• “Modeling Pattern for Switch: Switch Case block” on page 4-30
• “Modeling Pattern for Switch: MATLAB Function block” on page 4-33
• “Convert If-Elseif-Else to Switch statement” on page 4-34

4 Patterns for C Code

4-30

Modeling Pattern for Switch: Switch Case block

One method for creating a switch statement is to use a Switch Case block from the
Simulink > Ports and Subsystems library.

Model ex_switch_SL

Procedure

1 Drag a Switch Case block from the Simulink > Ports and Subsystems library into
your model.

2 Double-click the block. In the Block Parameters dialog box, fill in the Case
Conditions parameter. In this example, the two cases are: {2,3}.

3 Select the Show default case parameter. The default case is optional in a switch
statement.

4 Connect the condition input u1 to the input port of the Switch block.
5 Drag Switch Case Action Subsystem blocks from the Simulink>Ports and

Subsystems library to correspond with the number of cases.
6 Configure the Switch Case Action Subsystem subsystems.

 Switch

4-31

7 Drag a Merge block from the Simulink > Signal Routing library to merge the
outputs.

8 The Switch Case block takes an integer input, therefore, the input signal u1 is type
cast to an int32.

9 Enter Ctrl+B to build the model and generate code.

Results

The generated code includes the following ex_switch_SL_step function in the file
ex_switch_SL.c:
 /* Exported block signals */

 int32_T u1; /* '<Root>/u1' */

 /* External inputs (root inport signals with auto storage) */

 ExternalInputs U;

 /* External outputs (root outports fed by signals with auto storage) */

 ExternalOutputs Y;

 /* Model step function */

 void ex_switch_SL_step(void)

 {

 /* SwitchCase: '<Root>/Switch Case' incorporates:

 * ActionPort: '<S1>/Action Port'

 * ActionPort: '<S2>/Action Port'

 * ActionPort: '<S3>/Action Port'

 * Inport: '<Root>/u1'

 * SubSystem: '<Root>/Switch Case Action Subsystem'

 * SubSystem: '<Root>/Switch Case Action Subsystem1'

 * SubSystem: '<Root>/Switch Case Action Subsystem2'

 */

 switch (u1) {

 case 2:

 /* Inport: '<S1>/u2' incorporates:

 * Inport: '<Root>/u2'

 * Outport: '<Root>/y1'

 */

 Y.y1 = U.u2;

 break;

 case 3:

 /* Inport: '<S2>/u3' incorporates:

 * Inport: '<Root>/u3'

 * Outport: '<Root>/y1'

 */

 Y.y1 = U.u3;

 break;

 default:

 /* Inport: '<S3>/u4' incorporates:

 * Inport: '<Root>/u4'

 * Outport: '<Root>/y1'

 */

 Y.y1 = U.u4;

 break;

 }

4 Patterns for C Code

4-32

 }

 Switch

4-33

Modeling Pattern for Switch: MATLAB Function block

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function Block” on
page 4-7. This example model contains four Inport blocks and one Outport block.

2 Name your model ex_switch_ML.
3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = fcn(u1, u2, u3, u4)

switch u1

 case 2

 y1 = u2;

 case 3

 y1 = u3;

 otherwise

 y1 = u4;

end

4 Press Ctrl+B to build the model and generate code.

Results

The generated code includes the following ex_switch_ML_step function in the file
ex_switch_ML.c:
 /* External inputs (root inport signals with auto storage) */

 ExternalInputs U;

 /* External outputs (root outports fed by signals with auto storage) */

 ExternalOutputs Y;

 /* Model step function */

 void ex_switch_ML_step(void)

 {

 /* MATLAB Function Block: '<Root>/MATLAB Function' incorporates:

 * Inport: '<Root>/u1'

 * Inport: '<Root>/u2'

 * Inport: '<Root>/u3'

 * Inport: '<Root>/u4'

 * Outport: '<Root>/y1'

 */

 /* MATLAB Function 'MATLAB Function': '<S1>:1' */

 /* '<S1>:1:4' */

 switch (U.u1) {

 case 2:

 /* '<S1>:1:6' */

 Y.y1 = U.u2;

 break;

4 Patterns for C Code

4-34

 case 3:

 /* '<S1>:1:8' */

 Y.y1 = U.u3;

 break;

 default:

 /* '<S1>:1:10' */

 Y.y1 = U.u4;

 break;

 }

 }

Convert If-Elseif-Else to Switch statement

If a MATLAB Function block or a Stateflow chart uses if-elseif-else decision logic,
you can convert it to a switch statement by using a configuration parameter. In the
Configuration Parameters dialog box, on the Code Generation > Code Style pane,
select the “Convert if-elseif-else patterns to switch-case statements” parameter. For
more information, see “Converting If-Elseif-Else Code to Switch-Case Statements” in
the Simulink documentation. For more information on this conversion using a Stateflow
chart, see “Enhance Readability of Code for Flow Charts”.

 For Loop

4-35

For Loop

C Construct

y1 = 0;

for(inx = 0; inx <10; inx++)

{

 y1 = u1[inx] + y1;

}

Modeling Patterns:

• “Modeling Pattern for For Loop: For-Iterator Subsystem block” on page 4-36
• “Modeling Pattern for For Loop: Stateflow Chart” on page 4-38
• “Modeling Pattern for For Loop: MATLAB Function block” on page 4-40

4 Patterns for C Code

4-36

Modeling Pattern for For Loop: For-Iterator Subsystem block

One method for creating a for loop is to use a For Iterator Subsystem block from the
Simulink > Ports and Subsystems library.

Model ex_for_loop_SL

For Iterator Subsystem

Procedure

1 Drag a For Iterator Subsystem block from the Simulink > Ports and Subsystems
library into your model.

2 Connect the data inputs and outputs to the For Iterator Subsystem block.
3 Open the Inport block.
4 In the Block Parameters dialog box, select the Signal Attributes pane and set the

Port dimensions parameter to 10.
5 Double-click the For Iterator Subsystem block to open the subsystem.

 For Loop

4-37

6 Drag an Index Vector block from the Signal-Routing library into the subsystem.
7 Open the For Iterator block. In the Block Parameters dialog box set the Index-mode

parameter to Zero-based and the Iteration limit parameter to 10.
8 Connect the controlling input to the topmost input port of the Index Vector block,

and the other input to the second port.
9 Drag an Add block from the Math Operations library into the subsystem.
10 Drag a Unit Delay block from Commonly Used Blocks library into the subsystem.
11 Double-click the Unit Delay block and set the Initial Conditions parameter to 0.

This parameter initializes the state to zero.
12 Connect the blocks as shown in the model diagram.
13 Save the subsystem and the model.
14 Enter Ctrl+B to build the model and generate code.

Results

The generated code includes the following ex_for_loop_SL_step function in the file
ex_for_loop_SL.c:
 /* External inputs (root inport signals with auto storage) */

 ExternalInputs U;

 /* External outputs (root outports fed by signals with auto storage) */

 ExternalOutputs Y;

 /* Model step function */

 void ex_for_loop_SL_step(void)

 {

 int32_T s1_iter;

 int32_T rtb_y1;

 /* Outputs for iterator SubSystem: '<Root>/For Iterator Subsystem' incorporates:

 * ForIterator: '<S1>/For Iterator'

 */

 for (s1_iter = 0; s1_iter < 10; s1_iter++) {

 /* Sum: '<S1>/Add' incorporates:

 * Inport: '<Root>/u1'

 * MultiPortSwitch: '<S1>/Index Vector'

 * UnitDelay: '<S1>/Unit Delay'

 */

 rtb_y1 = U.u1[s1_iter] + DWork.UnitDelay_DSTATE;

 /* Update for UnitDelay: '<S1>/Unit Delay' */

 DWork.UnitDelay_DSTATE = rtb_y1;

 }

 /* end of Outputs for SubSystem: '<Root>/For Iterator Subsystem' */

 /* Outport: '<Root>/y1' */

 Y.y1 = rtb_y1;

 }

4 Patterns for C Code

4-38

Modeling Pattern for For Loop: Stateflow Chart

Model ex_for_loop_SF

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on page 4-6.
This example model contains one Inport block and one Outport block.

2 Name the model ex_for_loop_SF.
3 Enter Ctrl+R to open the Model Explorer.
4 In the Model Explorer, select the output variable, u1, and in the right pane, select

the General tab and set the Initial Value to 0.
5 In the Stateflow Editor, select Chart > Add Patterns > Loop > For. The

Stateflow Pattern dialog opens.
6 Fill in the fields in the Stateflow Pattern dialog box as follows:

Description For Loop (optional)
Initializer expression inx = 0

Loop test expression inx < 10

Counting expression inx++

For loop body y1 = u1[inx] + y1

The Stateflow diagram is shown.
7 Press Ctrl+B to build the model and generate code.

 For Loop

4-39

Results

The generated code includes the following ex_for_loop_SF_step function in the file
ex_for_loop_SF.c:
 /* Block signals (auto storage) */

 BlockIO B;

 /* External inputs (root inport signals with auto storage) */

 ExternalInputs U;

 /* External outputs (root outports fed by signals with auto storage) */

 ExternalOutputs Y;

 /* Model step function */

 void ex_for_loop_SF_step(void)

 {

 int32_T sf_inx;

 /* Stateflow: '<Root>/Chart' incorporates:

 * Inport: '<Root>/u1'

 */

 /* Gateway: Chart */

 /* During: Chart */

 /* Transition: '<S1>:24' */

 /* For Loop */

 /* Transition: '<S1>:25' */

 for (sf_inx = 0; sf_inx < 10; sf_inx++) {

 /* Transition: '<S1>:22' */

 /* Transition: '<S1>:23' */

 B.y1 = U.u1[sf_inx] + B.y1;

 /* Transition: '<S1>:21' */

 }

 /* Transition: '<S1>:20' */

 /* Outport: '<Root>/y1' */

 Y.y1 = B.y1;

 }

4 Patterns for C Code

4-40

Modeling Pattern for For Loop: MATLAB Function block

Procedure

1 Follow the directions for “Set Up an Example Model With a MATLAB Function
Block” on page 4-7. This example model contains one Inport block and one Outport
block.

2 Name your model ex_for_loop_ML.
3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = fcn(u1)

y1 = 0;

for inx=1:10

 y1 = u1(inx) + y1 ;

end

4 Press Ctrl+B to build the model and generate code.

Results

The generated code includes the following ex_for_loop_ML_step function in the file
ex_for_loop_ML.c:
 /* Exported block signals */

 real_T u1[10]; /* '<Root>/u1' */

 real_T y1; /* '<Root>/MATLAB Function' */

 /* Model step function */

 void ex_for_loop_ML_step(void)

 {

 int32_T inx;

 /* MATLAB Function Block: '<Root>/MATLAB Function' incorporates:

 * Inport: '<Root>/u1'

 */

 /* MATLAB Function 'MATLAB Function': '<S1>:1' */

 /* '<S1>:1:3' */

 y1 = 0.0;

 for (inx = 0; inx < 10; inx++) {

 /* '<S1>:1:5' */

 /* '<S1>:1:6' */

 y1 = u1[inx] + y1;

 }

 }

 While Loop

4-41

While Loop

C Construct

while(flag && (num_iter <= 100)

{

 flag = func ();

 num_iter ++;

}

Modeling Patterns

• “Modeling Pattern for While Loop: While Iterator Subsystem block” on page 4-42
• “Modeling Pattern for While Loop: Stateflow Chart” on page 4-45
• “Modeling Pattern for While Loop: MATLAB Function Block” on page 4-48

4 Patterns for C Code

4-42

Modeling Pattern for While Loop: While Iterator Subsystem block

One method for creating a while loop is to use a While Iterator Subsystem block from
the Simulink > Ports and Subsystems library.

Model ex_while_loop_SL

ex_while_loop_SL/While Iterator Subsystem

Procedure

1 Drag a While Iterator Subsystem block from the Simulink > Ports and
Subsystems library into the model.

2 Drag a Constant block from the Simulink > Commonly Used Blocks library
into the model. In this case, set the Initial Condition to 1 and the Data Type to
Boolean. You do not have to set the initial condition to FALSE. The initial condition
can be dependent on the input to the block.

 While Loop

4-43

3 Connect the Constant block to the While Iterator Subsystem block.
4 Double-click the While Iterator Subsystem block to open the subsystem.
5 Place a Subsystem block next to the While Iterator block.
6 Right-click the subsystem and select Block Parameters (Subsystem). The Block

Parameters dialog box opens.
7 Select the Treat as atomic unit parameter to configure the subsystem to generate

a function. This enables parameters on the Code Generation tab.
8 Select the Code Generation tab. From the Function packaging list, select the

option, Nonreusable function.
9 From the Function name options list, select the option, User specified. The

Function name parameter is displayed.
10 Specify the name as func.
11 Click Apply.
12 Double-click the func subsystem block. In this example, function func() has an

output flag set to 0 or 1 depending on the result of the algorithm in func(). Create
the func() algorithm as shown in the following diagram:

func

13 Double-click the While Iterator block to set the Maximum number of iterations to
100.

14 Connect blocks as shown in the model and subsystem diagrams.

Results

The generated code includes the following ex_while_loop_SL_step function in the file
ex_while_loop_SL.c:
 /* Exported block signals */

4 Patterns for C Code

4-44

 boolean_T IC; /* '<Root>/Initial Condition SET to TRUE' */

 boolean_T flag; /* '<S2>/Relational Operator' */

 /* Block states (auto storage) */

 D_Work DWork;

 /* Start for atomic system: '<S1>/func() Is a function that updates the flag' */

 void func_Start(void)

 {

 /* Start for RandomNumber: '<S2>/Random Number' */

 DWork.RandSeed = 1144108930U;

 DWork.NextOutput = rt_NormalRand(&DWork.RandSeed) * 1.7320508075688772E+000;

 }

 /* Output and update for atomic system:

 * '<S1>/func() Is a function that updates the flag' */

 void func(void)

 {

 /* RelationalOperator: '<S2>/Relational Operator' incorporates:

 * Constant: '<S2>/Constant1'

 * RandomNumber: '<S2>/Random Number'

 */

 flag = (DWork.NextOutput > 1.0);

 /* Update for RandomNumber: '<S2>/Random Number' */

 DWork.NextOutput = rt_NormalRand(&DWork.RandSeed) * 1.7320508075688772E+000;

 }

 /* Model step function */

 void ex_while_loop_SL_step(void)

 {

 int32_T s1_iter;

 boolean_T loopCond;

 /* Outputs for iterator SubSystem:

 * '<Root>/While Iterator Subsystem' incorporates:

 * WhileIterator: '<S1>/While Iterator'

 */

 s1_iter = 1;

 loopCond = IC;

 while (loopCond && (s1_iter <= 100)) {

 /* Outputs for atomic SubSystem:

 * '<S1>/func() Is a function that updates the flag' */

 func();

 /* end of Outputs for SubSystem:

 * '<S1>/func() Is a function that updates the flag' */

 loopCond = flag;

 s1_iter++;

 }

 /* end of Outputs for SubSystem: '<Root>/While Iterator Subsystem' */

 }

 While Loop

4-45

Modeling Pattern for While Loop: Stateflow Chart

Model ex_while_loop_SF

ex_while_loop_SF/Chart Executes the desired while-loop

Procedure

1 Add a Stateflow Chart to your model from the Stateflow > Chart library.
2 Double-click the chart.
3 Add the input, flag, and output, func, to the chart and specify their data type.
4 Connect the data input and output to the Stateflow chart as shown in the model

diagram.
5 In the Model Explorer, select the output variable, then, in the right pane, select the

General tab and set the Initial Value to 0.

4 Patterns for C Code

4-46

6 Select Chart > Add Patterns > Loop > While. The Stateflow Pattern dialog opens.
7 Fill in the fields for the Stateflow Pattern dialog box as follows:

Description While Loop (optional)
While condition (flag) && (num_iter<=100)

Do action func; num_iter++;

8 Place a Subsystem block in your model.
9 Right-click the subsystem and select Block Parameters (Subsystem). The Block

Parameters dialog box opens.
10 Select the Treat as atomic unit parameter to configure the subsystem to generate

a function. This enables parameters on the Code Generation tab.
11 Select the Code Generation tab. From the Function packaging list, select the

option, Nonreusable function.
12 From the Function name options list, select the option, User specified. The

Function name parameter is displayed.
13 Specify the name as func.
14 Click Apply to apply the changes.
15 Double-click the func subsystem block. In this example, function func has an

output flag set to 0 or 1 depending on the result of the algorithm in func(). The
Trigger block parameter Trigger type is function-call. Create the func()
algorithm, as shown in the following diagram:

ex_while_loop_SF/func A function that updates the flag

16 Save and close the subsystem.
17 Connect blocks to the Stateflow chart as shown in the model diagram for

ex_while_loop_SF.
18 Save your model.

 While Loop

4-47

Results

The generated code includes the following ex_while_loop_SF_step function in the file
ex_while_loop_SF.c:
 /* Exported block signals */

 int32_T num_iter; /* '<Root>/Chart Executes the desired while-loop' */

 boolean_T flag; /* '<S2>/Relational Operator' */

 /* Block states (auto storage) */

 D_Work DWork;

 /* Model step function */

 void ex_while_loop_SF_step(void)

 {

 /* Stateflow: '<Root>/Chart Executes the desired

 * while-loop' incorporates:

 * SubSystem: '<Root>/func() A function that

 * updates the flag'

 */

 /* Gateway: Chart

 Executes the desired while-loop */

 /* During: Chart

 Executes the desired while-loop */

 /* Transition: '<S1>:2' */

 num_iter = 1;

 while (flag && (num_iter <= 100)) {

 /* Transition: '<S1>:3' */

 /* Transition: '<S1>:4' */

 /* Event: '<S1>:12' */

 func();

 num_iter = num_iter + 1;

 /* Transition: '<S1>:5' */

 }

 /* Transition: '<S1>:1' */

 }

4 Patterns for C Code

4-48

Modeling Pattern for While Loop: MATLAB Function Block

Model ex_while_loop_ML

Procedure

1 In the Simulink Library Browser, click Simulink > User Defined Functions, and
drag a MATLAB Function block into your model.

2 Double-click the MATLAB Function block. The MATLAB Function Block Editor
opens.

3 In the MATLAB Function Block Editor enter the function, as follows:

function fcn(func_flag)

flag = true;

num_iter = 1;

while(flag && (num_iter<=100))

 func;

 flag = func_flag;

 num_iter = num_iter + 1;

end

4 Click Save and close the MATLAB Function Block Editor.
5 Place a Subsystem block in your model, right-click the subsystem and select Block

Parameters (Subsystem). The Block Parameters dialog box opens.
6 Select the Treat as atomic unit parameter to configure the subsystem to generate

a function. This enables parameters on the Code Generation tab.

 While Loop

4-49

7 Select the Code Generation tab. From the Function packaging list, select the
option, Nonreusable function.

8 From the Function name options list, select the option, User specified. The
Function name parameter is displayed.

9 Specify the name as func.
10 Click Apply.
11 Double-click the func() subsystem block. In this example, function func() has

an output flag set to 0 or 1 depending on the result of the algorithm in func().
The Trigger block parameter Trigger type is function-call. Create the func()
algorithm, as shown in the following diagram:

Model ex_while_loop_ML_func

12 Save and close the subsystem.
13 Connect the MATLAB Function block to the func() subsystem.
14 Save your model.

Results

The generated code includes the following while_loop_ML_step function in the file
while_loop_EML.c. In some cases an equivalent for loop might be generated instead
of a while loop.
/* Exported block signals */

boolean_T func_flag; /* '<S2>/Relational Operator' */

/* Block states (auto storage) */

D_Work DWork;

/* Model step function */

void while_loop_ML_step(void)

{

 boolean_T func_flag_0;

 boolean_T flag;

 int32_T num_iter;

4 Patterns for C Code

4-50

 /* MATLAB Function Block: '<Root>/MATLAB Function Executes

 * the desired While-Loop' incorporates:

 * SubSystem: '<Root>/func() updates the "flag"'

 */

 func_flag_0 = func_flag;

 /* MATLAB Function 'MATLAB Function

 * Executes the desired While-Loop': '<S1>:1' */

 /* '<S1>:1:3' */

 flag = TRUE;

 /* '<S1>:1:4' */

 num_iter = 1;

 while (flag && (num_iter <= 100);

 num_iter++) {

 /* '<S1>:1:6' */

 /* '<S1>:1:7' */

 func();

 /* '<S1>:1:8' */

 flag = func_flag_0;

 /* '<S1>:1:9' */

 num_iter++;

 }

}

 Do While Loop

4-51

Do While Loop

C Construct

num_iter = 1;

do {

 flag = func();

 num_iter++;

 }

while (flag && num_iter <= 100)

Modeling Patterns

• “Modeling Pattern for Do While Loop: While Iterator Subsystem block” on page
4-52

• “Modeling Pattern for Do While Loop: Stateflow Chart” on page 4-55

4 Patterns for C Code

4-52

Modeling Pattern for Do While Loop: While Iterator Subsystem block

One method for creating a while loop is to use a While Iterator Subsystem block from
the Simulink > Ports and Subsystems library.

ex_do_while_loop_SL

ex_do_while_loop_SL/While Iterator Subsystem

Procedure

1 Drag a While Iterator Subsystem block from the Simulink > Ports and
Subsystems library into the model.

2 Double-click the While Iterator Subsystem block to open the subsystem.
3 Place a Subsystem block next to the While Iterator block.
4 Right-click the subsystem and select Block Parameters (Subsystem). The Block

Parameters dialog box opens.
5 Select the Treat as atomic unit parameter to configure the subsystem to generate

a function. This enables parameters on the Code Generation tab.
6 Select the Code Generation tab. From the Function packaging list, select the

option, Nonreusable function.

 Do While Loop

4-53

7 From the Function name options list, select the option, User specified. The
Function name parameter is displayed.

8 Specify the name as func.
9 Click Apply.
10 Double-click the func subsystem block. In this example, function func has an

output flag set to 0 or 1 depending on the result of the algorithm in func. Create the
func algorithm as shown in the following diagram:

ex_do_while_loop_SL/While Iterator Subsystem/func

11 Double-click the While Iterator block. This opens the Block Parameters dialog.
12 Set the Maximum number of iterations to 100.
13 Specify the While loop type as do-while.
14 Connect blocks as shown in the model and subsystem diagrams.
15 Enter Ctrl+B to generate code.

Results

void func(void)

{

 flag = (DWork.NextOutput > (real_T)P.Constant1_Value);

 DWork.NextOutput =

 rt_NormalRand(&DWork.RandSeed) * P.RandomNumber_StdDev +

 P.RandomNumber_Mean;

}

void ex_do_while_loop_SL_step(void)

{

 int32_T s1_iter;

 s1_iter = 1;

 do {

 func();

 s1_iter++;

 } while (flag && (s1_iter <= 100));

4 Patterns for C Code

4-54

}

 Do While Loop

4-55

Modeling Pattern for Do While Loop: Stateflow Chart

ex_do_while_loop_SF

ex_do_while_loop_SF/Chart

1 Add a Stateflow Chart to your model from the Stateflow > Chart library.
2 Double-click the chart to open it.
3 Add the inputs and outputs to the chart and specify their data type.
4 Connect the data input and output to the Stateflow chart.
5 In the Model Explorer, select the output variable, then, in the right pane, select the

General tab and set the Initial Value to 0.

4 Patterns for C Code

4-56

6 Select Chart > Add Patterns > Loop > While. The Stateflow Pattern dialog opens.
7 Fill in the fields for the Stateflow Pattern dialog box as follows:

Description While Loop (optional)
While condition (flag) && (num_iter<=100)

Do action func; num_iter++;

8 Place a Subsystem block in your model.
9 Right-click the subsystem and select Block Parameters (Subsystem). The Block

Parameters dialog box opens.
10 Select the Treat as atomic unit parameter to configure the subsystem to generate

a function. This enables parameters on the Code Generation tab.
11 Select the Code Generation tab. From the Function packaging list, select the

option, Nonreusable function.
12 From the Function name options list, select the option, User specified. The

Function name parameter is displayed.
13 Specify the name as func.
14 Click Apply to apply the changes.
15 Double-click the func subsystem block. In this example, function func has an

output flag set to 0 or 1 depending on the result of the algorithm in func. The
Trigger block parameter Trigger type is function-call. Create the func
algorithm, as shown in the following diagram:

ex_do_while_loop_SF/func Updates the flag

16 Save and close the subsystem.
17 Connect blocks to the Stateflow chart as shown in the model diagram for

ex_do_while_loop_SF.
18 Save your model.

 Do While Loop

4-57

Results

void ex_do_while_loop_SF_step(void)

{

 int32_T sf_num_iter;

 num_iter = 1;

 do {

 func();

 num_iter++;

 } while (flag && (sf_num_iter <= 100));

}

4 Patterns for C Code

4-58

Function Call

To generate a function call, add a subsystem, which implements the operations that you
want.

C Construct

void add_function(void)

{

 y1 = u1 + u2;

}

ex_function_call

Procedure

1 Create a model containing a subsystem. In this example, the subsystem has two
inputs and returns one output.

2 Double-click the subsystem. Create Add_Subsystem, as shown.

ex_function_call/Add_Subsystem

3 Right-click the subsystem and select Block Parameters (Subsystem) to open the
Subsystem Parameters dialog box.

4 Select the Treat as atomic unit parameter. This enables parameters on the Code
Generation tab.

 Function Call

4-59

Select the Code Generation tab. For the Function packaging parameter, from
the drop-down list, select Nonreusable function.

5 For the Function name options parameter, from the drop-down list, select User
specified.

6 In the Function name field, enter the subsystem name, add_function.
7 Click Apply and OK.
8 Press Ctrl+B to build and generate code.

Results

In ex_function_call.c, the function is called from ex_function_call_step:
void ex_function_call_step(void)

{

 add_function();

}

The function prototype is externed through the subsystem file, add_function.h.
extern void add_function(void);

The function definition is in the subsystem file add_function.c:
void add_function(void)

{

 function_call_Y.y1 = u1 + u2;

}

4 Patterns for C Code

4-60

Function Prototyping

C Construct

double add_function(double u1, double u2)

{

 return u1 + u2;

}

Modeling Patterns

• “Function Call Using Graphical Functions” on page 4-60
• “Control Function Prototype of the model_step Function” on page 4-62

Function Call Using Graphical Functions

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on page 4-6.
This example model contains two Inport blocks and one Outport block.

2 Name the example model ex_func_SF.
3

In the Stateflow Editor, create a graphical function by clicking the fx button and
placing a graphical function into the Stateflow chart.

4 Edit the graphical function signature to: output = add_function(u1, u2).
5 Add the transition action, as shown in the following diagram.

 Function Prototyping

4-61

ex_func_SF/Chart

In the Stateflow chart is an example of a simple transition that calls add_function.
6 Open the Model Explorer. From the Model Hierarchy tree, select ex_func_SF >

Chart > f()add_function. On the right pane, specify the Function Inline Option
as Function.

7 From the Model Hierarchy tree, click Chart and on the right pane select the Export
Chart Level Functions (Make Global) parameter. This makes the function
available globally to the entire model.

8 Press Ctrl+B to build the model and generate code.

Results

ex_func_SF.c contains the generated code:
real_T add_function(real_T in1, real_T in2)

{

 return in1 + in2;

}

.

.

.

void ex_func_SF_step(void)

{

 y1 = add_function(u1, u2);

}

4 Patterns for C Code

4-62

Control Function Prototype of the model_step Function

ex_control_step_function

Procedure

1 Create the model, ex_control_step_function. See “Configure a Signal” on page
4-4 and “Configure Input and Output Ports” on page 4-4, for more information.

2 Press Ctrl+E to open the Configuration Parameters dialog box.
3 On the Code Generation > Interface pane, click Configure Model Functions to

open the Model Interface dialog box.
4 Specify the Function specification parameter as Model specific C

prototypes.
5 Click Get Default Configuration to update the Configure model initialize and

step functions section and list the input and output arguments.
6 To configure the function output argument to pass a pointer, in the Step function

arguments table, specify the Category for the Outport as a Pointer. In addition,
you can specify the step function arguments order and type qualifiers.

7 To validate your changes, click Validate.
8 Press Ctrl+B to build the model and generate code.

Results

ex_control_step_function.c contains the generated code:
void ex_control_step_function_custom(real_T arg_u1, real_T arg_u2, ...

 real_T *arg_y1)

{

 (*arg_y1) = arg_u1 + arg_u2;

}

 External C Functions

4-63

External C Functions

C Construct

extern double add(double, double);

#include "add.h"

double add(double u1, double u2)

{

 double y1;

 y1 = u1 + u2;

 return (y1);

}

Modeling Patterns

There are several methods for integrating legacy C functions into the generated code.
These methods either create an S-function or make a call to an external C function. For
more information on S-functions, see “S-Functions and Code Generation”.

• “Use the Legacy Code Tool to Create S-functions” on page 4-63
• “Use a Stateflow Chart to Make Calls to C Functions” on page 4-65
• “Using a MATLAB Function Block to Make Calls to C Functions” on page 4-66

Use the Legacy Code Tool to Create S-functions

This method uses the Legacy Code Tool to create an S-function and generate a TLC file.
The code generation software uses the TLC file to generate code from this S-function. The
advantage of using the Legacy Code Tool is that the generated code is fully inlined and
does not need wrapper functions to access the custom code.

Procedure

1 Create a C header file named add.h that contains the function signature:

extern double add(double, double);

2 Create a C source file named add.c that contains the function body:

double add(double u1, double u2)

4 Patterns for C Code

4-64

{

 double y1;

 y1 = u1 + u2;

 return (y1);

}

3 To build an S-function for use in both simulation and code generation, Run the
following script or execute each of these commands at the MATLAB command line:

%% Initialize legacy code tool data structure

def = legacy_code('initialize');

%% Specify Source File

def.SourceFiles = {'add.c'};

%% Specify Header File

def.HeaderFiles = {'add.h'};

%% Specify the Name of the generated S-function

def.SFunctionName = 'add_function';

%% Create a c-mex file for S-function

legacy_code('sfcn_cmex_generate', def);

%% Define function signature and target the Output method

def.OutputFcnSpec = ['double y1 = add(double u1, double u2)'];

%% Compile/Mex and generate a block that can be used in simulation

legacy_code('generate_for_sim', def);

%% Create a TLC file for Code Generation

legacy_code('sfcn_tlc_generate', def);

%% Create a Masked S-function Block

legacy_code('slblock_generate', def);

The output of this script produces:

• A new model containing the S-function block
• A TLC file named add_function.tlc.
• A C source file named add_function.c.
• A mexw32 dll file named add_function.mexw32

4 Add inport blocks and an outport block and make the connections, as shown in the
model.

 External C Functions

4-65

ex_function_call_lct

5 Name and save your model. In this example, the model is named
ex_function_call_lct.

6 Press Ctrl+B to build the model and generate code.

Results

The following code is generated in ex_function_call_lct.c:
real_T u1;

real_T u2;

real_T y1;

void ex_function_call_lct_step(void)

{

 y1 = add(u1, u2);

}

The user-specified header file, add.h, is included in ex_function_call_lct.h:

#include "add.h"

Use a Stateflow Chart to Make Calls to C Functions

Procedure

1 Create a C header file named add.h that contains the example function signature.
2 Create a C source file named add.c that contains the function body.
3 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on page 4-6.

This example model contains two Inport blocks and one Outport block.
4 Name the example model ex_exfunction_call_SF.
5 Double-click the Stateflow chart and edit the chart as shown. Place the call to the

add function within a transition action.

4 Patterns for C Code

4-66

ex_exfunction_call_SF/Chart

6 On the Stateflow Editor, select Simulation > Model Configuration
Parameters.

7 On the Configuration Parameters dialog box, select Simulation Target > Custom
Code. In the Include custom C code in generated section, on the left pane, select
Header file and in the Header file field, enter the #include statement:

#include "add.h"

8 In the Include list of additional section, select Source files and in the Source
files field, enter add.c.

9 Press Ctrl+B to build the model and generate code.

Results

ex_exfunction_call_SF.c contains the following code in the step function:
real_T u1;

real_T u2;

real_T y1;

void exfunction_call_SF_step(void)

{

 y1 = (real_T)add(u1, u2);

}

ex_exfunction_call_SF.h contains the include statement for add.h:
#include "add.h"

Using a MATLAB Function Block to Make Calls to C Functions

Procedure

1 Create a C header file named add.h that contains the example function signature.

 External C Functions

4-67

2 Create a C source file named add.c that contains the function body.
3 In the Simulink Library Browser, click Simulink > User Defined Functions, and

drag a MATLAB Function block into your model.
4 Double-click the MATLAB Function block. The MATLAB Function Block Editor

opens.
5 Edit the function to include the statement:

function y1 = add_function(u1, u2)

%Set the class and size of output

y1 = u1;

%Call external C function

y1 = coder.ceval('add',u1,u2);

end

6 Open the Configuration Parameters dialog box, and select Simulation Target >
Custom Code.

7 In the Include custom C code in generated section, on the left pane, select
Header file and in the Header file field, enter the statement, :

#include "add.h"

8 In the Include list of additional section, select Source files and in the Source
files field, enter add.c.

9 Add two Inport blocks and one Outport block to the model and connect to the
MATLAB Function block.

10 Configure the signals: u1, u2, and y1, as described in “Configure a Signal” on page
4-4.

11 Save the model as ex_exfunction_call_ML.
12 Press Ctrl+B to build the model and generate code.

Results

ex_exfunction_call_ML.c contains the following code:
real_T u1;

real_T u2;

real_T y1;

void ex_exfunction_call_ML_step(void)

{

4 Patterns for C Code

4-68

 y1 = add(u1, u2);

}

ex_exfunction_call_ML.h contains the #include statement for add.h:
#include "add.h"

 Macro Definitions (#define)

4-69

Macro Definitions (#define)

C Construct

#define p_1 9.8;

Modeling Patterns

“Use a 'Define' Custom Storage Class” on page 4-69

“Use a Custom Header File” on page 4-70

Use a 'Define' Custom Storage Class

Procedure

1 Create a model containing a Gain block.

2 Press Ctrl+E to open the Configuration Parameters dialog box.

3 In the Configuration Parameter dialog box, on the Optimization > Signals and
Parameters pane, select Inline parameters.

4 Click Apply and OK.
5 In your model, double-click the Gain block. The Block Parameters dialog box opens.
6 In the Value field, enter a variable name. In this example, the variable name is p1.
7 Press Ctrl+H to open the Model Explorer. On the Model Hierarchy pane, select the

Base Workspace.
8 To add an mpt parameter object, in the menu bar, select Add > Add Custom. The

parameter appears in the Contents of: Base Workspace pane.
9 Double-click the mpt.Parameter object and change its name to p1.
10 Click the p1 parameter. The data object parameters are displayed in the right pane

of the Model Explorer.

4 Patterns for C Code

4-70

11 In the Value field, enter 9.8. In the Code generation options section, click the
Storage Class drop-down list and select Define(Custom).

12 Press Ctrl+B to generate code.

Results

The generated code includes the inlined parameter, p1, in ex_define_data_object.c:
/* Model step function */

void ex_define_data_object_step(void)

{

 rtY.y1 = p1 * rtU.u1;

}

Use a Custom Header File

Procedure

1 Follow steps 1 through 10 of “Use a 'Define' Custom Storage Class” on page 4-69.
2 In the Simulink.Parameter dialog box for p1, in the Value field, enter 9.8. In the

Code generation options section, click the Storage Class drop-down list and
select ImportFromFile(Custom).

3 In the Header file parameter, enter the name of the header file, in this example,
external_params.h.

4 Click Apply and OK.
5 Create the C header file, external_params.h that contains the #define

statement:
#ifndef _EXTERNAL_PARAMS

#define _EXTERNAL_PARAMS

#define p1 9.8

#endif

/* EOF */

6 Press Ctrl+B to generate code.

Results

The generated code includes the inlined parameter, p1, in ex_define_data_object.c:
/* Model step function */

void ex_define_data_object_step(void)

{

 Macro Definitions (#define)

4-71

 ex_define_data_object_Y.Out1 = p1 * ex_define_data_object_U.In1;

}

4 Patterns for C Code

4-72

Conditional Inclusions (#if / #endif)

You can generate preprocessor conditional directives in your code by implementing
variant blocks (Model Variants block or Variant Subsystem block) in your model. In the
generated code, preprocessor conditional directives select a section of code to execute at
compile time. To implement variants in your model, see “Workflow for Implementing
Variants”. To generate code for variants, see “Generate Preprocessor Conditionals for
Variant Systems”.

 Typedef

4-73

Typedef

To generate a typedef definition, use a Simulink.AliasType data object.

C Construct

typedef double float_64;

Procedure

1 Create the ex_get_typedef model with a Gain block.

2 In the Gain block parameter dialog box, select the Parameter Attributes tab, and
specify the Parameter data type as double.

3 Right-click the u1 signal and select Properties. In the Signal Properties dialog box,
select Signal name must resolve to Simulink signal object.

4 Right-click the y1 signal and select Properties. In the Signal Properties dialog
box, select the Code Generation tab, and specify the Storage class parameter as
ExportedGlobal.

5 Create a new alias type by using a Simulink.AliasType data object. At the MATLAB
command line, enter:

float_64 = Simulink.AliasType;

6 In the base workspace, double-click float_64. The Simulink.AliasType dialog box
opens.

7 Specify the Base type parameter as double. Click Apply and OK.
8 Create a data object for the u1 signal. In the base workspace, select Add >

Simulink Signal, and name it u1. Specify the Data type parameter as float_64
and the Storage class parameter as Global(custom).

Note: You can also specify an output data type for Simulink blocks using the new
alias type.

9 Click Apply and OK.

4 Patterns for C Code

4-74

10 Press Ctrl+B to generate code.

Note: An alternative method for defining a typedef is to import the alias type from a
custom header file. If you want to import all of the typedefs from a C header file, using
this alternative method is useful.

Results

The generated code includes the typedef definition, which is declared within #ifndef
and #endif statements in the ex_get_typedef_types.h file.
#ifndef _DEFINED_TYPEDEF_FOR_float_64_

#define _DEFINED_TYPEDEF_FOR_float_64_

typedef real_T float_64;

typedef creal_T cfloat_64;

#endif

Note: real_T is the Embedded Coder typedef for double .

The generated code also includes the declaration of the Simulink data objects of the alias
type in ex_get_typedef.c.
float_64 y1;

float_64 u1;

Related Examples
• “Create Data Type Alias in Generated Code”

 Structures for Parameters

4-75

Structures for Parameters

To generate a structure containing parameters, use a mpt.Parameter object with a
Struct (custom) storage class.

C Construct

typdef struct {

 double p1;

 double p2;

 double p3;

} my_struct_type;

my_struct_type my_struct={1.0,2.0,3.0};

Procedure

1 Create the ex_struct_param model with three Constant blocks and three Outport
blocks.

2 Create a data object for each parameter, p1, p2, and p3. At the MATLAB command
line, enter:
p1 = mpt.Parameter;

p2 = mpt.Parameter;

p3 = mpt.Parameter;

3 In the base workspace, double-click one of the parameter data objects to open the
mpt.Parameter dialog box.

4 Specify a Value parameter for each parameter object.
5 Specify the Storage class parameter as Struct (Custom) for each parameter

object.

4 Patterns for C Code

4-76

6 In the Custom Attributes section, specify the Struct name as my_struct. Click
Apply and OK.

7 Press Ctrl+E to open the Configuration Parameters dialog box.
8 Open the Optimization > Signals and Parameters pane, and select the Inline

parameters parameter.
9 Click Apply and OK.
10 Press Ctrl+B to generate code.

Results

The generated code includes the typedef definition for a structure, which is declared in
the ex_struct_param_types.h file.
/* Type definition for custom storage class: Struct */

 typedef struct my_struct_tag {

 real_T p1;

 real_T p2;

 real_T p3;

 } my_struct_type;

The generated code also includes the declaration of my_struct in ex_struct_param.c.
/* Definition for custom storage class: Struct */

my_struct_type my_struct = {

 /* p1 */

 1.0,

 /* p2 */

 2.0,

 /* p3 */

 3.0

};

 Structures for Signals

4-77

Structures for Signals
To generate a structure containing parameters, use a mpt.Signal object with a Struct
(custom) storage class or a Simulink non-virtual bus object.

C Construct
typedef struct {

 double u1;

 double u2;

 double u3;

} my_signals;

Modeling Patterns

“Structure for Signals Using a 'Struct' Custom Storage Class” on page 4-77

“Structure for Signals Using a Simulink Non-Virtual Bus Object” on page 4-78

Structure for Signals Using a 'Struct' Custom Storage Class

Procedure

1 Create the ex_signal_struct_csc model using the blocks shown and follow the
steps to configure the signals and model.

2 Double-click a Gain block to open the block parameter dialog box. Set the values of
the Gain blocks as shown in the model diagram.

3 Right-click the u1 signal and select Properties. In the Signal Properties dialog box,
select Signal name must resolve to Simulink signal object. Repeat for signals
u2 and u3.

4 Patterns for C Code

4-78

4 At the MATLAB command line, create a mpt.Signal data object for each input
signal.
u1 = mpt.Signal;

u2 = mpt.Signal;

u3 = mpt.Signal;

Note: You can also create a data object in the Model Explorer base workspace, by
selecting Add > Add Custom.

5 In the base workspace, configure each of the data objects, u1, u2, and u3. Double-
click a data object, to open the mpt.Signal parameter dialog box.

6 Specify the Data type parameter as auto and the Storage class parameter as
Struct (custom).

7 Click Apply and OK.
8 Press Ctrl+B to generate code.

Results

The generated code includes the typedef definition for a structure, which is declared in
the ex_signal_struct_csc_types.h file.
/* Type definition for custom storage class: Struct */

typedef struct my_signal_struct_tag {

 real_T u1;

 real_T u2;

 real_T u3;

 } my_signal_struct_type;

The generated code also includes the declaration of my_signal_struct in
ex_signal_struct_csc.c.
/* Definition for custom storage class: Struct */

my_signal_struct_type my_signals;

Structure for Signals Using a Simulink Non-Virtual Bus Object

Procedure

1 Create the ex_signal_struct_bus model using the blocks shown and follow the
steps to configure the bus object and model.

 Structures for Signals

4-79

2 Add the Inport blocks, an Outport block, and a Bus Creator block to your diagram.
3 Double-click the Bus Creator block to open the block parameter dialog box.
4 Specify the Number of inputs parameter as 3. Click Apply.
5 In your model diagram, connect the three Inport blocks to the three inports of the

Bus Creator block. Also, connect the outport of the Bus Creator block to the Outport
block.

6 Label the signals as shown in the model diagram.
7 In the Bus Creator block parameter dialog box, Signals in bus now displays the

signals connected to the Bus Creator block.
8 Create a bus object named MySignals that includes signals u1,u2, and u3. For more

information on creating bus objects, see “Manage Bus Objects with the Bus Editor”.
Once the bus object, MySignals, is created, it appears in the base workspace.

9 In the Bus Creator block parameter dialog box, select the Output as nonvirtual
bus parameter, which specifies that bus signals must be grouped into a structure in
the generated code.

10 Click Apply and OK.
11 Press Ctrl+B to generate code.

Results

The generated code includes the typedef definition for a structure, which is declared in
the signal_struct_bus_types.h file.
typedef struct {

 real_T u1;

 real_T u2;

 real_T u3;

} MySignals;

4 Patterns for C Code

4-80

Nested Structures

One way to create nested structures of signals in the generated code is by using multiple
non-virtual bus objects. When nesting bus objects, all of the bus objects must either be
non-virtual, or all of them must be virtual.

C Construct

typedef struct {

 double u1;

 double u2;

 double u3;

} my_signals123;

typedef struct {

 double u4;

 double u5;

 double u6;

} my_signals456;

typedef struct {

 my_signals123 y1;

 my_signals456 y2;

 } nested_signals;

Procedure

1 Create the ex_nested_structure model using the blocks shown and follow the
steps to configure the bus objects and model.

 Nested Structures

4-81

2 For each bus in the model, follow the instructions for “Structure for Signals
Using a Simulink Non-Virtual Bus Object” on page 4-78, creating bus objects
My_Signals_123 and My_Signals_456.

3 Drag a Bus Creator block into your model. Configure the Bus Creator block so that it
takes in signals from different buses.

4 Double-click the Bus Creator block to open the block parameter dialog box.
5 Specify the Number of inputs parameter as 2. Click Apply.
6 In your model diagram, connect the two bus outports to the inports of the new Bus

Creator block.
7 Label the signals as shown in the model diagram.
8 In the Bus Creator block parameter dialog box, Signals in bus now displays the

signals, y1 and y2, connected to the Bus Creator block.
9 Create a bus object named Nested_Signals that includes signals y1 and y2,

where the DataType for y1 is My_Signals_123 and the DataType for y2 is
My_Signals_456.

4 Patterns for C Code

4-82

For more information on creating bus objects, see “Manage Bus Objects with the Bus
Editor”. Once the bus object, Nested_Signals, is created, it appears in the base
workspace.

10 In the Bus Creator block parameter dialog box, select the Output as nonvirtual
bus parameter, which specifies that bus signals must be grouped into a structure in
the generated code.

11 Click Apply and OK.
12 Press Ctrl+B to generate code.

Results

The generated code includes the typedef definitions for structures, which are declared
in the ex_nested_structure_types.h file.
#ifndef _DEFINED_TYPEDEF_FOR_My_Signals_123_

#define _DEFINED_TYPEDEF_FOR_My_Signals_123_

typedef struct {

 real_T u1;

 real_T u2;

 real_T u3;

} My_Signals_123;

#endif

 Nested Structures

4-83

#ifndef _DEFINED_TYPEDEF_FOR_My_Signals_456_

#define _DEFINED_TYPEDEF_FOR_My_Signals_456_

typedef struct {

 real_T u4;

 real_T u5;

 real_T u6;

} My_Signals_456;

#endif

#ifndef _DEFINED_TYPEDEF_FOR_Nested_Signals_

#define _DEFINED_TYPEDEF_FOR_Nested_Signals_

typedef struct {

 My_Signals_123 y1;

 My_Signals_456 y2;

} Nested_Signals;

#endif

4 Patterns for C Code

4-84

Bitfields

One way to create bitfields in the generated code is by using a mpt.Parameter object
with Bitfield (Custom) storage class.

C Construct

typedef struct {

 unsigned int p1 : 1;

 unsigned int p2 : 1;

 unsigned int p3 : 1;

} my_struct_type

Procedure

1 Using the model, ex_struct_param, in “Structures for Parameters” on page 4-75,
rename the model as ex_struct_bitfield_CSC.

2 Create a data object for each parameter, p1, p2, and p3. At the MATLAB command
line, enter:
p1 = mpt.Parameter;

p2 = mpt.Parameter;

p3 = mpt.Parameter;

3 In the base workspace, double-click one of the parameter data objects to open the
mpt.Parameter dialog box.

4 Specify the Value parameter for each parameter object.
5 Specify the Storage class parameter as Bitfield (Custom) for each parameter

object.
6 In the Custom Attributes section, specify the Struct name as my_struct. Click

Apply and OK.
7 Specify the data objects for each parameter.

 Bitfields

4-85

8 Press Ctrl+E to open the Configuration Parameters dialog box.
9 Open the Optimization > Signals and Parameters pane, and select the Inline

parameters parameter.
10 Click Apply and OK.
11 Press Ctrl+B to generate code.

Results

The generated code of the model, ex_struct_bitfield_CSC, includes the typedef
definition for a Bitfield, which is declared in the ex_struct_bitfield_CSC_types.h
file.
 /* Type definition for custom storage class: BitField */

 typedef struct my_struct_tag {

 uint_T p1 : 1;

 uint_T p2 : 1;

 uint_T p3 : 1;

 } my_struct_type;

4 Patterns for C Code

4-86

Arrays for Parameters

To create an array in the generated code, you can use a constant parameter in the base
workspace, or a mpt.Parameter.

C Construct
int params[5]= {1,2,3,4,5};

Procedure

1 Create a model, ex_array_params, containing the Constant blocks and Outport
blocks and label the blocks as shown in the model diagram.

2 Double-click the Constant1 block and give the Constant value the name of a
parameter, params1.

3 Double-click the Constant2 block and give the Constant value the name of a
parameter, params2.

4 To create the parameters in the base workspace, at the MATLAB command line,
enter:
params1 = [1,2,3,4,5];

params2 = mpt.Parameter;

5 In the base workspace, double-click params2 to open the mpt.Parameter dialog
box.

6 In the Value field, specify the array, [1 2 3 4 5].
7 Press Ctrl+E to open the Configuration Parameters dialog box.
8 Open the Optimization > Signals and Parameters pane, and select the Inline

parameters parameter.
9 Click Apply and OK.

 Arrays for Parameters

4-87

10 Press Ctrl+B to generate code.

Results

The generated code includes the array, params2, in the ex_array_params.c file:
int16_T params2[5] = { 1, 2, 3, 4, 5 } ;

The data object, params1, is defined in the array_params_data.c file:
/* Constant parameters (auto storage) */

const ConstParam_array_params array_params_ConstP = {

 /* Computed Parameter: Constant1_Value

 * Referenced by: '/Constant1'

 */

 { 1, 2, 3, 4, 5 }

};

where ConstParam_array_params is a structure containing the array and defined in
the array_params.h file.
typedef struct {

 /* Computed Parameter: Constant1_Value

 * Referenced by: '/Constant1'

 */

 int16_T Constant1_Value[5];

} ConstParam_array_params;

4 Patterns for C Code

4-88

Arrays for Signals

To create an array in the generated code for signal data, you can specify a signal as
ExportedGlobal, or use a mpt.Signal object.

C Construct
int u1[5];

int y1[5];

Procedure

1 Create the ex_array_signals model using the blocks shown and follow the steps
to configure the signals and model.

2 Double-click the Inport block to open the Inport block parameter dialog box.
3 Select the Signal Attributes tab and specify the Port dimensions parameter as 5,

for an array of length 5.
4 Click OK.
5 Right-click the u1 signal line and select Properties.
6 Select the Code Generation tab and specify the Storage Class parameter as

ExportedGlobal.
7 Repeat steps 5 and 6 for signal y1.
8 Press Ctrl+B to generate code.

Note: Alternatively, you can use Simulink data objects (mpt.Signal) to specify the
storage class and dimensions for the signals, u1 and y1.

Results

The generated code includes arrays for u1 and y1 in the ex_array_signals.c file:
int16_T u1[5];

int16_T y1[5];

 Arrays for Signals

4-89

In this case, a for loop is generated to carry out the gain operations on elements of the
input signal.
int32_T i;

for (i = 0; i < 5; i++) {

 y1[i] = (int16_T)(5 * u1[i]);

}

However, if the dimension of the array is less than a threshold value (typically 5), code
generation might not include a for loop for array operations.

4 Patterns for C Code

4-90

Pointers for Signals

To create a pointer in the generated code, you can configure a signal to use the
ImportedExternPointer storage class or use an mpt.Signal (or mpt.Parameter for
parameters) object with an ImportedExternPointer storage class.

C Construct

extern double *u1;

Procedure

This is a quick method to obtain pointers in the generated code. You cannot control the
data type, which is decided by the model compilation process.

1 Create the ex_pointer_signal model using the blocks shown and follow the steps
to configure the signals and model.

2 Label the signal to be imported as a pointer, in this example, u1.
3 Right-click the u1 signal line and select Properties.
4 Select the Code Generation tab and specify the Storage Class parameter as

ImportedExternPointer.
5 Click OK.
6 Press Ctrl+B to generate code.

Results

The generated code includes the extern declaration for the pointer in the
ex_pointer_signal_private.h file.

extern real_T *u1;

 Pointers Using Simulink Data Objects

4-91

Pointers Using Simulink Data Objects
You can control the data type of a signal or parameter by using a Simulink data object to
generate a pointer.

C Construct
extern double *u1;

Procedure

You can use this procedure for either a signal or parameter. To create a pointer for a
parameter, use an mpt.Parameter instead of an mpt.Signal data object described in
step 3.

1 Create the ex_pointer_signal_data_object model using the blocks shown and
follow the steps to configure the signals and model.

2 Label the signal to be imported as a pointer, in this example, u1.
3 At the MATLAB command line, create a data object for signal u1.

u1 = mpt.Signal;

4 In the base workspace, double-click u1 to open the mpt.Signal dialog box.
5 Specify the Storage class parameter as ImportedExternPointer.
6 Click Apply and OK.
7 Press Ctrl+B to generate code.

Results

The generated code includes the extern declaration for the pointer in the
ex_pointer_signal_data_object_private.h file.
extern real_T *u1;

The ex_pointer_signal_data_object_private.h file imports the pointer into the
generated code. To compile the code, you must declare and define the pointer in the main
program.

5

Variant Systems

• “About Variant Systems” on page 5-2
• “Why Generate Code for Variant Systems?” on page 5-3
• “Generate Preprocessor Conditionals for Variant Systems” on page 5-4
• “Review Code Variants in Code Generation Report” on page 5-7
• “Generate Code for Model Variants” on page 5-8
• “Generate Code for Variant Subsystems” on page 5-10
• “Restrictions on Variant Subsystem Code Generation” on page 5-15
• “Special Considerations for Generating Preprocessor Conditionals” on page 5-17
• “Limitations on Generating Code for Variants” on page 5-18
• “Generated Code Components Not Compiled Conditionally” on page 5-19

5 Variant Systems

5-2

About Variant Systems

Embedded Coder generates code from a Simulink model containing one or more Variant
Subsystem blocks. To learn how to create a model containing variant blocks, see
“Workflow for Implementing Variants”.

Code is generated for different variant choices, the active variant, and the default
variant. To generate code for variants, set the following conditions in theVariant
Subsystem block:

• Deselect Override variant conditions and use the following variant.
• Select Generate preprocessor conditionals.

Code generated for variants is surrounded by C preprocessor conditionals #if, #else,
#elif, and #endif. Therefore, the active variant is selected at compile time and the
preprocessor conditionals determine which sections of the code to execute.

To construct model reference variants and generate preprocessor directives in the
generated code, see the example rtwdemo_preprocessor_script.

To construct variant subsystems and generate preprocessor directives in the generated
code, see the example rtwdemo_preprocessor_subsys_script.

 Why Generate Code for Variant Systems?

5-3

Why Generate Code for Variant Systems?

When you implement variants in the generated code, you can:

• Reuse generated code from a set of application models that share functionality with
minor variations.

• Share generated code with a third party that activates one of the variants in the code.
• Validate the supported variants for a model and then choose to activate one variant

for a particular application, without regenerating and re-validate the code.
• Generate code for the default variant that is selected when an active variant does not

exist.

5 Variant Systems

5-4

Generate Preprocessor Conditionals for Variant Systems

In this section...

“Define Variant Controls” on page 5-4
“Configure Model for Generating Preprocessor Conditional Directives” on page 5-5
“Build Your Model” on page 5-6

Define Variant Controls

To learn about variant controls, see “Create, Export, and Reuse Variant Controls” in
the Simulink documentation. Perform the following steps to define variant controls for
generating code.

1 Open the Model Explorer and select the Base Workspace node.
2 A variant control can be a condition expression, a Simulink.Variant class object

specifying a condition expression or a Simulink.Parameter object. In the
Model Explorer, select Add > Simulink Parameter. Specify a name for the new
parameter.

3 Use the function Simulink.VariantManager.findVariantControlVars
to find and convert MATLAB variables used in variant control expressions into
Simulink.Parameter objects. For an example, see “Convert Variant Control
Variables into Simulink.Parameter Objects”.

4 On the Simulink.Parameter property dialog box, specify the Value and Data
type.

5 Select one of these Storage class values.

• ImportedDefine(Custom)

• CompilerFlag(Custom)

• A storage class created using the Custom Storage Class Designer. Your storage
class must have the Data initialization parameter set to Macro and the Data
scope parameter set to Imported. See “Use Custom Storage Class Designer” for
more information.

6 Specify the value of the variant control. If the storage class is either
ImportedDefine(Custom) or a custom storage class, do the following:

a Specify the Header File parameter as an external header file in the Custom
Attributes section of the Simulink.Parameter property dialog box.

 Generate Preprocessor Conditionals for Variant Systems

5-5

b Enter the values of the variant controls in the external header file.

Note: The generated code refers to a variant control as a user-defined macro.
The generated code does not contain the value of the macro. The value of the
variant control determines the active variant in the compiled code.

If the variant control is a CompilerFlag custom storage class the value of the
variant control is set at compile time. On the Code Generation > General pane
of the Model Configuration Parameters dialog box, add a makefile option to
the “Make command” parameter. For example, for variant control, VSSMODE, enter
make_rtw OPTS="-DVSSMODE=1" in the Make command field.

Note: If you want to modify the value of the variant control after generating the
makefile, use a makefile option when compiling your code. For example, at a
command line outside of MATLAB, enter:

makecommand -f model.mk OPTS="-DVSSMODE=1"

7 Follow the instructions in “Configure Model for Generating Preprocessor Conditional
Directives” on page 5-5 to implement variant objects for code generation. Check
that only one variant object is active in the generated code by implementing the
condition expressions of the variant objects such that only one evaluates to true.
The generated code includes a test of the variant objects to determine that there is
only one active variant. If this test fails, your code will not compile.

Note: You can define the variant controls using Simulink.Parameter object of
enumerated type. This approach provides meaningful names and improves the
readability of the conditions. The generated code includes preprocessor conditionals
to check that the variant condition contains valid values of the enumerated type.

Configure Model for Generating Preprocessor Conditional Directives

1 Open the Configuration Parameter dialog box.
2 Select the Code Generation pane, and set System target file as ert.tlc.
3 In the Report pane, select Create code generation report.
4 Select the Code Generation pane, and clear “Ignore custom storage classes”. In

order to generate preprocessor conditionals, you must use custom storage classes.

5 Variant Systems

5-6

5 Select the Interface pane, and select the Use Local Settings option of the
Generate preprocessor conditionals parameter. This parameter is a global
setting for the parent model. This setting enables the Generate preprocessor
conditionals parameter located in the Model Variants block parameters dialog
box or Variant Subsystem parameters dialog box. See “Generate preprocessor
conditionals” for more information.

6 Open the Model Variants block parameters dialog box or the Variant Subsystem
block parameter dialog box, depending on your application. Select the Generate
preprocessor conditionals parameter. If the block parameters dialog box
was already open, close and reopen the dialog box to see the enabled Generate
preprocessor conditionals parameter.

7 Clear the parameter, Override variant conditions and use following variant.

Build Your Model

After configuring your model to generate code, build your model.

 Review Code Variants in Code Generation Report

5-7

Review Code Variants in Code Generation Report

The Code Variants Report displays a list of the variant objects in alphabetical order
and their condition. The report also lists the model blocks that have Variants, and the
referenced models that use them. In the Contents section of the code generation report,
click the link to the Code Variants Report:

5 Variant Systems

5-8

Generate Code for Model Variants

To open a model for generating preprocessor conditionals, enter rtwdemo_preprocessor.

After building the model, look at the variants in the generated code.
rtwdemo_preprocessor_types.h includes the following:

• Call to external header file, rtwdemo_preprocessor_macros.h, which contains the
macro definition for the variant control variable, VSSMODE.
/* Includes for objects with custom storage classes. */

#include "rtwdemo_importedmacros.h"

• Preprocessor directives defining the variant objects, LINEAR and NONLINEAR. The
values of these macros depend on the value of the variant control variable, VSSMODE.
The condition expression associated with each macro, LINEAR and NONLINEAR,
determine the active variant.
/* Model Code Variants */

 #ifndef LINEAR

 #define LINEAR (VSSMODE == 0)

 #endif

 #ifndef NONLINEAR

 #define NONLINEAR (VSSMODE == 1)

 #endif

• Check that exactly one variant is active at a time:
/* Exactly one variant for '<Root>/Left Controller' should be active */

#if (LINEAR) + (NONLINEAR) != 1

#error Exactly one variant for '<Root>/Left Controller' should be active

#endif

Calls to the step and initialization functions are conditionally compiled as shown in a
portion of the step function, rtwdemo_preprocessor_step:
#if LINEAR

 /* ModelReference: '<Root>/Left Controller' */

 rtwdemo_linl(&rtb_Add, &rtb_LeftController_vmerge_1,

 &(rtwdemo_preprocessor_DWork.LeftController_1_DWORK1.rtdw));

#elif NONLINEAR

 /* ModelReference: '<Root>/Left Controller' */

 rtwdemo_nlinl(&rtb_Add, &rtb_LeftController_vmerge_1,

 &(rtwdemo_preprocessor_DWork.LeftController_2_DWORK1.rtdw));

#endif

and
#if LINEAR

 /* ModelReference: '<Root>/Right Controller' */

 Generate Code for Model Variants

5-9

 rtwdemo_linr(&trb_Add, &rtb_RightController_vmerge,

 &(rtwdemo_preprocessor_DWork.RightController_1_DWORK1.rtdw));

#elif NONLINEAR

 /* ModelReference: '<Root>/Right Controller' */

 rtwdemo_nlinr(&rtb_Add, &rtb_RightController_vmerge_1,

 &(rtwdemo_preprocessor_DWork.RightController_2_DWORK1.rtdw));

#endif /* LINEAR */

5 Variant Systems

5-10

Generate Code for Variant Subsystems

In this section...

“Open Example Model” on page 5-10
“Define Variant Controls” on page 5-10
“Configure Model for Generating Preprocessor Conditional Directives” on page 5-12
“View Generated Code” on page 5-13

Open Example Model

Open model rtwdemo_preprocessor_subsys, which contains a variant subsystem.

Define Variant Controls

Variant controls can be a condition expression or Simulink.Variant object specifying a
condition expression or a default variant. Condition expressions specified directly or used
in Simulink.Variant objects should reference Simulink.Parameter objects.

1 Open the Model Explorer and click the Base Workspace.
2 Select Add > Simulink Parameter to create the variant control variable, VSSMODE.
3 In the Simulink.Parameter property dialog box for VSSMODE, specify the Value as

1 and the Data type as int32.
4 Select one of these Storage class values.

• ImportedDefine(Custom)

• Set the external Header File as rtwdemo_importedmacros.h. An external
header file is required for the ImportedDefine(Custom) storage class.

Note: The generated code refers to a variant control variable as a user-defined
macro. The generated code does not contain the value of the macro. The value
of the variant control variable determines the active variant in the compiled
code.

 Generate Code for Variant Subsystems

5-11

• CompilerFlag(Custom)

• Set the makefile option to enable a variant. In the Configuration
Parameters dialog box, select the Code Generation > General pane. Then
set Build configuration to Specify.

• In the C Compiler field, add a -D option. For example, for variant control
VSSMODE, enter -D"VSSMODE=1".

5 Open the RightController variant subsystem and create third variant
LinearModified. Then, open the parameter dialog box for the RightController
subsystem variant.

6 Set the Variant control values for the three variants, setting the LinearModified
variant as default.

5 Variant Systems

5-12

7 For each variant subsystem, open the parameter dialog box and select Treat as
atomic unit.

Configure Model for Generating Preprocessor Conditional Directives

In order to generate preprocessor conditional directives configure your model as follows:

 Generate Code for Variant Subsystems

5-13

1 On the Code Generation pane of the Configuration Parameter dialog box,
specify the System target file parameter as ert.tlc and clear “Ignore custom
storage classes”. In order to generate preprocessor conditionals, you must use custom
storage classes.

2 On the Code Generation > Interface pane of the Configuration Parameters
dialog box, set Generate preprocessor conditionals to Enable all or Use
local settings. This parameter is a global setting that is applicable to all variant
blocks in the model.

If you specify Enable all, the Generate preprocessor conditionals option is
disabled on the variant subsystem block and the preprocessor conditions are always
generated.

If you specify Use local settings, preprocessor conditions are generated only
when you set the block parameter GeneratePreprocessorConditions to on.

For more information, see “Generate preprocessor conditionals”.

View Generated Code

The generated code contains child subsystems of the Variant Subsystem block
protected by C preprocessor conditionals. In this case, the selection of the active variant
(subsystem) is deferred until the generated code is compiled. Only one variant object,
which is encoded in C macros, must evaluate to true.

After building the model, look at the variants in the generated code.
AutoSSVar_types.h includes the following:

• Call to external header file, rtwdemo_preprocessor_subsys_types.h, which
contains the macro definitions for the variant control variable VSSMODE.
/* Includes for objects with custom storage classes. */

 #include "rtwdemo_importedmacros.h"

• Preprocessor directives defining the variant objects. The values of these macros
depend on the value of VSSMODE. The condition expression associated with each macro
determine the active variant.
/* Model Code Variants */

#ifndef LINEAR

#define LINEAR (VSSMODE == 0))

#endif

#ifndef NONLINEAR

#define NONLINEAR (VSSMODE == 1)

5 Variant Systems

5-14

#endif

• Check for exactly one variant being active at a time:

/* Exactly one variant for '<Root>/LeftController' should be active */

#if (LINEAR) + (NONLINEAR) != 1

#error Exactly one variant for '<Root>/LeftController' should be active

#endif

/* Exactly one variant for '<Root>/RightController' should be active */

#if (LINEAR) + (NONLINEAR) > 1

#error Exactly one variant for '<Root>/LController' should be active

#endif

Calls to the step and initialization functions are conditionally compiled in
rtwdemo_preprocessor_subsys.c. The conditional for the default variant is also
included.
#if LINEAR

 Linear(rtb_Add1, &rtb_VariantMergeForOutportOut1, &rtDWork.Linear_c);

#elif NONLINEAR

 Nonlinear(rtb_Add1, &rtb_VariantMergeForOutportOut1, &rtDWork.Nonlinear_a);

#else

 /* Output and update for atomic system: '<S2>/LinearModified' */

 rtb_VariantMergeForOutportOut1 = look1_binlx(rtb_Add1,...

 rtCP_LookupTable_bp01Dat_j, rtCP_LookupTable_tableDa_j, 4U);

#endif

 Restrictions on Variant Subsystem Code Generation

5-15

Restrictions on Variant Subsystem Code Generation

To generate preprocessor conditionals, the types of blocks that you can place within
the child subsystems of a Variant Subsystem block are limited. Connections are not
allowed in the Variant Subsystem block diagram. However, during the code generation
process, one VariantMerge block is placed at the input of each Outport block within
the Variant Subsystem block diagram. All of the child subsystems connect to each of the
VariantMerge blocks.

In the figure below, the code generation process makes the following connections and
adds VariantMerge blocks to the sldemo_variant_subsystems model.

When compared to a generic Merge block the VariantMerge block can have only one
parameter which is the number of Inputs. The VariantMerge block is used for code
generation in variant subsystems internally, and is not available externally to be used in
models. The number of inputs for VariantMerge is determined and wired as shown in
the figure below.

5 Variant Systems

5-16

The child subsystems of the Variant Subsystem block must be atomic subsystems.
Select Treat as atomic unit parameter in the Subsystem block parameters dialog, to
make the subsystems atomic. The VariantMerge blocks are inserted at the outport of
the subsystems if more than one child subsystems are present. If the source block of a
VariantMerge block input is nonvirtual, an error message will be displayed during code
generation. You must make the source block contiguous, by inserting Signal Conversion
blocks inside the variant choices. The VariantMerge block does not support variable
dimensions through it, so you cannot have child subsystems with different output signal
dimensions.

 Special Considerations for Generating Preprocessor Conditionals

5-17

Special Considerations for Generating Preprocessor Conditionals

• The code generation process checks that the inports and outports of a Model Variants
block are identical (same port numbers and names) to the corresponding inports and
outports of its variants. The build process for simulation does not make this check.
Therefore, if your variant block contains mismatched inports or outports, the code
generation process issues an error.

• The port numbers and names for each child variant subsystem must belong to a
subset of the port numbers and names of the parent Variant Subsystem block.

• The code generation process checks that there is at least one active variant by
using the variant control values stored in the base workspace. The variant control
that evaluates to true becomes the active variant. If none of the variant controls
evaluates to true, the default variant, if specified, becomes the active variant. The
code generation process issues an error if an active variant does not exist.

• If you comment out child subsystems listed in the Variant Choices table in the
Variant Subsystem block parameter dialog box, the code generator does not generate
code for the commented out subsystems.

• If the sample time for a default variant differs from that of the other variant choices,
the #else preprocessor conditional is not generated for the default variant. Instead,
an #if !(<variant conditions>) is generated.

5 Variant Systems

5-18

Limitations on Generating Code for Variants

• When you are generating code for Model Variants blocks and Variant Subsystem
blocks, the blocks cannot have:

• Mass matrices
• Function call ports
• Outports with constant sample time
• Simscape™ blocks

• The Model Variants block and its referenced models must have the same number of
inports and outports.

• The port numbers and names for each active child subsystem must belong to a subset
of the port numbers and names of the parent Variant Subsystem block.

 Generated Code Components Not Compiled Conditionally

5-19

Generated Code Components Not Compiled Conditionally

The following components in the generated code are not compiled conditionally. This is
true even if they are referenced only by code for variant subsystems or models that are
conditionally compiled.

• rtModel data structure fields
• #include's of utility files
• Global non-constant parameter structure fields; when the configuration parameter

Optimization > Signals and Parameters > Parameter structure is set to
NonHierarchical

• Global constant parameter structure fields that are referenced by multiple
subsystems activated by different variants

• Parameters that are configured to use an imported, exported, or custom code
generation storage class, and are referenced by multiple subsystems that are
activated by different variants

• Parameters that are configured to use an imported, exported, or custom code
generation storage class, and are used by variant model blocks

6

Scheduling Considerations

• “Use Discrete and Continuous Time” on page 6-2
• “Optimize Multirate Multitasking Operation on RTOS Targets” on page 6-4

6 Scheduling Considerations

6-2

Use Discrete and Continuous Time

In this section...

“Support for Discrete and Continuous Time Blocks” on page 6-2
“Support for Continuous Solvers” on page 6-2
“Support for Stop Time” on page 6-2

Support for Discrete and Continuous Time Blocks

The ERT target supports code generation for discrete and continuous time blocks. If the
Support continuous time option is selected, you can use these blocks in your models,
without restriction.

Note that use of certain blocks is not recommended for production code generation
for embedded systems. The Simulink Block Data Type Support table summarizes
characteristics of blocks in the Simulink and Fixed-Point Designer block libraries,
including whether or not they are recommended for use in production code generation. To
view this table, execute the following command and see the “Code Generation Support”
column of the table that appears:

showblockdatatypetable

Support for Continuous Solvers

The ERT target supports continuous solvers. In the Solver options dialog, you can select
an available solver in the Solver menu. (Note that the solver Type must be fixed-step
for use with the ERT target.)

Note Custom targets must be modified to support continuous time. The required
modifications are described in “Custom Targets” in the Simulink Coder documentation.

Support for Stop Time

The ERT target supports the stop time for a model. When generating host-based
executables, the stop time value is honored if one of the following is true:

• Classic call interface is selected on the Interface pane

 Use Discrete and Continuous Time

6-3

• External mode is selected in the Data exchange subpane of the Interface pane
• MAT-file logging is selected on the Interface pane

Otherwise, the executable runs indefinitely.

Note: The ERT target provides both generated and static examples of the ert_main.c
file. The ert_main.c file controls the overall model code execution by calling the
model_step function and optionally checking the ErrorStatus/StopRequested
flags to terminate execution. For a custom target, if you provide your own custom static
main.c, you should consider including support for checking these flags.

6 Scheduling Considerations

6-4

Optimize Multirate Multitasking Operation on RTOS Targets

In this section...

“Overview” on page 6-4
“Use rtmStepTask” on page 6-5
“Scheduling Code for Multirate Multitasking on VxWorks” on page 6-5
“Suppress Redundant Scheduling Calls” on page 6-6

Overview

Using the rtmStepTask macro, targets that employ the task management mechanisms
of an RTOS can eliminate certain redundant scheduling calls during the execution
of tasks in a multirate, multitasking model, thereby improving performance of the
generated code.

To understand the optimization that is available for an RTOS target, consider how the
ERT target schedules tasks for bareboard targets (where RTOS is not present). The
ERT target maintains scheduling counters and event flags for each subrate task. The
scheduling counters are implemented within the real-time model (rtM) data structure as
arrays, indexed on task identifier (tid).

The scheduling counters are updated by the base-rate task. The counters are clock rate
dividers that count up the sample period associated with each subrate task. When a
given subrate counter reaches a value that indicates it has a hit, the sample period for
that rate has elapsed and the counter is reset to zero. When this occurs, the subrate task
must be scheduled for execution.

The event flags indicate whether or not a given task is scheduled for execution. For
a multirate, multitasking model, the event flags are maintained by code in the main
program for the model. For each task, the code maintains a task counter. When the
counter reaches 0, indicating that the task's sample period has elapsed, the event flag for
that task is set.

On each time step, the counters and event flags are updated and the base-rate task
executes. Then, the scheduling flags are checked in tid order, and tasks whose event flag
is set is executed. Therefore, tasks are executed in order of priority.

For bareboard targets that cannot rely on an external RTOS, the event flags are
mandatory to allow overlapping task preemption. However, an RTOS target uses the

 Optimize Multirate Multitasking Operation on RTOS Targets

6-5

operating system itself to manage overlapping task preemption, making the maintenance
of the event flags redundant.

Use rtmStepTask

The rtmStepTask macro is defined in model.h and its syntax is as follows:

boolean task_ready = rtmStepTask(rtm, idx);

The arguments are:

• rtm: pointer to the real-time model structure (rtM)
• idx: task identifier (tid) of the task whose scheduling counter is to be tested

rtmStepTask returns TRUE if the task's scheduling counter equals zero, indicating that
the task should be scheduled for execution on the current time step. Otherwise, it returns
FALSE.

If your target supports the Generate an example main program parameter, you can
generate calls to rtmStepTask using the TLC function RTMTaskRunsThisBaseStep.

Scheduling Code for Multirate Multitasking on VxWorks

The following task scheduling code, from ertmainlib.tlc, is designed for multirate
multitasking operation on a Wind River® Systems VxWorks® target. The example uses
the TLC function RTMTaskRunsThisBaseStep to generate calls to the rtmStepTask
macro. A loop iterates over each subrate task, and rtmStepTask is called for each
task. If rtmStepTask returns TRUE, the VxWorks semGive function is called, and the
VxWorks RTOS schedules the task to run.

%assign ifarg = RTMTaskRunsThisBaseStep("i")

for (i = 1; i < %<FcnNumST>; i++) {

 if (%<ifarg>) {

 semGive(taskSemList[i]);

 if (semTake(taskSemList[i],NO_WAIT) != ERROR) {

 logMsg("Rate for SubRate task %d is too fast.\n",i,0,0,0,0,0);

 semGive(taskSemList[i]);

 }

 }

}

6 Scheduling Considerations

6-6

Suppress Redundant Scheduling Calls

Redundant scheduling calls are still generated by default for backward compatibility. To
change this setting and suppress them, add the following TLC variable definition to your
system target file before the %include "codegenentry.tlc" statement:
%assign SuppressSetEventsForThisBaseRateFcn = 1

Data, Function, and File Definition

7

Data Definition and Declaration
Management

• “Overview of Data Objects” on page 7-2
• “Create Simulink and mpt Data Objects” on page 7-3
• “Create Data Objects for a Model” on page 7-18
• “Define Global Data Objects in Separate File” on page 7-25
• “Define Global Data Objects in Separate Files” on page 7-27
• “Save and Load Data Objects” on page 7-28

7 Data Definition and Declaration Management

7-2

Overview of Data Objects

Data objects include the parameters and signals that the source code uses, and a
description of their properties. Data objects appear in the middle pane of the Model
Explorer. They also appear in the MATLAB workspace. You can control the property
values for each data object, thereby determining how each parameter and signal is
defined and declared in generated code.

Simulink uses a hierarchy of terms that are drawn from object-oriented programming.
For details, see “ Data Objects” in the Simulink documentation. The sketch below
summarizes this hierarchy.

Package

Class Class. . .

P = Property

PV = Property Value
PV

PP P P

PV PV PV

You can use the Simulink.Parameter class to declare a data object for a parameter,
where Simulink is the package name and Parameter is the class name. Likewise, an
instance of a Simulink.Signal class, creates a data object for a signal. Signal data
objects have a different set of properties than a parameter data objects. When you create
a data object, you specify a values for each of the properties, which defines that object.
For more information, see Simulink.Parameter and Simulink.Signal.

Related Examples
• “Create Data Objects for a Model” on page 7-18

 Create Simulink and mpt Data Objects

7-3

Create Simulink and mpt Data Objects

In this section...

“Ways to Create Data Objects” on page 7-3
“Create Data Objects with Data Object Wizard” on page 7-4
“Create mpt Data Objects with Data Object Wizard” on page 7-10
“Simulink and mpt Data Object Comparison” on page 7-10
“Create Data Objects from External Data Source” on page 7-15

Ways to Create Data Objects

The Embedded Coder software provides the mpt (module packaging tool) data object,
which contains the properties of Simulink data objects plus properties that provide
additional control over module packaging. For a comparison of the properties of Simulink
and mpt data objects, see “Simulink and mpt Data Object Comparison” on page 7-10.

There are different ways of creating Simulink and mpt data objects.

• Using the MATLAB command line.
• Using the Model Explorer.

For Simulink data objects, select Add > Simulink Parameter or Add > Simulink
Signal.

For mpt data objects, select Add > Add Custom.

For more information, see “ Data Objects” in the Simulink documentation.
• By invoking the Data Object Wizard for an existing model. For more information and

examples, see “Data Object Wizard” in the Simulink documentation and “Create mpt
Data Objects with Data Object Wizard” on page 7-10.

• Creating data objects based on an external source. You can do this manually item by
item, or together using a script. For more information, see “Create Data Objects from
External Data Source” on page 7-15.

The following sections illustrate how to create Simulink and mpt data objects and
compares their properties as data types.

7 Data Definition and Declaration Management

7-4

Create Data Objects with Data Object Wizard

You can use Data Object Wizard to create data objects for your model (see “Data Object
Wizard” in the Simulink documentation).

Data Object Wizard is especially useful for creating multiple data objects for

• Existing models that do not currently use data objects.
• Existing models to which you have added signals or parameters and therefore you

need to create more data objects.

Create Data Objects

This procedure creates Simulink data objects using Data Object Wizard.

1 Open the model for which you want to create data objects. For example, open
rtwdemo_mpf (which is located in toolbox/rtw/rtwdemos).

2 Open Data Object Wizard by entering dataobjectwizard at the MATLAB
command line or by selecting Data Object Wizard from the Code > Data Objects
menu in the Simulink editor. The Data Object Wizard dialog box appears:

 Create Simulink and mpt Data Objects

7-5

The Model name field displays the name of the model. You could specify a different
model by editing the field or by selecting the model using the adjacent Browse
button. When the Model name field is nonempty, the Find button is enabled.

3 In the Find options pane, select the desired check boxes. For descriptions of
each check box, see “Data Object Wizard” in the Simulink documentation. Be
sure to check the Alias types option. This finds user-registered data types in the
sl_customization.m file plus data type replacements specified for the model in
the Data Type Replacement pane of the Configuration Parameters dialog box. The
Data Object Wizard can create Simulink.AliasType objects from these.

4 Click the Find button. The model's potential data objects appear. This includes the
model's signals (root inputs, root outputs, and block outputs), discrete states, data
stores, and parameters, depending on:

• The check boxes you selected in the previous step
• The constraint mentioned in the note above

7 Data Definition and Declaration Management

7-6

Data Object Wizard finds only those signals, parameters, data stores, and states
whose storage class is set to Auto. The Wizard lists each data store and discrete
state that it finds as a signal class.

5 Click Select All. Notice in the Choose package for selected data objects field
that Simulink, the default, is selected. Therefore, the data objects are associated
with the Simulink package, as shown below.

6 Click Create. The data objects are added to the MATLAB workspace, and they
disappear from Data Object Wizard.

7 Click Cancel. The Data Object Wizard dialog box disappears.

Now you can set property values for the data objects.

Set Property Values for Data Objects

Most of the property values of data objects are supplied by defaults. A few are from the
model. Note that for Simulink data objects, the default storage class is Auto.

1 Type daexplr on the MATLAB command line, and press Enter. The Model Explorer
appears.

 Create Simulink and mpt Data Objects

7-7

2 In the Model Hierarchy (left) pane, select Base Workspace. The Simulink data
objects appear in the Contents (middle) pane, as shown below.

If the objects that you see do not appear in the order shown, click the Name column
header in the middle pane to sort the objects in ascending order by name.

3 To see the properties of a Simulink data object, select a data object in the middle
pane. The right pane displays the property names for that object. These property
names also appear as column headings in the middle pane. For example, if you select
signal data object A in the middle pane, the Model Explorer looks like this:

7 Data Definition and Declaration Management

7-8

4 You can change the values specified for the properties of the selected object. For
example, with A selected, change its StorageClass property from Auto to Default
(Custom), then click Apply. The property changes as shown below:

 Create Simulink and mpt Data Objects

7-9

You can use Control-Right-Click to select multiple objects in the center pane, then edit a
property value. The wizard applies the new value to the selected objects. For descriptions
of object properties and their values, see “Parameter and Signal Property Values”.

Generate and Inspect Code

Data objects for the model have been created. You have specified property values for each
data object's properties. Now you generate and inspect the source code, to see if it needs
correction or modification. If it does, you can change property values and regenerate the
code until it is what you want.

1 In the Configuration Parameters dialog box, click Code Generation in the left
pane.

2 In the Report pane, select the Create code generation report check box.

Note When you select the Create code generation report check box, the code
generation software automatically selects two check boxes on the pane: Launch
report automatically and Code-to-model. For large models, you may find that
HTML report generation (step 4 below) takes longer than you want. In this case,

7 Data Definition and Declaration Management

7-10

consider clearing the Code-to-model check box (and the Model-to-code check box
if selected). The report will be generated faster.

3 In the Code Generation pane, select the Generate code only check box. The
Build button changes to Generate Code.

Note The generate code process generates the .c/.cpp and .h files. The build
process adds compiling and linking to generate the executable. For details on build,
see “How Executable Programs Are Built From Models” in the Simulink Coder
documentation.

4 Click the Generate Code button. After a moment, the HTML code generation report
appears, listing the generated files on the left pane.

5 Select and review files in the HTML code generation report. See “Traceability in
Code Generation Report” for more information.

Create mpt Data Objects with Data Object Wizard

Create mpt data objects using Data Object Wizard the same way you did for Simulink
data objects, as explained in “Create Data Objects with Data Object Wizard” on page
7-4, except select mpt as the package instead of Simulink.

Set the property values for the mpt data objects the same way you set them for Simulink
data objects, as explained in “Set Property Values for Data Objects” on page 7-6,
with the following exceptions:

• Accept the default custom storage class for mpt data objects, Global(Custom)
• For data objects A and F1, type mydefinitionfile in the Definition file field on

the Model Explorer.

Then generate and inspect the code.

Note The Alias field is related to “Override Data Object Naming Rules”.

Simulink and mpt Data Object Comparison

The mpt data object contains the properties of Simulink data objects plus properties that
provide additional control over module packaging. The differences between Simulink and
mpt data objects can be illustrated by comparing

 Create Simulink and mpt Data Objects

7-11

• “Signal and Parameter Properties” on page 7-11
• “Configuration Parameters” on page 7-13
• “Generated Code” on page 7-14

Key differences include the following:

• Different custom storage classes displayed in the Model Explorer for mpt data objects
provide more control over the appearance of the generated code.

• Additional custom attributes (owner, definition file, persistence level, memory section)
for mpt data objects provide more control over data packaging in the generated code.

• On the Comments pane of the Configuration Parameters dialog box, the Custom
comments (MPT objects only) option allows you to add a comment just above a
signal or parameter's identifier in the generated code.

• On the Code Placement pane of the Configuration Parameters dialog box, in the
Global data placement (MPT data objects only) subpane:

• The Signal display level parameter allows you to specify whether or not the code
generator declares a signal data object as global data

• The Parameter tune level parameter allows you to specify whether or not the
code generator declares a parameter data object as tunable global data

Signal and Parameter Properties

The properties that appear in Model Explorer when mpt is the package include the
properties that appear when Simulink is the package plus additional properties. Notice
this by comparing the next two figures. (For descriptions of properties in Model Explorer,
see “Parameter and Signal Property Values”.)

7 Data Definition and Declaration Management

7-12

 Create Simulink and mpt Data Objects

7-13

Configuration Parameters

The following configuration parameters relate to module packaging features. These
parameters are available in the Configuration Parameters dialog box and Model Explorer
when the system target file selected for a Simulink model is ert.tlc (or a system target
file derived from an ert.tlc):

• Custom comments (MPT objects only) option on the Code Generation >
Comments pane

• In the Global data placement (MPT data objects only) subpane on the Code
Generation > Code Placement pane:

• Signal display level parameter
• Parameter tune level parameter

7 Data Definition and Declaration Management

7-14

Generated Code

In the example used in “Set Property Values for Data Objects” on page 7-6, you selected
Default (Custom) in the Storage class field for signal A and parameter F1. You
selected the default Auto in the Storage class field for the remaining data objects.
But for the mpt data objects you used the default Global (Custom) in the Storage
class field. When you generated code, these selections resulted in the definitions and
declarations shown in the table below.

Simulink Data Object with Auto
Storage Class

Simulink Data Object with
Default (Custom) Storage Class

mpt Data Object with Global
(Custom) Storage Class
and Definition File Named
mydefinitionfile

In rtwdemo_mpf.c:

/* For signal A */

ExternalInputs rtU;

/* For parameter F1 */

if(rtU.A * 2.0 > 10.0) {...

In rtwdemo_mpf.h:

/* For signal A */

typedef struct {

 real_T A;

} ExternalInputs;

extern ExternalInputs rtU;

In global.c:

real_T A;

real_T F1 = 2.0;

In global.h:

extern real_T A;

extern real_T F1;

In mydefinitionfile.c:

real_T A;

real_T F1 = 2.0;

In global.h:

extern real_T A;

extern real_T F1;

The results shown in the second and third columns of the preceding table require the
following configuration parameter adjustments on the Code Generation > Code
Placement pane:

• Set Data definition to Data defined in single separate source file.
• Set Data definition filename to global.c
• Set Data declaration to Data declared in single separate source file.
• Set Data definition filename to global.h

See the left column of the table, which shows generated code for Simulink signal and
parameter data objects, whose Storage class field is Auto. The input A is defined as

 Create Simulink and mpt Data Objects

7-15

part of the structure rtU as shown above. In the case of the Simulink parameter data
object F1, since the StorageClass was set to auto, the code generator chose to include
the literal value of F1 in the generated code. F1 is a constant in the Stateflow diagram
whose value is initialized as 2.0:

if(rtU.A * 2.0 > 10.0) { ...

For more details, see “Introduction to Custom Storage Classes” and “Summary of Signal
Storage Class Options” in the Simulink Coder documentation.

See the middle column of the table. The Simulink data objects whose Storage class is
not Auto are defined in a definition statement in the global source file (global.c) and
declared in a declaration statement in the global header file (global.h).

In the right column, Simulink data objects whose Storage class is not Auto are defined
in mydefinitionfile, as you specified. The declarations for those objects are in the
global header file.

Create Data Objects from External Data Source

This procedure creates data objects based on an external data source (such as a
Microsoft® Excel® file). You can do this manually or automatically.

7 Data Definition and Declaration Management

7-16

Create Data Objects Manually

You can create data objects (and their properties) one-by-one, based on an external data
source, as follows:

1 Open the external file that contains the data (such as a spreadsheet or database file).
2 Determine the data in this file that correspond to the parameters and signals in the

model. Parameters in the external source belong to the Simulink parameter class
and signals belong to the Simulink signal class.

3 On the MATLAB command line, type daexplr and press Enter. The Model Explorer
appears.

4 On the Model Hierarchy (left) pane, expand Simulink Root, and select Base
Workspace.

5 On the Add menu, select Add Custom for an mpt data object or Simulink
Parameter for a Simulink data object. The default name Param appears in the
Contents of (middle) pane.

6 Double-click Param and rename this data object as desired.
7 Repeat steps 5 and 6 for each additional data item in the external file that belongs to

the mpt.Parameter class or Simulink.Parameter class.

Now you will add data items in the external file that belong to the mpt.Signal class
or Simulink.Signal class.

8 On the Add menu, select Add Custom to add an mpt data object or Simulink
Signal to add a Simulink data object. The default name Sig appears in the
Contents of pane.

9 Double-click Sig and rename the data object as desired.
10 Repeat steps 8 and 9 for each additional data item in the external file that belongs to

the mpt.Signal class or Simulink.Signal class.

External data items for the mpt.Parameter or Simulink.Parameter class, and
the mpt.Signal or Simulink.Signal class now appear in the Contents of pane
and in the MATLAB workspace.

Note The property values for these data objects are supplied by default.

 Create Simulink and mpt Data Objects

7-17

Create Data Objects Automatically

You can create data objects (and their properties) based on an external data source by
creating and running a .m file. This file contains the same MATLAB commands you could
use for creating data objects one-by-one on the command line, as explained in “ Data
Objects” in the Simulink documentation. But instead of using the command line, you
place the MATLAB commands in the .m file for the desired data in the external file:

1 Create a new .m file.
2 Place information in the file that describes the data in the external file that you

want to be data objects. For example, the following information creates two mpt data
objects with the indicated properties. The first is for a parameter and the second is
for a signal:

% Parameters

mptParCon = mpt.Parameter;

mptParCon.CoderInfo.CustomStorageClass ='Const';

mptParCon.value = 3;

% Signals

mptSigGlb = mpt.Signal;

mptSigGlb.DataType = 'int8';

3 Run the .m file. The data objects appear in the MATLAB workspace.

Note: If you want to import data from an external data source, you can write functions
that read the information, convert these to data objects, and load them into the MATLAB
workspace. Among available MATLAB functions that you can use for this process
are xmlread, xmlwrite, xlsread, xlswrite, csvread, csvwrite, dlmread, and
dlmwrite.

7 Data Definition and Declaration Management

7-18

Create Data Objects for a Model

In this procedure, you create data objects for a model using the Data Object Wizard,
inspect the data objects, and generate code. Definitions for the data objects are generated
in the model source file (model.c).

Use Data Object Wizard

1 Open the model rtwdemo_mpf by clicking the link or by typing rtwdemo_mpf in the
MATLAB Command Window.

In this model,

• A, B, and C are input signals, and L and Final are output signals.
• Subsystem1 receives inputs A and E and contains constants G1 and G2. Signal E is

an output from Data Store Read1.
• Subsystem2 receives inputs C and D. Signal D is an output from Data Store

Read2. There is a constant in Subsystem2 named G3. Also, this subsystem has a
Unit Delay block whose state name is SS.

2 Double-click the Stateflow chart and notice it has constants F1, Gain1, and Gain2,
as shown below:

 Create Data Objects for a Model

7-19

3 Change to a work folder that is not on an installation path and save the model in
that work folder. The code generation software does not allow you to generate code
from an installation folder.

4 Double-click the Invoke Data Object Wizard button on the model. Or, type
dataobjectwizard('rtwdemo_mpf') in the MATLAB Command Window. Data
Object Wizard opens and rtwdemo_mpf appears in the Model name field, as shown
below.

7 Data Definition and Declaration Management

7-20

5 Click Find on Data Object Wizard. After a moment, the model's parameters and
signals appear in Data Object Wizard.

6 Click Select All.
7 In the Choose package for selected objects field, select mpt. For an explanation

of “package,” see “Overview of Data Objects” on page 7-2.
8 Click Apply Package. Data Object Wizard associates the selected data objects with

the mpt package, as shown below.

 Create Data Objects for a Model

7-21

9 Click Create. Data Object Wizard creates data objects for the selected parameters
and signals. Data Object Wizard removes the objects from its object view. Also, the
objects are added to the MATLAB workspace, as shown below.

7 Data Definition and Declaration Management

7-22

10 Close Data Object Wizard.

Inspect Data Objects

You can inspect each data object you selected in the Data Object Wizard using the Model
Explorer:

1 If you have not already done so, complete the steps in “Use Data Object Wizard” on
page 7-18 .

2 Open the Model Explorer.
3 In the left pane, select Base Workspace. Notice that data objects appear in the

middle pane.
4 In the middle pane, select data objects one at a time, and notice their property values

in the right pane. The figure below shows this for signal A. The data objects have
default property values. Note that for an mpt data object, the default in the Storage
class field is Global (Custom). For descriptions of the properties on the Model
Explorer, see “Set Property Values for Data Objects” on page 7-6.

 Create Data Objects for a Model

7-23

Generate and Inspect Code

1 If you have not already done so, complete the steps in “Use Data Object Wizard” on
page 7-18 and “Inspect Data Objects” on page 7-22.

2 In the left pane of the Model Explorer, expand the rtwdemo_mpf node.
3 In the left pane, click Configuration (Active).
4 In the center pane, click Code Generation. The active configuration parameters

appear in the right pane.
5 In the Report tab, select Create code generation report
6 Select the General tab. Select Generate code only, and then click Generate

Code. After a few moments, the names of the generated files are listed on the Code
Generation Report on the left pane.

7 Data Definition and Declaration Management

7-24

7 Open and inspect the content of the model source file rtwdemo_mpf.c. The following
data objects are initialized in this file.

real_T F1 = 2.0;

real_T G1 = 6.0;

real_T G2 = -2.6;

real_T G3 = 9.0;

real_T Gain1 = 5.0;

real_T Gain2 = -3.0;

Related Examples
• “Define Global Data Objects in Separate File” on page 7-25

 Define Global Data Objects in Separate File

7-25

Define Global Data Objects in Separate File

In “Create Data Objects for a Model” on page 7-18, you can place a model's data objects in
the model source file. In this example, you can place global data objects in a file separate
from the model source file:

1 Configure the model's generated code to include Simulink data objects (signal and
parameter) in a separate definition file. Set Diagnostics > Data Validity > Signal
resolution to Explicit and implicit.

2 Specify that data be defined in a separate file. Set Code Generation > Code
Placement > Data definition to Data defined in single separate source
file. Accept the default for Data definition filename, global.c

3 Specify that data be declared in a separate file. Set Data declaration to Data
declared in a single separate header file and accept the default for
Data declaration filename, global.h. Then, click Apply.

4 Click Generate Code. Notice that the code generation report lists global.c and
global.h files.

7 Data Definition and Declaration Management

7-26

5 Inspect the code generation report. Notice that

• The data objects formerly initialized in rtwdemo_mpf.c now are initialized in
global.c.

• The file rtwdemo_mpf.c includes rtwdemo_mpf.h.
• The file rtwdemo_mpf.h includes global.h.

Related Examples
• “Define Global Data Objects in Separate Files” on page 7-27

 Define Global Data Objects in Separate Files

7-27

Define Global Data Objects in Separate Files

In “Define Global Data Objects in Separate File” on page 7-25, you placed global data
objects in a separate definition file. You named that file global.c and the corresponding
declaration file global.h. You can override this and place a specific data object in its
own definition file. In the following example, you move the Final signal to a file called
finalsig.c, and keep the other data objects defined in global.c:

1 In the Model Explorer, display the base workspace and select the Final signal
object. The mpt.Signal properties appear in the right pane.

2 In the Code generation options section, type finalsig.h in the Header file text
box, type finalsig.c in the Definition file text box, and click Apply.

3 On the Code Generation > General pane, click Generate Code. The code
generation report still lists global.c and global.h, but adds finalsig.c and
finalsig.h.

4 Open the files to inspect them. Notice that the Final signal is defined in
finalsig.c. Other data objects are defined in global.c.

7 Data Definition and Declaration Management

7-28

Save and Load Data Objects

In a .mat file, you can save the set of data objects (and their properties) that you have
created and load this information for later use or exchange it with another user. You can
save data objects in the workspace.

8

Data Types

• “What Are User-Defined Data Types?” on page 8-2
• “Control File Placement of User-Defined Types” on page 8-4
• “Create and Apply User-Defined Data Types” on page 8-7
• “Create Data Type Alias in Generated Code” on page 8-10
• “Create a Fixed-Point Data Type” on page 8-14
• “Use single Data Type as Default for Underspecified Types” on page 8-16
• “Specify Persistence Level for Signals and Parameters” on page 8-19
• “Buses” on page 8-22
• “Rename Built-In Data Types” on page 8-40
• “Register mpt User Object Types” on page 8-42
• “Data Type Replacement” on page 8-46
• “Replace Names of Built-In Types in Code” on page 8-52
• “Data Type Replacement Limitations” on page 8-56
• “Specify Boolean and Data Type Limit Identifiers” on page 8-58

8 Data Types

8-2

What Are User-Defined Data Types?

User-defined data types are objects of the following data type classes.

• Simulink.AliasType

• Simulink.Bus

• Simulink.NumericType

You can apply user-defined data types to achieve the following objectives in generated
code.

• Specify custom data type names for individual block parameters and signals by
creating aliases of the built-in Simulink types. The aliases appear in the model
diagram and in generated code. For more information, see “Create Data Type Alias in
Generated Code”.

• Map your own data type definitions to the built-in data types, and specify that your
data types are to be used in generated code. For more information, see “Data Type
Replacement”.

• Optionally, generate #include directives to import header files that contain your
data type definitions. This technique allows you to use legacy data types in generated
code.

In general, code generated from user-defined data objects conforms to the properties and
attributes of the objects as defined for use in simulation. When generating code from
user-defined data objects, the name of the object is the name of the data type that is used
in the generated code. For Simulink.NumericType objects whose IsAlias property is
false, the name of the functionally equivalent built-in or fixed-point Simulink data type is
used instead.

To define and name your own fixed-point data type, create an object of the class
Simulink.NumericType. To create your own data type as an alias of a built-in data
type or an enumerated data type, use an object of the class Simulink.AliasType.

See Also
“ Data Objects”

Related Examples
• “Create Data Type Alias in Generated Code”

 What Are User-Defined Data Types?

8-3

• “Data Type Replacement”

8 Data Types

8-4

Control File Placement of User-Defined Types

In this section...

“Data Scope and Header File” on page 8-4
“Macro Guards” on page 8-5

When you use data type objects such as Simulink.AliasType to specify data types for
signals and block parameters, the code generated from the model defines the types with
typedef statements. To ease integration of the generated code with other existing code,
you can control the file placement of the typedef statements by adjusting the properties
of the objects.

Data Scope and Header File

To control the file placement of a typedef statement in generated code, set the
DataScope and HeaderFile properties of the data type object according to the table.

• typename is the name of the custom data type.
• filename is the name of a header file.
• model is the name of the model.

Goal Specify DataScope as Specify HeaderFile as

Export type definition to
model_types.h

Auto Empty

Import type definition
from a header file that you
create, filename.h

Auto or Imported filename.h

Export type definition to
a generated header file,
filename.h

Exported filename.h

Import type definition
from a header file that you
create, typename.h

Imported Empty

Export type definition to
a generated header file,
typename.h

Exported Empty

 Control File Placement of User-Defined Types

8-5

When you import a data type definition, the generated model code creates an #include
directive for your header file in place of a typedef statement. You must supply the
header file that contains the typedef statement.

By default, the generated #include directives use the preprocessor delimiter " instead
of < and >. To generate the directive #include <myTypes.h>, specify the HeaderFile
property as <myTypes.h>.

Data Type Replacement

If you use Data Type Replacement to replace a built-in Simulink data type with your own
data type in generated code, typedef statements and #include directives appear in
rtwtypes.h instead of model_types.h.

Macro Guards

When you export one or more data type definitions to a generated header file, the file
contains a file-level macro guard of the form RTW_HEADER_filename_h.

Suppose you use several Simulink.AliasType objects: mySingleAlias,
myDoubleAlias, and myIntAlias with these properties:

• DataScope set to Exported
• HeaderFile set to myTypes.h

When you generate code, the guarded file myTypes.h contains the typedef statements:

#ifndef RTW_HEADER_myTypes_h_

#define RTW_HEADER_myTypes_h_

#include "rtwtypes.h"

typedef real_T myDoubleAlias;

typedef real32_T mySingleAlias;

typedef int16_T myIntAlias;

#endif

When you export data type definitions to model_types.h, the file contains a macro
guard of the form _DEFINED_TYPEDEF_FOR_typename_ for each typedef statement.
Suppose you use a Simulink.AliasType object mySingleAlias with these properties:

• DataScope set to Auto

8 Data Types

8-6

• HeaderFile not specified

When you generate code, the file model_types.h contains the guarded typedef
statement:

#ifndef _DEFINED_TYPEDEF_FOR_mySingleAlias_

#define _DEFINED_TYPEDEF_FOR_mySingleAlias_

typedef real32_T mySingleAlias;

#endif

See Also
Simulink.AliasType | Simulink.Bus | Simulink.NumericType

Related Examples
• “Create Data Type Alias in Generated Code”
• “Data Type Replacement”

More About
• “What Are User-Defined Data Types?”

 Create and Apply User-Defined Data Types

8-7

Create and Apply User-Defined Data Types

This example shows how to create user-defined data types and specify them for data
objects.

1 Open the Model Explorer and create Simulink.Signal and Simulink.Parameter
objects in the base workspace.

2 Click Add > Simulink.AliasType to create a data type object.
3 Name the object and set its Base type to int32 and Header file to

myDataTypes.h.

8 Data Types

8-8

4 Select the data object for which you want to specify the user-defined data type. Click
its Data Type field and from the drop down select Refresh data types.

This action updates the data type list with the user-defined data type you created.
5 Select the user-defined data type.

 Create and Apply User-Defined Data Types

8-9

See Also
Simulink.AliasType

Related Examples
• “Create Data Type Alias in Generated Code”
• “ Data Objects”
• “Create Simulink and mpt Data Objects” on page 7-3
• “Data Type Replacement”
• “Create a Fixed-Point Data Type” on page 8-14

8 Data Types

8-10

Create Data Type Alias in Generated Code

In this section...

“Export Type Definition” on page 8-10
“Import Type Definition” on page 8-11

You can create your own data type in code that a model generates by using an alias
of an existing type. You can use the alias to specify parameter and signal data types
throughout a model diagram and in generated code.

You can use an alias for the built-in Simulink data types, custom enumerated types that
you create, and fixed-point data types that you create. To create a data type alias, you
use an object of the class Simulink.AliasType.

You can also rename a built-in Simulink type in code generated from a model without
using a data type alias in the model diagram. For more information, see “Data Type
Replacement”.

Export Type Definition

When you integrate code generated from a model with code from other sources, your
model code can create an exported typedef statement. Therefore, all of the integrated
code can use the type. This example shows how to export the definition of a data type to a
generated header file.

1 Create a Simulink.AliasType object named mySingleAlias that acts as an alias
for the built-in data type single.

mySingleAlias = Simulink.AliasType('single')

mySingleAlias =

 AliasType with properties:

 Description: ''

 DataScope: 'Auto'

 HeaderFile: ''

 BaseType: 'single'

2 Configure the object to export its definition to a header file called myHdrFile.h.

 Create Data Type Alias in Generated Code

8-11

mySingleAlias.DataScope = 'Exported';

mySingleAlias.HeaderFile = 'myHdrFile.h';

3 Open the model rtwdemo_paramdt.

The model creates a Simulink.Parameter object Kuser in the base workspace. The
model uses Kuser as a parameter in a Gain block.

4 Set the data type of Kuser to the alias mySingleAlias.

Kuser.DataType = 'mySingleAlias';

5 At the model root, double-click the blue button labeled Generate Code Using
Embedded Coder.

6 In the code generation report, view the file rtwdemo_paramdt.h. The code creates a
#include directive for the generated file myHdrFile.h.

#include "myHdrFile.h"

7 View the file myHdrFile.h. The code uses the identifier mySingleAlias as an alias
for the data type real32_T. By default, generated code represents the Simulink
data type single using the identifier real32_T.

The code also provides a macro guard of the form
_DEFINED_TYPEDEF_FOR_alias_. When you export a data type definition to
integrate generated code with code from other sources, you can use macro guards of
this form to prevent identifier clashes.

#ifndef _DEFINED_TYPEDEF_FOR_mySingleAlias_

#define _DEFINED_TYPEDEF_FOR_mySingleAlias_

typedef real32_T mySingleAlias;

#endif

8 View the file rtwdemo_paramdt.c. The code uses the data type alias
mySingleAlias to define the variable Kuser.

mySingleAlias Kuser = 8.0F;

Import Type Definition

When you integrate code generated from a model with code from other sources, to avoid
redundant typedef statements, you can import a data type definition to the model code.

8 Data Types

8-12

This example shows how to import your own definition of a data type from a header file
that you create.

1 Use a text editor to create a header file to import. Name the file myHdrFile.h. Place
it in your working folder. Copy the following code into the file.

#ifndef HEADER_myHdrFile_h_

#define HEADER_myHdrFile_h_

typedef float myTypeAlias;

#endif

The code uses the identifier myTypeAlias to create an alias for the data type float.

The code also uses a macro guard of the form HEADER_filename_h. When you
import a data type definition to integrate generated code with code from other
sources, you can use macro guards of this form to prevent identifier clashes.

2 At the command prompt, create a Simulink.AliasType object named
myTypeAlias that creates an alias for the built-in type single. The Simulink data
type single corresponds to the data type float in generated code.

myTypeAlias = Simulink.AliasType('single')

myTypeAlias =

 AliasType with properties:

 Description: ''

 DataScope: 'Auto'

 HeaderFile: ''

 BaseType: 'single'

3 Configure the object so that generated code imports the type definition from the
header file myHdrFile.h.

myTypeAlias.DataScope = 'Imported';

myTypeAlias.HeaderFile = 'myHdrFile.h';

4 Open the model rtwdemo_paramdt.

The model creates a Simulink.Parameter object Kuser in the base workspace. The
model uses Kuser as a parameter in a Gain block.

5 Set the data type of Kuser to the alias myTypeAlias.

 Create Data Type Alias in Generated Code

8-13

Kuser.DataType = 'myTypeAlias';

6 At the model root, double-click the blue button labeled Generate Code Using
Embedded Coder.

7 In the code generation report, view the file rtwdemo_paramdt.h. The code creates a
#include directive for your header file myHdrFile.h.

#include "myHdrFile.h"

8 View the file rtwdemo_paramdt.c. The code uses the data type alias myTypeAlias
to define the variable Kuser.

myTypeAlias Kuser = 8.0F;

See Also
Simulink.AliasType | Simulink.NumericType

Related Examples
• “Create and Apply User-Defined Data Types” on page 8-7
• “Data Type Replacement” on page 8-46
• “Use single Data Type as Default for Underspecified Types” on page 8-16
• “Create a Fixed-Point Data Type”

More About
• “What Are User-Defined Data Types?” on page 8-2
• “ Data Objects”

8 Data Types

8-14

Create a Fixed-Point Data Type

This example shows how to create and name a fixed-point data type in generated code.
You can use the name of the type to specify parameter and signal data types throughout
a model and in generated code.

1 Create a Simulink.NumericType object that defines a fixed-point data type. Name
the object myFixType.

myFixType = fixdt(1,16,3)

myFixType =

 NumericType with properties:

 DataTypeMode: 'Fixed-point: binary point scaling'

 Signedness: 'Signed'

 WordLength: 16

 FractionLength: 3

 IsAlias: 0

 DataScope: 'Auto'

 HeaderFile: ''

 Description: ''

2 Use the name of the object as an alias for the fixed-point type in models and in
generated code.

myFixType.IsAlias = true;

3 Open the model rtwdemo_paramdt.

The model creates a Simulink.Parameter object Kuser with value 8 in the base
workspace. The model uses Kuser as a parameter in a Gain block.

4 Set the data type of Kuser to the fixed-point data type.

Kuser.DataType = 'myFixType';

5 At the top level of the model, set the output data type of the Inport block labeled 7 to
myFixType.

6 Open the subsystem.
7 Set the output data type of the Inport block labeled 7 to myFixType.
8 At the top level of the model, double-click the blue button labeled Generate Code

Using Embedded Coder.

 Create a Fixed-Point Data Type

8-15

9 In the code generation report, view the file rtwdemo_paramdt.h. The code defines
the type myFixType based on an integer type of the specified word length.

#ifndef _DEFINED_TYPEDEF_FOR_myFixType_

#define _DEFINED_TYPEDEF_FOR_myFixType_

typedef int16_T myFixType;

#endif

10 View the file rtwdemo_paramdt.c. The code uses the type myFixType, which is an
alias of the integer type int16, to define the variable Kuser.

myFixType Kuser = 64;

Note: The stored integer value 64 of Kuser is not the same as the real-world value 8
because of the scaling that the fixed-point data type myFixType specifies. For more
information, see “Scaling” in the Fixed-Point Designer documentation.

The line of code that represents the Gain block applies a right bit shift corresponding
to the fraction length specified by myFixType.

rtY.Out7 = (myFixType)(Kuser * rtU.In7 >> 3);

See Also
fixdt | Simulink.NumericType

Related Examples
• “Create and Apply User-Defined Data Types” on page 8-7

More About
• “What Are User-Defined Data Types?” on page 8-2
• “ Data Objects”

8 Data Types

8-16

Use single Data Type as Default for Underspecified Types
This example shows how to avoid introducing a double-precision data type in code
generated for a single-precision hardware target.

If you specify an inherited data type for signals, but data type propagation rules cannot
determine data types for the signals, the signal data types default to double. You can
use a model configuration parameter to specify the default data type as single.

Explore Example Model

Open the example model rtwdemo_underspecified_datatype.

model = 'rtwdemo_underspecified_datatype';

open_system(model);

The root inports In2, In3, and In4 specify Inherit: Auto for the Data type block
parameter. The downstream blocks also use inherited data types.

 Use single Data Type as Default for Underspecified Types

8-17

Generate Code with double as Default Data Type

Create a temporary folder to contain the build files and folders.

currentDir = pwd;

[~,cgDir] = rtwdemodir();

Build the model using Embedded Coder.

rtwbuild(model)

Starting build procedure for model: rtwdemo_underspecified_datatype

Successful completion of build procedure for model: rtwdemo_underspecified_datatype

In the code generation report, view the file rtwdemo_underspecified_datatype.h.
The code uses the double data type to define the variables In2, In3, and In4 because
the Inport data types are underspecified in the model.

cfile = fullfile(cgDir,'rtwdemo_underspecified_datatype_ert_rtw',...

 'rtwdemo_underspecified_datatype.h');

rtwdemodbtype(cfile,...

 '/* External inputs (root inport signals with auto storage) */',...

 '/* External outputs (root outports fed by signals with auto storage) */', 1, 0);

/* External inputs (root inport signals with auto storage) */

typedef struct {

 int8_T In1; /* '<Root>/In1' */

 real_T In2; /* '<Root>/In2' */

 real_T In3; /* '<Root>/In3' */

 real_T In4; /* '<Root>/In4' */

} ExtU_rtwdemo_underspecified_d_T;

Generate Code with single as Default Data Type

Open the Configuration Parameters dialog box. On the Optimization pane, select
single in the Default for underspecified data type drop-down list.

Alternatively, enable the optimization at the command prompt.

set_param(model, 'DefaultUnderspecifiedDataType', 'single');

Build the model using Embedded Coder.

rtwbuild(model)

8 Data Types

8-18

Starting build procedure for model: rtwdemo_underspecified_datatype

Successful completion of build procedure for model: rtwdemo_underspecified_datatype

In the code generation report, view the file rtwdemo_underspecified_datatype.h.
The code uses the single data type to define the variables In2, In3, and In4.

rtwdemodbtype(cfile,...

 '/* External inputs (root inport signals with auto storage) */',...

 '/* External outputs (root outports fed by signals with auto storage) */', 1, 0);

/* External inputs (root inport signals with auto storage) */

typedef struct {

 int8_T In1; /* '<Root>/In1' */

 real32_T In2; /* '<Root>/In2' */

 real32_T In3; /* '<Root>/In3' */

 real32_T In4; /* '<Root>/In4' */

} ExtU_rtwdemo_underspecified_d_T;

Close the model and delete build files.

bdclose(model)

rtwdemoclean;

cd(currentDir)

 Specify Persistence Level for Signals and Parameters

8-19

Specify Persistence Level for Signals and Parameters

With this procedure, you can control the persistence level of signal and parameter objects
associated with a model. Persistence level allows you to make intermediate variables or
parameters global during initial development. At the later stages of development, you
can use this procedure to remove these signals and parameters for efficiency. Notice the
Persistence Level field on the Model Explorer, as illustrated in the figure below. For
descriptions of the properties on the Model Explorer, see “MPT Data Object Properties”.

Notice also the Signal display level and Parameter tune level fields on the Code
Placement pane of the Configuration Parameters dialog box, as illustrated in the next
figure.

8 Data Types

8-20

The Signal display level field allows you to specify whether or not the code generator
defines a signal data object as global data in the generated code. The number you specify
in this field is relative to the number you specify in the Persistence level field. The
Signal display level number is for mpt (module packaging tool) signal data objects in
the model. The Persistence level number is for a particular mpt signal data object. If
the data object's Persistence level is equal to or less than the Signal display level,
the signal appears in the generated code as global data with the properties (custom
attributes) specified in “Create mpt Data Objects with Data Object Wizard” on page 7-10.
For example, this would occur if Persistence level is 2 and Signal display level is 5.

Otherwise, the code generator automatically determines how the particular signal data
object appears in the generated code. Depending on the settings on the Optimization
pane of the Configuration Parameters dialog box, the signal data object could appear in
the code as local data without the custom attributes you specified for that data object. Or,
based on expression folding, the code generator could remove the data object so that it
does not appear in the code. For more information, see “Code Optimization Basics”.

 Specify Persistence Level for Signals and Parameters

8-21

The Parameter tune level field allows you to specify whether or not the code generator
declares a parameter data object as tunable global data in the generated code.

The number you specify in this field is relative to the number you specify in the
Persistence level field. The Parameter tune level number is for mpt parameter
data objects in the model. The Persistence level number is for a particular mpt
parameter data object. If the data object's Persistence level is equal to or less than the
Parameter tune level, the parameter appears in the generated code with the properties
(custom attributes) specified in “Create mpt Data Objects with Data Object Wizard” on
page 7-10, and thus is tunable. For example, this would occur if Persistence level is 2
and Parameter tune level is 5.

Otherwise, the parameter is inlined in the generated code, and the code generation
settings determine its exact form.

Note that, in the initial stages of development, you might be more concerned about
debugging than code size. Or, you might want one or more particular data objects to
appear in the code so that you can analyze intermediate calculations of an equation. In
this case, you might want to specify the Parameter tune level (Signal display level
for signals) to be higher than Persistence level for some mpt parameter (or signal) data
objects. This results in larger code size, because the code generator defines the parameter
(or signal) data objects as global data, which have the custom properties you specified. As
you approach production code generation, however, you might have more concern about
reducing the size of the code and less need for debugging or intermediate analyses. In
this stage of the tradeoff, you could make the Parameter tune level (Signal display
level for signals) greater than Persistence level for one or more data objects, generate
code and observe the results. Repeat until satisfied.

1 With the model open, in the Configuration Parameters dialog box, click Code
Generation > Code Placement.

2 Type the desired number in the Signal display level or Parameter tune level
field, and click Apply.

3 In the Model Explorer, type the desired number in the Persistence field for the
selected signal or parameter, and click Apply.

4 Save the model and generate code.

8 Data Types

8-22

Buses

In this section...

“About Buses and Code Generation” on page 8-22
“Set Bus Diagnostics” on page 8-23
“Optimize Virtual and Nonvirtual Buses” on page 8-23
“Use Single-Rate and Multi-Rate Buses” on page 8-26
“Set Bus Signal Initial Values” on page 8-31
“Use Buses with Atomic Subsystems” on page 8-35

About Buses and Code Generation

When you use buses in a model for which you intend to generate code:

• Setting diagnostic configuration parameters can add to the ease of development.
• The bus implementation techniques used can influence the speed, size, and clarity of

that code.
• Some bus implementation techniques that can be useful are not immediately obvious.

This chapter contains guidelines that you can use to improve the results when you work
with buses. The guidelines describe techniques for:

• Simplifying the layout of the model
• Increasing the efficiency of generated code
• Defining data structures for function/subsystem interfaces
• Defining data structures that match existing data structures in external C code

Some trade-offs inevitably exist among speed, size, and clarity. For example, the code for
nonvirtual buses is easier to read because the buses appear in the code as structures, but
the code for virtual buses is faster because virtual buses do not require copying signal
data. The applicability of some guidelines can therefore depend on where you are in the
application development process.

This chapter focuses on optimizations that are useful for final production code. Before
you read this chapter, read “Composite Signals”. This topic assumes that you understand
the concepts and procedures described in that one, including the blocks used for creating
and manipulating buses.

 Buses

8-23

Set Bus Diagnostics

Simulink provides diagnostics that you can use to optimize bus usage. Set the following
values on the Configuration Parameters > Diagnostics > Connectivity pane:

Bus signal treated as vector is enabled only when Mux blocks used to create bus
signals is set to error. See “Prevent Bus and Mux Mixtures” for more information.

Optimize Virtual and Nonvirtual Buses

• “Use Virtual Buses Wherever Possible” on page 8-23
• “Avoid Nonlocal Nested Buses in Nonvirtual Buses” on page 8-25

Use Virtual Buses Wherever Possible

Virtual buses are graphical conveniences that do not affect generated code. As a result,
the code generation engine is able to fully optimize the signals in the bus. You should
therefore use virtual rather than nonvirtual buses wherever possible. You can convert
between virtual and nonvirtual buses using Signal Conversion blocks. In many cases,
Simulink automatically converts a virtual bus to a nonvirtual bus when required. For
example, a virtual bus input to a Model block becomes a nonvirtual bus without the need
for explicit conversion. See for more information.

When are Virtual and Nonvirtual Buses Required?

In some cases, Simulink requires the use of nonvirtual buses:

• For non-auto storage classes
• Inports and Outports of Model blocks

8 Data Types

8-24

• To generate a specific structure from the bus
• Root level Inport or Outport blocks when the bus has mixed data types

In one case, Simulink requires the use of virtual buses:

• Only virtual buses can be used for bundling function call signals.

 Buses

8-25

Avoid Nonlocal Nested Buses in Nonvirtual Buses

Buses can contain subordinate buses. The storage class of a subordinate bus should be
auto, which results in a local signal. Setting a subordinate bus to a non-auto storage
class has two undesirable results:

• Allocation of redundant memory (memory for the subordinate bus object and memory
for the final bus object)

• Additional copy operations (first copying to the subordinate bus and then copying
from the subordinate bus to the final bus)

In the following example, the final bus is created from local scoped subordinate elements.
The resulting assignment operations are relatively efficient:

8 Data Types

8-26

By contrast in the next example the subordinate elements Sub_Bus_1 and Sub_Bus_2
are global in scope. First the assignment to the subordinate bus occurs (lines 54 – 59)
then the copy of the subordinate bus to the main bus (lines 60 – 61). In most cases, this is
not an efficient implementation:

Use Single-Rate and Multi-Rate Buses

• “Introduction” on page 8-27
• “Techniques for Combining Multiple Rates” on page 8-27
• “Larger Buses and Multiple Rates” on page 8-29
• “Specify Sample Time Rates” on page 8-31

 Buses

8-27

Introduction

Nonvirtual buses do not support multiple rates. Virtual buses support multiple rates
as long as the bus does not cross a root level inport or outport. The best techniques for
optimizing a bus that contains signals that initially have different rates can depend on
the type of the bus and the number of signals.

Techniques for Combining Multiple Rates

The simplest bus contains only two signals. The next figure shows two examples of two-
element buses. The first example shows a virtual bus created from two signals that have
different rates. The second example shows a nonvirtual bus created from the same two
signals. The Sample Time Legend shows the different signal rates:

8 Data Types

8-28

The signals with different rates in the first example can be combined into a virtual bus,
because virtual buses support multiple rates. However, a multirate virtual bus cannot
connect to a root-level output port. The bus therefore passes through a Rate Transition
block that converts it to a single-rate bus, then connects to the Outport. This technique is
preferable only for virtual buses that contain one or two signals. See “Larger Buses and
Multiple Rates” on page 8-29.

The signals with different rates in the second example cannot initially be combined
into a nonvirtual bus, because nonvirtual buses do not support multiple rates. One of
the signals therefore passes through a Rate Transition block, which converts it to have
the same rate as the other signal, then connects to the Bus Creator block. The signals
can then combine into a single-rate nonvirtual bus, which can connect to the root-level
outport without further conversion.

 Buses

8-29

Larger Buses and Multiple Rates

When you create a multirate virtual bus that contains more than two signals, you can
convert the bus to single-rate by applying a Rate Transition block to the output of the
Bus Creator block. Use a Rate Transition block on each input signal to give full control
over the output rate. As the next figure shows, when a single Rate Transition block is
used, the block sets the signals to the fastest rate (D1):

8 Data Types

8-30

Note that the preferred techniques for a virtual bus with more than two signals, and the
required technique for a nonvirtual bus with one or more signals, are the same. Note also
that, in the preceding figure, the blocks that perform rate transition are not actual Rate
Transition blocks, but other blocks that can change the signal rate as part of some other
operation. The identity of the blocks that perform rate transition is not as significant;
what matters is that the signal rates match when required.

 Buses

8-31

Specify Sample Time Rates

The sample time for buses should be specified through the signals that define the bus.
If the sample times do not match, use Rate Transition (or equivalent) blocks to create
a uniform rate, as shown in the previous figures. The signal rates should not be set by
specifying Sample Time values in a Bus Creator block's bus object. Instead, set the
sample time for each signal before inputting it to the Bus Creator, and set each Sample
Time in the corresponding bus object to -1, which indicates the value is inherited.

Set Bus Signal Initial Values

• “Introduction” on page 8-31
• “Initialize Bus Signals in Simulink” on page 8-31
• “Bus Initialization in Stateflow” on page 8-32
• “Create a Bus of Constants” on page 8-34

Introduction

Unlike scalar and vector signals, buses do not provide a direct way to initialize signals.
This section describes techniques for initializing bus signals using Simulink, Stateflow,
and MATLAB functions.

Initialize Bus Signals in Simulink

In Simulink, you can set initial values on a bus by using a set of conditionally executed
subsystems, such as Function-Call subsystems, and a Merge block, as shown in this
example:

8 Data Types

8-32

Both subsystems (InitBus and StandardUpdate) create a bus signal of type
CounterBus. However, the assignment to the variable GlobalCounter is controlled by
the Merge block. See “Create a Function-Call Subsystem” for more information.

This technique is limited because the StandardUpdate subsystem does not use
the initial values from the InitBus subsystem. If the calculations depend on past
information from the bus, consider using Stateflow or MATLAB functions to initialize bus
signals.

Bus Initialization in Stateflow

Stateflow and MATLAB functions allow for conditional execution internally. In the
following example, the init and update code are Functions in the Stateflow diagram.
This technique simplifies the presentation in the generated code:

In the generated code, you can see that the UpdateCnt function uses the past value of
GlobalCounter.cnt:

 Buses

8-33

The previous example used Stateflow Graphical functions to initialize and update the
buses. Alternatively, you can use MATLAB functions or Simulink subsystems embedded
in a Stateflow diagram. The next figure illustrates this technique:

The Simulink subsystems are the same as those used in the earlier Simulink-only
example.

8 Data Types

8-34

Create a Bus of Constants

The code for specifying a bus of constant values will appear in either the Init or the
Step function of the model. The code location depends on the configuration of the bus.
In most cases the code appears in the Step function. However if the following conditions
hold the code will be placed in the Init function:

• The bus is a virtual bus
• The signals in the bus have the same data type
• The signals in the bus are constants

In the next figure, only the bus named Bus_2 meets the requirements:

The code for Bus_2 therefore appears in the Init function. The code for the other buses
appears in the Step function:

 Buses

8-35

To avoid repeatedly updating a bus of constants, place the bus code into a function-call
subsystem, as described in “Initialize Bus Signals in Simulink” on page 8-31. When
you use this technique, make sure the function-call subsystem is called at the start of
execution. See “Create a Function-Call Subsystem” for more information.

Use Buses with Atomic Subsystems

• “Extract Nonvirtual Bus Signals from Atomic Subsystems” on page 8-35
• “Virtual Bus Signals Crossing Atomic Boundaries” on page 8-37
• “Atomic Subsystems and Buses of Constants” on page 8-39

Extract Nonvirtual Bus Signals from Atomic Subsystems

Selecting signals from a nonvirtual bus can result in unnecessary data copies when those
signals cross an atomic boundary. In the following example the same code, a simple
multiplication of two elements in a vector, is executed three times:

8 Data Types

8-36

 Buses

8-37

In the second instance when the bus signals are selected outside of the atomic subsystem
an unnecessary copy of the bus data is created.

Although this example shows only signals with global scope, both global and local signals
show the same behavior: the selection of the signals outside of the model results in an
unnecessary copy, while the internal selection does not.

Virtual Bus Signals Crossing Atomic Boundaries

Virtual buses that cross atomic boundaries can result in the creation of unnecessary data
copies. The following example shows the data copy that occurs when a virtual bus crosses
an atomic boundary:

8 Data Types

8-38

Lines 25–26 show the signals being selected out of the bus before they are used in the
function on lines 19–20. By comparison the nonvirtual bus does not require the use of
temporary variables.

 Buses

8-39

Atomic Subsystems and Buses of Constants

If the bus passed into an atomic subsystem consists exclusively of constants, using a
virtual bus is more efficient, because Simulink is able to inline the constant values into
the code:

8 Data Types

8-40

Rename Built-In Data Types

You can replace built-in data type names with user-defined replacement data type names
in the generated code for a model.

To configure replacement data types,

1 In the Configuration Parameters dialog box, click Code Generation > Data Type
Replacement > Replace data type names in the generated code. A Data type
names table appears. The table lists each Simulink built-in data type name with its
corresponding code generation data type name.

2 Fill in fields in the third column with your replacement data types. Each
replacement data type should be the name of a Simulink.AliasType object
that exists in the base workspace. Replacements may be specified or not for each
individual built-in type.

For each replacement data type you enter, the BaseType property of the associated
Simulink.AliasType object must be consistent with the built-in data type it
replaces.

• For double, single, int32, int16, int8, uint32, uint16, and uint8, the
replacement data type's BaseType must match the data type.

 Rename Built-In Data Types

8-41

• For boolean, the replacement data type's BaseType must be either an 8-
bit integer or an integer of the size displayed for Number of bits: int on the
Hardware Implementation pane of the Configuration Parameters dialog box.

• For int, uint, and char, the replacement data type's size must match the size
displayed for Number of bits: int or Number of bits: char on the Hardware
Implementation pane of the Configuration Parameters dialog box.

An error occurs, if

• A replacement data type specification is inconsistent.
• The Simulink.AliasType object has the DataScope parameter set to

Exported.

8 Data Types

8-42

Register mpt User Object Types

In this section...

“Introduction” on page 8-42
“Register mpt User Object Types Using sl_customization.m” on page 8-42
“mpt User Object Type Customization Using sl_customization.m” on page 8-44

Introduction

Embedded Coder software allows you to create custom mpt object types and specify
properties and property values to be associated with them (see “Create mpt Data Objects
with Data Object Wizard” on page 7-10). Once created, a user object type can be applied
to data objects displayed in Model Explorer. When you apply a user object type to a
data object, by selecting a type name in the User object type pull-down list in Model
Explorer, the data object is automatically populated with the properties and property
values that you specified for the user object type.

To register mpt user object type customizations, use the Simulink customization file
sl_customization.m. This file is a mechanism that allows you to use MATLAB code to
perform customizations of the standard Simulink user interface. The Simulink software
reads the sl_customization.m file, if present on the MATLAB path, when it starts
and the customizations specified in the file are applied to the Simulink session. For
more information on the sl_customization.m customization file, see “Registering
Customizations”.

Register mpt User Object Types Using sl_customization.m

To register mpt user object type customizations, you create an instance of
sl_customization.m and include it on the MATLAB path of the Simulink installation
that you want to customize. The sl_customization function accepts one argument: a
handle to a customization manager object. For example,

function sl_customization(cm)

As a starting point for your customizations, the sl_customization function must first
get the default (factory) customizations, using the following assignment statement:

 Register mpt User Object Types

8-43

hObj = cm.slDataObjectCustomizer;

You then invoke methods to register your customizations. The customization manager
object includes the following methods for registering mpt user object type customizations:

• addMPTObjectType(hObj, objectTypeName, classtype, propName1,

propValue1, propName2, propValue2, ...)

addMPTObjectType(hObj, objectTypeName, classtype, {propName1,

propName2, ...}, {propValue1, propValue2, ...})

Registers the specified user object type, along with specified values for object
properties, and adds the object type to the top of the user object type list, as displayed
in the User object type pull-down list in the Model Explorer.

• objectTypeName — Name of the user object type
• classType — Class to which the user object type applies: 'Signal',

'Parameter', or 'Both'
• propName — Name of a property of an mpt or mpt-derived data object to be

populated with a corresponding propValue when the registered user object type is
selected

• propValue — Specifies the value for a corresponding propName
• moveMPTObjectTypeToTop(hObj, objectTypeName)

Moves the specified user object type to the top of the user object type list, as displayed
in the User object type pull-down list in the Model Explorer.

• moveMPTObjectTypeToEnd(hObj, objectTypeName)

Moves the specified user object type to the end of the user object type list, as displayed
in the User object type pull-down list in the Model Explorer.

• removeMPTObjectType(hObj, objectTypeName)

Removes the specified user object type from the user object type list.

Your instance of the sl_customization function should use these methods to register
mpt object type customizations for your Simulink installation.

The Simulink software reads the sl_customization.m file when it starts. If you
subsequently change the file, to use the changes, you must restart your MATLAB
session.

8 Data Types

8-44

mpt User Object Type Customization Using sl_customization.m

The sl_customization.m file shown in sl_customization.m for mpt Object Type
Customizations uses the addMPTObjectType method to register the user signal types
EngineType and FuelType for mpt objects.

sl_customization.m for mpt Object Type Customizations

function sl_customization(cm)

% Register user customizations

% Get default (factory) customizations

hObj = cm.slDataObjectCustomizer;

% Add commonly used signal types

hObj.addMPTObjectType(...

 'EngineType','Signal',...

 'DataType', 'uint8',...

 'Min', 0,...

 'Max', 255,...

 'DocUnits','m/sec');

hObj.addMPTObjectType(...

 'FuelType','Signal',...

 'DataType', 'int16',...

 'Min', -12,...

 'Max', 3000,...

 'DocUnits','mg/hr');

end

If you include the above file on the MATLAB path of the Simulink installation that
you want to customize, the specified customizations will appear in Model Explorer. For
example, you could view the customizations as follows:

1 Start a MATLAB session.
2 Open Model Explorer, for example, by entering the MATLAB command daexplr.
3 Select Base Workspace.
4 Add an mpt signal, for example, by selecting Add > Add Custom.
5 In the right-hand pane display for the added mpt signal, examine the User

object type drop-down list, noting the impact of the changes specified in
sl_customization.m for mpt Object Type Customizations.

 Register mpt User Object Types

8-45

6 From the User object type drop-down list, select one of the registered user
signal types, for example, FuelType, and verify that the displayed settings are
consistent with the arguments specified to the addMPTObjectType method in
sl_customization.m.

8 Data Types

8-46

Data Type Replacement

In this section...

“Replace Built-In Data Types” on page 8-46
“Programmatically Replace Built-In Data Types” on page 8-50

When you generate code for a model, you can replace the default Simulink Coder data
type names, such as real_T and boolean_T, with your own custom names. The model
code creates typedef statements to define your replacement names. It uses your
replacement names instead of the default type names to, for example, define variables
and functions.

You can specify many-to-one data type replacement to replace multiple built-in data
types with one name in the generated code. For example, you can replace the built-in
data types uint8 and boolean with a single data type name that you specify.

In generated code, data type replacement uses the replacements that you specify instead
of the default Simulink Coder data type names. If you want to create custom data type
names for individual block parameters and signals in generated code and in a model
diagram, see “Create Data Type Alias in Generated Code”.

Replace Built-In Data Types

To configure replacement data type names:

1 In the Configuration Parameters dialog box, select Code Generation > Data
Type Replacement and Replace data type names in the generated code.
The Data type names table lists each Simulink built-in data type name with the
corresponding code generation name.

 Data Type Replacement

8-47

2 Specify the Replacement Name column with values that replace the default names
in the Code Generation Name column. Specify one of these options:

• The name of a Simulink.AliasType object that is in the base workspace or a
data dictionary. When you use a Simulink.AliasType object, you can replace a
data type name with the name of the object.

Set the BaseType property of the object to the corresponding Simulink
Name data type. Set the DataScope property of the object to Auto (default)
or Imported. If you want to use your own header file to define replacement
names, set the HeaderFile property of the object to the header file name and set
DataScope to Imported.

• The data type name from the Simulink Name column. This name replaces
the data type name in the generated code. Using the Simulink Name, you
can replace all of the data types except real_T and real32_T. To specify
replacement names for boolean_T, int_T, uint_T, and char_T, see the
following table.

• The name of a Simulink.NumericType object that is in the base workspace or a
data dictionary. When you use a Simulink.NumericType object, you can define
replacement names for real_T, real32_T, and boolean_T.

8 Data Types

8-48

Set the DataTypeMode property of the object to the corresponding data type
name from the Simulink Name column.

Specify the Replacement Name for a Data Type

To replace the Code
Generation Name

Specify a
Simulink.AliasType

object with BaseType

Specify the
corresponding Simulink
Name

Specify a
Simulink.NumericType

object with
DataTypeMode

real_T double – Double

real32_T single – Single

int32_T int32 int32 –
int16_T int16 int16 –
int8_T int8 int8 –
uint32_T uint32 uint32 –
uint16_T uint16 uint16 –
uint8_T uint8 uint8 –
boolean_T uint8 or int8 or

intn*

uint8 or int8 or
intn*

Boolean

int_T intn* intn* –
uint_T uintn* uintn* –
char_T intn* intn* –

* Replace n with the number of bits displayed in the Configuration Parameters
dialog box Hardware Implementation pane in either Number of bits: int or
Number of bits: char, depending on the data type that you want to replace.

Suppose that in the base workspace you define these replacement data types as
Simulink.AliasType objects.

Replacement Name Description

FLOAT64 64-bit floating point
FLOAT32 32-bit floating point
S32 32-bit integer

 Data Type Replacement

8-49

Replacement Name Description

S16 16-bit integer
S8 8-bit integer
U32 Unsigned 32-bit integer
U16 Unsigned 16-bit integer
U8 Unsigned 8-bit integer
CHAR Character data

You can specify data type replacements with a one-to-one replacement mapping as
shown.

You can also apply a many-to-one data type replacement mapping. For example, you can
replace these data types:

• int32 and int with the name S32.
• uint32 and uint with the name U32.
• uint8 and boolean with the name U8.

8 Data Types

8-50

Note: Many-to-one data type replacement does not support the char (char_T) built-in
data type. Use char only in one-to-one data type replacements.

Programmatically Replace Built-In Data Types

To programmatically replace the built-in data type names for your model, adjust the
ReplacementTypes model parameter, which is a structure. This example code shows
how to modify the ReplacementTypes parameter to replace the built-in data type
names int8, uint8, and boolean with the custom data type names my_T_S8, my_T_U8,
and my_T_BOOL.

model = bdroot;

cs = getActiveConfigSet(model);

set_param(cs,'EnableUserReplacementTypes','on');

struc = get_param(cs,'ReplacementTypes');

struc.int8 = 'my_T_S8';

struc.uint8 = 'my_T_U8';

struc.boolean = 'my_T_BOOL';

set_param(cs,'ReplacementTypes',struc);

 Data Type Replacement

8-51

See Also
Simulink.AliasType | Simulink.NumericType

Related Examples
• “Replace Names of Built-In Types in Code”
• “Replace boolean with Specific Integer Data Type”
• “Create Data Type Alias in Generated Code”

More About
• “What Are User-Defined Data Types?”
• “Data Type Replacement Limitations”

8 Data Types

8-52

Replace Names of Built-In Types in Code
In this section...

“Explore Example Model” on page 8-52
“Replace Data Type Names” on page 8-53
“Replace Data Type Limit Identifiers” on page 8-54
“Generate Code with Replacement Names” on page 8-55

This example shows how to replace the built-in Simulink data type names in the code
that you generate from a model.

When you integrate the code that you generate from a model with existing code from
another source, you can control the data type identifiers that the model code uses.
For ERT–based hardware targets, you can replace the built-in data type names in the
generated code. To avoid generating typedef statements in the model code, configure
the code to import the type names from a header file that you create.

You can also specify custom names for the numeric data type limits that the generated
code uses. For example, the code might use the limits to handle data type saturation as a
result of a math operation.

Explore Example Model

1 Open the example model ex_data_type_replacement.
2 Generate code for the example model.
3 In the code generation report, view the shared file rtwtypes.h. The code uses

typedef statements to rename the basic C data types using standard Simulink
Coder identifiers. For example, the code renames the basic type double using the
identifier real_T.

The code also creates identifiers to represent the numeric limits of the data types,
such as MAX_int16_T and MIN_int16_T.

#define MAX_int16_T ((int16_T)(32767))

#define MIN_int16_T ((int16_T)(-32768))

4 View the file ex_data_type_replacement.c. The code uses the Simulink Coder
data type identifiers to declare and define variables. For example, the code uses
the data types real_T, int16_T, and boolean_T to declare the variables flowIn,
temp, and intlk.

 Replace Names of Built-In Types in Code

8-53

The code also uses the data type limit identifiers MAX_int16_T and MIN_int16_T
to handle a potential division by zero.

if (denominator == 0) {

 quotient = numerator >= 0 ? (int32_T)MAX_int16_T : (int32_T)MIN_int16_T;

}

5 Close the code generation report. Delete the generated files and folders from your
current folder.

Suppose that you want to interface the code that you generate from the example model
with existing code from another source. If the existing code uses typedef statements
to define several custom data type names and data type limit identifiers, use data type
replacement to generate code with the custom names.

Replace Data Type Names

1 Save the following C code into a text file named my_types.h in your current folder.
This file represents a header file in your existing code that defines custom data
type names using typedef statements. The file uses a macro guard of the form
HEADER_filename_h.

#ifndef HEADER_my_types_h_

#define HEADER_my_types_h_

typedef double my_dblPrecision;

typedef short my_int16;

typedef unsigned char my_bool;

#endif

2 At the command prompt, create a Simulink.AliasType object for each data type
that you want to replace. Name the objects using the data type names that you want
to appear in the generated code.

my_dblPrecision = Simulink.AliasType;

my_int16 = Simulink.AliasType;

my_bool = Simulink.AliasType;

3 Set the BaseType property of each object to the data type that you want to replace.

my_dblPrecision.BaseType = 'double';

my_int16.BaseType = 'int16';

my_bool.BaseType = 'boolean';

8 Data Types

8-54

4 Set the DataScope property of each object to Imported. Set the HeaderFile
property of each object to the name of your header file.

my_dblPrecision.DataScope = 'Imported';

my_dblPrecision.HeaderFile = 'my_types.h';

my_int16.DataScope = 'Imported';

my_int16.HeaderFile = 'my_types.h';

my_bool.DataScope = 'Imported';

my_bool.HeaderFile = 'my_types.h';

5 In the Configuration Parameters dialog box, on the Code Generation > Data Type
Replacement pane, select Replace data type names in the generated code.

6 Specify the fields in the Replacement Name column according to the table.

Simulink Name Repalcement Name

double my_dblPrecision

int16 my_int16

boolean my_bool

Replace Data Type Limit Identifiers

1 Save the following C code into a text file named my_type_limits.h in your current
folder. This file represents a header file in your existing code. The file defines custom
data type limit identifiers using #define directives.

#ifndef MAX_my_int16

#define MAX_my_int16 ((int16_T)(32767))

#endif

#ifndef MIN_my_int16

#define MIN_my_int16 ((int16_T)(-32768))

#endif

2 At the command prompt, point the example model to the new header file that
contains the custom limit identifiers.

set_param(gcs,'TypeLimitIdReplacementHeaderFile','my_type_limits.h');

3 Specify the minimum and maximum identifiers for the data type int16 as the
custom names MIN_my_int16 and MAX_my_int16.

 Replace Names of Built-In Types in Code

8-55

set_param(gcs,'MinIdInt16','MIN_my_int16');

set_param(gcs,'MaxIdInt16','MAX_my_int16');

Generate Code with Replacement Names

1 Generate code for the example model.
2 In the code generation report, view the shared file rtwtypes.h. The code creates an

#include directive for the header file my_types.h, which contains the data type
names. The code imports the custom type definitions from the header file instead of
generating typedef statements.

The code also creates an #include directive for the header file my_type_limits.h,
which contains the data type limit identifiers. The code imports the definitions of the
int16 numeric limits from the header file instead of generating #define directives.

3 View the file ex_data_type_replacement.c. The code uses the custom data type
names my_dblPrecision, my_int16, and my_bool to declare and define variables
such as flowIn, temp, and intlk.

The code uses the custom data type limit identifiers MIN_my_int16 and
MAX_my_int16 to handle a potential division by zero.

if (denominator == 0) {

 quotient = numerator >= 0 ? (int32_T)MAX_my_int16 : (int32_T)MIN_my_int16;

}

See Also
Simulink.AliasType

Related Examples
• “Data Type Replacement”
• “Specify Boolean and Data Type Limit Identifiers”

More About
• “What Are User-Defined Data Types?”
• “Data Type Replacement Limitations”

8 Data Types

8-56

Data Type Replacement Limitations

When you select the model configuration parameter Replace data type names in the
generated code on the Code Generation > Data Type Replacement pane of the
Configuration Parameters dialog box, these limitations apply.

• Data type replacement does not support multiple levels of mapping. Each replacement
data type name maps directly to one or more built-in data types.

• Data type replacement is not supported for simulation target code generation for
referenced models.

• If you select the Classic call interface configuration parameter for your model, data
type replacement is not supported.

• Code generation performs data type replacements while generating .c, .cpp, and .h
files. Code generation places these files in build folders (including top and referenced
model build folders) and in the _sharedutils folder. Exceptions are as follows:

rtwtypes.h

multiword_types.h

model_reference_types.h

builtin_typeid_types.h

model_sf.c or .cpp (ERT S-function wrapper)
model_dt.h (C header file supporting external mode)
model_capi.c or .cpp
model_capi.h

• Data type replacement is not supported for complex data types.
• Many-to-one data type replacement is not supported for the char data type.

Attempting to use char as part of a many-to-one mapping to a custom data type
represents a violation of the MISRA C specification. For example, if you map char
(char_T) and either int8 (int8_T) or uint8 (uint8_T) to the same replacement
type, the result is a MISRA C violation. If you try to generate C++ code, the code
generator makes invalid implicit type casts, resulting in compile-time errors. Use
char only in one-to-one data type replacements.

• For ERT S-functions, replace the boolean data type with only an 8-bit integer, int8,
or uint8.

• Set the DataScope property of a Simulink.AliasType object to Auto (default) or
Imported.

 Data Type Replacement Limitations

8-57

More About
• “Data Type Replacement”

8 Data Types

8-58

Specify Boolean and Data Type Limit Identifiers

You can use command-line parameters to replace the default Boolean and data type
limit identifiers. If you want to associate the data type limit identifiers with the data
type names, consider replacing the default identifiers. You can also use command-
line parameters to import a header file with the Boolean and data type limit identifier
definitions.

Data Type Limit Identifiers

You can control the data type limit identifiers in the generated code by using the
command-line parameters in this table.

Data Type Limit Default Identifier Command-Line Parameter

8-bit integer maximum MAX_int8_T MaxIdInt8

16-bit integer maximum MAX_int16_T MaxIdInt16

32-bit integer maximum MAX_int32_T MaxIdInt32

8-bit unsigned integer
maximum

MAX_uint8_T MaxIdUInt8

16-bit unsigned integer
maximum

MAX_uint16_T MaxIdUInt16

32-bit unsigned integer
maximum

MAX_uint32_T MaxIdUInt32

8-bit integer minimum MIN_int8_T MinIdInt8

16-bit integer minimum MIN_int16_T MinIdInt16

32-bit integer minimum MIN_int32_T MinIdInt32

For example, to change the default identifiers for the 8-bit integer data limit minimum
and maximum to s4g_S4MIN and s4g_S4MAX, respectively:

set_param(gcs,'MinIdInt8','s4g_S4MIN');

set_param(gcs,'MaxIdInt8','s4g_S4MAX')

If you do not import a header file, the generated file rtwtypes.h defines the 8-bit
integer data minimum and maximum identifiers:

#define s4g_S4MAX ((int8_T)(127))

 Specify Boolean and Data Type Limit Identifiers

8-59

#define s4g_S4MIN ((int8_T)(-128))

If you do import a header file defining the data type limit identifiers, the header file is
included in rtwtypes.h.

Boolean Identifiers

You can control the Boolean identifiers in the generated code by using the command-line
parameters in this table.

Boolean Default Identifier Command-Line Parameter

True true BooleanTrueId

False false BooleanFalseId

For example, to change the default Boolean true and false identifiers:

set_param(gcs,'BooleanTrueId','bTrue');

set_param(gcs,'BooleanFalseId','bFalse')

If you do not import a header file, the generated file rtwtypes.h defines the Boolean
identifiers:

#define bFalse (0U)

#define bTrue (1U)

If you do import a header file defining the Boolean identifiers, the header file is included
in rtwtypes.h.

Boolean and Data Type Limit Identifier Header Files

You can import a header file that defines Boolean and data type limit identifiers using
the command-line parameter TypeLimitIdReplacementHeaderFile. The header file
is included in rtwtypes.h. You must use the command-line parameters to specify the
Boolean and data type limit identifiers that are included in the imported header file.

For example, if you have a header file myfile.h with data type limit definitions, use
TypeLimitIdReplacementHeaderFile to include the definitions in the generated
code:

set_param(gcs,'TypeLimitIdReplacementHeaderFile','myfile.h');

The generated file rtwtypes.h includes myfile.h.

8 Data Types

8-60

/* Import type limit identifier replacement definitions. */

#include "myfile.h"

More About
• “Data Type Replacement”

9

Module Packaging Tool (MPT) Data
Objects

9 Module Packaging Tool (MPT) Data Objects

9-2

MPT Data Object Properties
The following table describes the properties and property values for mpt.Parameter and
mpt.Signal data objects that appear in the Model Explorer.

Note: You can create mpt.Signal and mpt.Parameter objects in the base MATLAB
or model workspace. However, if you create the object in a model workspace, the object's
storage class must be set to auto.

The figure below shows an example of the Model Explorer. When you select an
mpt.Parameter or mpt.Signal data object in the middle pane, its properties and
property values display in the rightmost pane.

In the Properties column, the table lists the properties in the order in which they appear
on the Model Explorer.

Parameter and Signal Property Values

 MPT Data Object Properties

9-3

Class:
Parameter,
Signal, or Both

Property Available Property
Values
(* Indicates Default)

Description

Both User object type *auto Prenamed and predefined property
sets that are registered in the
sl_customization.m file. (See “Register
mpt User Object Types”.) This field
is active when a user object type is
registered.

Select auto if this field is available but
you do not want to apply the properties
of a user object type to a selected data
object. The fields on the Model Explorer
are populated with default values.

 Listed user object
type name

Select a user object type name to
apply the properties and values that
you associated with this name in the
sl_customization.m file. The fields
on the Model Explorer are automatically
populated with those values.

Parameter Value *0 The data type and numeric value of
the data object. For example, int8(5).
The numeric value is used as an initial
parameter value in the generated code.

Both Data type Used to specify the data type for an
mpt.Signal data object, but not for
an mpt.Parameter data object. The
data type for an mpt.Parameter data
object is specified in the Value field
above. See “Data Types” in the Simulink
documentation.

Both Units *null Units of measurement of the signal or
parameter. (Enter text in this field.)

Both Dimensions *-1 The dimension of the signal or parameter.
For a parameter, the dimension is derived
from its value.

9 Module Packaging Tool (MPT) Data Objects

9-4

Class:
Parameter,
Signal, or Both

Property Available Property
Values
(* Indicates Default)

Description

Both Complexity *auto

real

complex

Complexity specifies whether the signal
or parameter is a real or complex number.
Select auto for the code generator to
decide. For a parameter, the complexity is
derived from its value.

Signal Sample time *-1 Model or block execution rate.
Signal Sample mode *auto Determines how the signal propagates

through the model. Select auto for the
code generator to decide.

 Sample based The signal propagates through the model
one sample at a time.

 Frame based The signal propagates through the model
in batches of samples.

Both Minimum *0.0 The minimum value to which the
parameter or signal is expected to be
bound.

 Number within the
minimum range of
the parameter or
signal. (Based on
the data type and
resolution of the
parameter or signal.)

Both Maximum *0.0 Maximum value to which the parameter
or signal is expected to be bound. (Enter
information using a dialog box.)

 Code generation
options

 Storage class Note that an auto selection for a storage
class tells the build process to decide
how to declare and store the selected
parameter or signal.

 MPT Data Object Properties

9-5

Class:
Parameter,
Signal, or Both

Property Available Property
Values
(* Indicates Default)

Description

Both Default
(Custom)

 Code generation decides how to declare
the data object.

Both Global (Custom) Global (Custom)

is the default storage
class for mpt data
objects.

Specifies that a code generator not place a
qualifier in the data object's declaration.

Both Memory section *Default Memory section allows you to specify
storage directives for the data object.
Default specifies that the code generator
not place a type qualifier and pragma
statement with the data object's
declaration.

Parameter MemConst Places the const type qualifier in the
declaration.

Both MemVolatile Places the volatile type qualifier in the
declaration.

Parameter MemConstVolatile Places the const volatile type
qualifier in the declaration.

Both Header file Name of the file used to import or export
the data object. This file contains the
declaration (extern) to the data object.

Also, you can specify this header
filename between the double-quotation
or angle-bracket delimiter. You can
specify the delimiter with or without
the .h extension. For example, specify
"object.h" or "object". For the
selected data object, this overrides
the general delimiter selection in the
#include file delimiter field on the
Configuration Parameters dialog box.

Both Owner *Blank The name of the module that owns this
signal or parameter. This is used to help

9 Module Packaging Tool (MPT) Data Objects

9-6

Class:
Parameter,
Signal, or Both

Property Available Property
Values
(* Indicates Default)

Description

determine the ownership of a definition.
For details, see “Ownership Settings” and
the table “Ownership Settings”.

Both Definition file *Blank Name of the file that defines the data
object.

 Valid string
Both Persistence level The number you specify is relative to

Signal display level or Parameter tune
level on the Code Placement pane of the
Configuration Parameters dialog box. For
a signal, allows you to specify whether or
not the code generator declares the data
object as global data. For a parameter,
allows you to specify whether or not the
code generator declares the data object as
tunable global data. See Signal display
level and Parameter tune level in
“Code Generation Pane: Code Placement”.

Both Bitfield
(Custom)

 Embeds Boolean data in a named bit field.

 Struct name Name of the struct into which the
object's data will be packed.

Parameter Const (Custom) Places the const type qualifier in the
declaration.

Parameter Header file See above.
Parameter Owner See above.
Parameter Definition file See above.
Parameter Persistence

 level
 See above.

Both Volatile
(Custom)

 Places the volatile type qualifier in the
declaration.

Both Header file See above.

 MPT Data Object Properties

9-7

Class:
Parameter,
Signal, or Both

Property Available Property
Values
(* Indicates Default)

Description

Both Owner See above.
Both Definition file See above.
Both Persistence

 level
 See above.

Parameter ConstVolatile
(Custom)

 Places the const volatile type
qualifier in declaration.

Parameter Header file See above.
Parameter Owner See above.
Parameter Definition file See above.
Parameter Persistence

 level
 See above.

Parameter Define (Custom) Represents parameters with a #define
macro.

Parameter Header file See above.
Both ExportToFile

(Custom)
 Generates global variable definition, and

generates a user-specified header (.h) file
that contains the declaration (extern) to
that variable.

Both Memory section See above.
Both Header file See above.
Both Definition file See above.
Both ImportFromFile

(Custom)
 Includes predefined header files

containing global variable declarations,
and places the #include in a
corresponding file. Assumes external code
defines (allocates memory) for the global
variable.

Both Data access *Direct Allows you to specify whether the
identifier that corresponds to the selected
data object stores data of a data type

9 Module Packaging Tool (MPT) Data Objects

9-8

Class:
Parameter,
Signal, or Both

Property Available Property
Values
(* Indicates Default)

Description

(Direct) or stores the address of the data
(a pointer).

Both Pointer If you select Pointer, the code generator
places * before the identifier in the
generated code.

 Header file See above.
Both Struct (Custom) Embeds data in a named struct to

encapsulate sets of data.
Both Struct name See above.
Signal GetSet (Custom) Reads (gets) and writes (sets) data using

functions.
Signal Header file See above.
Signal Get function Specify the Get function.
Signal Set function Specify the Set function.
Both Alias *null As explained in detail in “Override Data

Object Naming Rules”, for a Simulink or
mpt data object (identifier), specifying
a name in the Alias field overrides the
global naming rule selection you make on
the Configuration Parameters dialog box.

 Valid ANSI®a C/C++
variable name

Both Description *null Text description of the parameter or
signal. Appears as a comment beside the
signal or parameter's identifier in the
generated code.

 String
Signal Reusable

(Custom)
 Allows the code generator to reuse a pair

of root I/O signals when you specify the
same name and the same custom storage
class for both. The custom storage class is

 MPT Data Object Properties

9-9

Class:
Parameter,
Signal, or Both

Property Available Property
Values
(* Indicates Default)

Description

either Reusable (Custom) or derived
from Reusable (Custom).

Signal Data Scope *Auto You can specify the scope of symbols
code generation generates for a data
object of this class by selecting a value for
DataScope. When you take the default
of Auto, code generation determines
the symbol scope internally. If possible,
symbols have File scope. Otherwise, they
have Exported scope.

 File Code generation defines the scope of
each symbol as the file that defines it.
File scope requires each symbol to be
used in a single file. If the same symbol
is referenced in multiple files, code
generation reports an error.

 Exported Code generation exports symbols to
external code in the header file specified
by the HeaderFile field. If a HeaderFile
is not specified, symbols are exported to
external code in model.h.

 Imported Code generation imports symbols from
external code in the header file specified
by the HeaderFile field. If you do not
specify a header file, code generation
generates an extern directive in
model_private.h.

Signal Header file See above.
Signal Owner See above.
Signal Definition file See above.

a. ANSI is a registered trademark of the American National Standards Institute, Inc.

9 Module Packaging Tool (MPT) Data Objects

9-10

mpt Package Custom Storage Classes

CSC Name Purpose Signals? Parameters?

BitField Generate a struct declaration
that embeds Boolean data in
named bit fields.

Y Y

CompilerFlag Supports preprocessor
conditionals defined via compiler
flag. See “Generate Preprocessor
Conditionals for Variant Systems”.

N Y

Const Generate a constant declaration
with the const type qualifier.

N Y

ConstVolatile Generate declaration of volatile
constant with the const
volatile type qualifier.

N Y

Default The default custom storage class
for the Simulink package. Export
the declaration of all data objects
to a default generated header file.

Y Y

Define Generate #define directive. Y Y
ExportToFile Generate header (.h) file, with

user-specified name, containing
global variable declarations.

Y Y

FileScope Generate a static qualifier suffix
for a variable declaration so that
the scope of the variable is limited
to the current file.

Y Y

GetSet Supports specialized function calls
to read and write the memory
associated with a Data Store
Memory block. See “GetSet
Custom Storage Class” on page
10-61.

Y Y

Global The default custom storage class
for the mpt package. Generate
the declaration and definition of a

Y Y

 MPT Data Object Properties

9-11

CSC Name Purpose Signals? Parameters?

data object in specified files, and
use the specified memory section.

ImportedDefineSupports preprocessor
conditionals defined via legacy
header file. See “Generate
Preprocessor Conditionals for
Variant Systems”.

N Y

ImportFromFileGenerate directives to include
predefined header files containing
global variable declarations.

Y Y

Reusable Allows the code generator to reuse
a pair of root I/O signals when
you specify the same name and
the same custom storage class for
both. The custom storage class
is either Reusable (Custom)
or derived from Reusable
(Custom).

Y N

Struct Generate a struct declaration
encapsulating parameter or signal
object data.

Y Y

StructConst Generate a struct declaration,
with a const type qualifier,
encapsulating parameter object
data.

N Y

StructVolatileGenerate a struct declaration,
with a volatile type qualifier,
encapsulating parameter or signal
object data.

Y Y

Volatile Use volatile type qualifier in
declaration.

Y Y

9 Module Packaging Tool (MPT) Data Objects

9-12

Examples of Property Value Changes on Generated Code

What I noticed when inspecting
the .c/.cpp file

Change I made to property value
settings

What I noticed after
regenerating and reinspecting
the file

Example 1:
Parameter data objects can
be declared or defined as
constants. I know that the data
object GAIN is a parameter.
I want this to be declared
or defined in the .c file as a
variable. But I notice that GAIN
is declared as a constant by
the statement const real_T
GAIN = 5.0;. Also, this
statement is in the constant
section of the file.

In the Model Explorer, I clicked
the data object GAIN. I noticed
that the property value for its
Memory section property is set
at MemConst. I changed this to
Default.

I notice two differences. One is
that now GAIN is declared as
a variable with the statement
real_T GAIN = 5.0;. The
second difference is that the
declaration now is located in
the MemConst memory section
in the .c or .cpp file.

Example 2:
I notice again the declaration of
GAIN in the .c file mentioned
in Example 1. It appears as
real_T GAIN = 5.0;. But
I have changed my mind. I
want data object GAIN to be
#define.

I changed the Storage class
selection to Define (Custom).

GAIN is not declared in the .c
file as a MemConst parameter.
Rather, it is defined as a
#define macro by the code
#define GAIN 5.0, and
this is located near the top
of the .c file with the other
preprocessor directives.

Example 3:
I changed my mind again
after doing Example 2. I do
want GAIN defined using
the #define preprocessor
directive. But I do not want to
include the #define in this
file. I know it exists in another
file and I want to reference that
file.

On the Model Explorer, I notice
that the property value for
the Header file property
is blank. I changed this to
filename.h. (I chose the ANSI
C/C++ double quote mechanism
for the #include, but could
have chosen the angle bracket
mechanism.) Also, I must make
the user-defined filename.h
available to the compiler, placing
it either in the system path or
local directory.

#define GAIN 5.0 is not
present in this .c file. Instead,
the #include filename.h
code appears as a preprocessor
directive at the top of the file.

 MPT Data Object Properties

9-13

What I noticed when inspecting
the .c/.cpp file

Change I made to property value
settings

What I noticed after
regenerating and reinspecting
the file

Example 4:
I have one more change I
want to make. Let us say that
we have declared the data
object data_in, and that its
declaration statement in the .c
file reads
real_T data_in = 0.0;. I
want to replace this statement
with an alias in the .c file.

In the Model Explorer, I selected
the data object data_in. I
noticed that the Alias field
is blank. I changed this to
data_in_alias, which I know
is a valid ANSI C/C++ variable
name.

The identifier
data_in_alias now appears
in the .c file everywhere
data_in appeared.

10

Custom Storage Classes

• “Introduction to Custom Storage Classes” on page 10-2
• “Resources for Defining Custom Storage Classes” on page 10-5
• “Simulink Package Custom Storage Classes” on page 10-6
• “Design Custom Storage Classes and Memory Sections” on page 10-9
• “Apply Custom Storage Classes” on page 10-31
• “Control Data Code by Creating Custom Storage Class” on page 10-48
• “Generate Code with Custom Storage Classes” on page 10-53
• “Define Advanced Custom Storage Classes Types” on page 10-57
• “GetSet Custom Storage Class” on page 10-61
• “Custom Storage Class Implementation” on page 10-65
• “Custom Storage Class Limitations” on page 10-66

10 Custom Storage Classes

10-2

Introduction to Custom Storage Classes

In this section...

“Custom Storage Class Memory Sections” on page 10-3
“Custom Storage Classes and Data Class Packages” on page 10-3
“Custom Storage Class Examples” on page 10-3

During the build process, the storage class specification of a signal, tunable parameter,
block state, or data object specifies how that entity is declared, stored, and represented in
generated code. Note that in the context of the build process, the term “storage class” is
not synonymous with the term “storage class specifier”, as used in the C language.

The Simulink Coder software defines four built-in storage classes for use with targets:
Auto, ExportedGlobal, ImportedExtern, and ImportedExternPointer. These
storage classes provide limited control over the form of the code generated for references
to the data. For example, data of storage class Auto is typically declared and accessed as
an element of a structure, while data of storage class ExportedGlobal is declared and
accessed as unstructured global variables. For information about built-in storage classes,
see “Signal Representation in Generated Code” in the Simulink Coder documentation.

If the built-in storage classes do not provide data representation required by your
application, you can define custom storage classes (CSCs). Embedded Coder (CSCs)
extend the built-in storage classes provided by the Simulink Coder software. CSCs can
provide application-specific control over the constructs required to represent data in an
embedded algorithm. For example, you can use CSCs to:

• Define structures for storage of parameter or signal data.
• Conserve memory by storing Boolean data in bit fields.
• Integrate generated code with legacy software whose interfaces cannot be modified.
• Generate data structures and definitions that comply with your organization's

software engineering guidelines for safety-critical code.

Custom storage classes affect only code generated for ERT targets. When Configuration
Parameters > Code Generation > Target Selection > System target file specifies
a GRT target, the names of custom storage classes sometimes appear in dialog boxes,
but selecting a CSC is functionally the same as selecting Auto. See “Targets and Code
Formats” for information about ERT and GRT targets.

 Introduction to Custom Storage Classes

10-3

Custom Storage Class Memory Sections

Every custom storage class has an associated memory section definition. A memory
section is a named collection of properties related to placement of an object in memory;
for example, in RAM, ROM, or flash memory. Memory section properties let you specify
storage directives for data objects. For example, you can specify const declarations, or
compiler-specific #pragma statements for allocation of storage in ROM or flash memory
sections.

See “Create and Edit Memory Section Definitions” on page 10-25 for details about
using the Custom Storage Class designer to define memory sections. While memory
sections are often used with data in custom storage classes, they can also be used with
various other constructs. See “Memory Sections” for more information about using
memory sections with custom storage classes, and complete information about using
memory sections with other constructs.

Custom Storage Classes and Data Class Packages

CSCs are associated with Simulink data class packages (such as the Simulink
package) and with classes within packages (such as the Simulink.Parameter and
Simulink.Signal classes). A custom storage class is available only to data classes that
are defined by the associated package.

You cannot add or change CSCs associated with built-in packages and classes, but you
can create your own packages and subclasses, then associate customized CSCs with those
packages. To create your own packages and custom storage classes, see “Design Custom
Storage Classes and Memory Sections”.

Custom Storage Class Examples

Three examples show Custom Storage Class capabilities:

rtwdemo_cscpredef — Shows predefined custom storage classes and embedded signal
objects

rtwdemo_importstruct — Shows custom storage classes used to access imported data
efficiently

rtwdemo_advsc — Shows how custom storage classes can support data-object-driven
modeling

10 Custom Storage Classes

10-4

Click the links above, or type the name in the MATLAB Command Window.

 Resources for Defining Custom Storage Classes

10-5

Resources for Defining Custom Storage Classes

The resources for working with custom storage class definitions are:

• Use MATLAB class syntax to create a data class in a package. You can assign
properties to the data class and add initialization code to enable custom storage
class definition. For complete instructions, see “Define Data Classes” in Simulink
documentation.

• A set of ready-to-use CSCs. These CSCs are designed to be useful in code generation
for embedded systems development. CSC functionality is integrated into the
Simulink.Signal and Simulink.Parameter classes; you do not need to use special
object classes to generate code with CSCs.

• The Custom Storage Class Designer (cscdesigner) tool, which is described in this
chapter. This tool lets you define CSCs that are tailored to your code generation
requirements. The Custom Storage Class Designer provides a graphical user interface
that you can use to implement CSCs. You can use your CSCs in code generation
immediately, without a Target Language Compiler (TLC) or other programming. See
“Design Custom Storage Classes and Memory Sections” on page 10-9 for details.

10 Custom Storage Classes

10-6

Simulink Package Custom Storage Classes

The Simulink package includes a set of built-in custom storage classes. These are
categorized as custom storage classes, even though they are built-in, because they:

• Extend the storage classes provided by the Simulink Coder software
• Are functionally the same as if you had defined them yourself using the CSC Designer

You cannot change the CSCs built into the Simulink package, but you can subclass the
package and add CSCs to the subclass, following the steps in “Resources for Defining
Custom Storage Classes” on page 10-5.

Some CSCs in the Simulink package are valid for parameter objects but not signal
objects and vice versa. For example, you can assign the storage class Const to a
parameter but not to a signal, because signal data is not constant. The next table defines
the CSCs built into the Simulink package and shows where each of the CSCs can be
used.

CSC Name Purpose Signals? Parameters?

BitField Generate a struct declaration that
embeds Boolean data in named bit
fields.

Y Y

CompilerFlag Supports preprocessor conditionals
defined via compiler flag. See
“Generate Preprocessor Conditionals
for Variant Systems”.

N Y

Const Generate a constant declaration with
the const type qualifier.

N Y

ConstVolatile Generate declaration of volatile
constant with the const volatile
type qualifier.

N Y

Default Default is a placeholder CSC that
the code generator assigns to the
CoderInfo.CustomStorageClass

property of signal and parameter
objects when they are created.
You cannot edit the Default CSC
definition.

Y Y

 Simulink Package Custom Storage Classes

10-7

CSC Name Purpose Signals? Parameters?

Define Generate #define directive. Y Y
ExportToFile Generate header (.h) file, with user-

specified name, containing global
variable declarations.

Y Y

FileScope Generate a static qualifier suffix for a
variable declaration so that the scope
of the variable is limited to the current
file.

Y Y

GetSet Supports specialized function calls to
read and write the memory associated
with a Data Store Memory block. See
“GetSet Custom Storage Class” on
page 10-61.

Y Y

ImportedDefine Supports preprocessor conditionals
defined via legacy header file. See
“Generate Preprocessor Conditionals
for Variant Systems”.

N Y

ImportFromFile Generate directives to include
predefined header files containing
global variable declarations.

Y Y

Reusable Allows the code generator to reuse
a pair of root I/O signals when you
specify the same name and the
same custom storage class for both.
The custom storage class is either
Reusable (Custom) or derived from
Reusable (Custom).

Y N

Struct Generate a struct declaration
encapsulating parameter or signal
object data.

Y Y

Volatile Use volatile type qualifier in
declaration.

Y Y

10 Custom Storage Classes

10-8

Related Examples
• “Control Data Code by Creating Custom Storage Class”
• “Apply Custom Storage Classes”
• “Generate Code with Custom Storage Classes”
• “Design Custom Storage Classes and Memory Sections”

More About
• “ Data Objects”
• “Define Advanced Custom Storage Classes Types”

 Design Custom Storage Classes and Memory Sections

10-9

Design Custom Storage Classes and Memory Sections

In this section...

“Create Packages for Custom Storage Class Definitions” on page 10-9
“Use Custom Storage Class Designer” on page 10-9
“Edit Custom Storage Class Properties” on page 10-15
“Use Custom Storage Class References” on page 10-20
“Protect Custom Storage Class Definitions” on page 10-24
“Create and Edit Memory Section Definitions” on page 10-25
“Use Memory Section References” on page 10-28

Create Packages for Custom Storage Class Definitions

Use MATLAB class syntax to create a data class in a package. You can assign properties
to the data class and add initialization code to enable custom storage class definition. For
complete instructions, see “Define Data Classes” in the Simulink documentation.

Use Custom Storage Class Designer

The Custom Storage Class Designer (cscdesigner) is a tool for creating and managing
custom storage classes and memory sections. You can use the Custom Storage Class
Designer to:

• Load existing custom storage classes and memory sections and view and edit their
properties

• Create new custom storage classes and memory sections
• Create references to custom storage classes and memory sections defined in other

packages
• Copy and modify existing custom storage class and memory section definitions
• Check a custom storage class and memory section definitions
• Preview pseudocode generated from custom storage class and memory section

definitions
• Save custom storage class and memory section definitions

To open the Custom Storage Class Designer for a particular package, type the following
command at the MATLAB prompt:

10 Custom Storage Classes

10-10

cscdesigner ('mypkg')

When first opened, the Custom Storage Class Designer scans data class packages on
the MATLAB path to detect packages that have a CSC registration file. A message is
displayed while scanning proceeds. When the scan is complete, the Custom Storage Class
Designer window appears:

The Custom Storage Class Designer window is divided into several panels:

• Select package: Lets you select from a menu of data class packages that have CSC
definitions associated with them. See “Select Data Class Package” on page 10-11
for details.

• Custom Storage Class / Memory Section properties: Lets you select, view, edit,
copy, verify, and perform other operations on CSC definitions or memory section

 Design Custom Storage Classes and Memory Sections

10-11

definitions. The common controls in the Custom Storage Class / Memory Section
properties panel are described in “Manipulate Custom Storage Classes and Memory
Sections” on page 10-12.

• When the Custom Storage Class tab is selected, you can select a CSC definition
or reference from a list and edit its properties. See “Edit Custom Storage Class
Properties” on page 10-15 for details.

• When the Memory Section tab is selected, you can select a memory section
definition or reference from a list and edit its properties. See “Create and Edit
Memory Section Definitions” on page 10-25 for details.

• Filename: Displays the filename and location of the current CSC registration file,
and lets you save your CSC definition to that file. See “Save Definitions” on page
10-14 for details.

• Pseudocode preview: Displays a preview of code that is generated from objects of
the given class. The preview is pseudocode, since the actual symbolic representation of
data objects is not available until code generation time. See “Preview Generated Code”
on page 10-27 for details.

• Validation result: Displays errors encountered when the currently selected CSC
definition is validated. See “Validate Definitions Category” on page 10-20 for
details.

Select Data Class Package

A CSC or memory section definition or reference is uniquely associated with a Simulink
data class package. The link between the definition/reference and the package is formed
when a CSC registration file (csc_registration.m) is located in the package directory.

You need not search for or edit a CSC registration file directly: the Custom Storage Class
Designer locates available CSC registration files. The Select package menu contains
names of data class packages that have a CSC registration file on the MATLAB search
path.

When you select a package, the CSCs and memory section definitions belonging to the
package are loaded into memory and their names are displayed in the scrolling list in the
Custom storage class panel. The name and location of the CSC registration file for the
package is displayed in the Filename panel.

If you select a user-defined package, by default you can use the Custom Storage Class
Designer to edit its custom storage classes and memory sections. If you select a built-in
package, you cannot edit its custom storage classes or memory sections.

10 Custom Storage Classes

10-12

Manipulate Custom Storage Classes and Memory Sections

The Custom Storage Class / Memory Section panel lets you select, view, and (if the
CSC is writable) edit CSC and memory section definitions and references. In the next
figure and the subsequent examples, the selected package is mypkg. Instructions for
creating a user-defined package like mypkg appear in “Design Custom Storage Classes
and Memory Sections”.

The list at the top of the panel displays the definitions/references for the currently
selected package. To select a definition/reference for viewing and editing, click on the
desired list entry. The properties of the selected definition/reference appear in the area
below the list. The number and type of properties vary for different types of CSC and
memory section definitions. See:

 Design Custom Storage Classes and Memory Sections

10-13

• “Edit Custom Storage Class Properties” on page 10-15 for information about the
properties of the predefined CSCs.

• “Create and Edit Memory Section Definitions” on page 10-25 for information about
the properties of the predefined memory section definitions.

The buttons to the right of the list perform these functions, which are common to both
custom storage classes and memory definitions:

• New: Creates a new CSC or memory section with default values.
• New Reference: Creates a reference to a CSC or memory section definition in

another package. The default initially has a default name and properties. See “Use
Custom Storage Class References” on page 10-20 and “Use Memory Section
References” on page 10-28.

• Copy: Creates a copy of the selected definition / reference. The copy initially has a
default name using the convention:

definition_name_n

where definition_name is the name of the original definition, and n is an integer
indicating successive copy numbers (for example: BitField_1, BitField_2, ...)

• Up: Moves the selected definition one position up in the list.
• Down: Moves the selected definition one position down in the list
• Remove: Removes the selected definition from the list.
• Validate: Performs a consistency check on the currently selected definition. Errors

are reported in the Validation result panel.

For example, if you click New, a new custom storage class is created with a default
name:

10 Custom Storage Classes

10-14

You can now rename the new class by typing the desired name into the Name field, and
specify other fields.

Note: The class name must be a valid MATLAB variable name. See “Variable Names”

Click Apply or OK.

Save Definitions

After you have created or edited a CSC or memory section definition or reference,
you must save the changes to the CSC registration file. To do this, click Save in the
Filename panel. When you click Save, the current CSC and memory section definitions
that are in memory are validated, and the definitions are written out.

 Design Custom Storage Classes and Memory Sections

10-15

If errors occur, they are reported in the Validation result panel. The definitions are
saved whether or not errors exist. However, you should resolve validation errors and
resave your definitions. Trying to use definitions that were saved with validation errors
can cause additional errors. Such problems can occur even it you do not try to use the
specific parts of the definition that contain the validation errors, making the problems
difficult to diagnose.

Restart MATLAB After Changing Definitions

If you add, change, or delete custom storage class or memory section definitions for a
user-defined class, and objects of that class already exist, you must restart MATLAB to
use the changed definitions and to eliminate obsolete objects. When you save the changed
definitions, a message appears indicating that you must restart MATLAB.

Edit Custom Storage Class Properties

To view and edit the properties of a CSC, click the Custom Storage Class tab in the
Custom Storage Class / Memory Section panel. Then, select a CSC name from the
Custom storage class definitions list.

The CSC properties are divided into several categories, selected by tabs. Selecting
a class, and setting property values for that class, can change the available tabs,
properties, and values. As you change property values, the changes in the generated code
is immediately displayed in the Pseudocode preview panel. In most cases, you can
define your CSCs quickly and easily by selecting the Pseudocode preview panel and
using the Validate button frequently.

The property categories and corresponding tabs are as follows:

General Category

Properties in the General category are common to CSCs. In the next figure and the
subsequent examples, the selected custom storage class is ByteField. Instructions for
creating a user-defined custom storage class like ByteField appear in “Manipulate
Custom Storage Classes and Memory Sections” on page 10-12.

10 Custom Storage Classes

10-16

Properties in the General category, and the possible values for each property, are as
follows:

• Name: The CSC name, selected from the Custom storage class definitions list.
The name cannot be a TLC keyword. Violating this rule causes an error.

• Type: Specifies how objects of this class are stored. Values:

• Unstructured: Objects of this class generate unstructured storage declarations
(for example, scalar or array variables), for example:

datatype dataname[dimension];

• FlatStructure: Objects of this class are stored as members of a struct. A
Structure Attributes tab is also displayed, allowing you to specify additional
properties such as the struct name. See “Structure Attributes Category” on page
10-19.

• Other: Used for certain data layouts, such as nested structures, that cannot
be generated using the standard Unstructured and FlatStructure custom
storage class types. If you want to generate other types of data, you can create a
new custom storage class from scratch by writing TLC code. See “Define Advanced
Custom Storage Classes Types” on page 10-57 for more information.

• For parameters and For signals: These options let you enable a CSC for use with
only certain classes of data objects. For example, it does not make sense to assign
storage class Const to a Simulink.Signal object. Accordingly, the For signals
option for the Const class is deselected, while the For parameters is selected.

 Design Custom Storage Classes and Memory Sections

10-17

• Memory section: Selects one of the memory sections defined in the Memory
Section panel. See “Create and Edit Memory Section Definitions” on page 10-25.

• Data scope: Controls the scope of symbols generated for data objects of this class.
Values:

• Auto: Symbol scope is determined internally by code generation. If possible,
symbols have File scope. Otherwise, they have Exported scope.

• Exported: Symbols are exported to external code in the header file specified by
the Header File field. If a Header File is not specified, symbols are exported to
external code in model.h.

• Imported: Symbols are imported from external code in the header file specified
by the Header File field. If you do not specify a header file, an extern directive
is generated in model_private.h. For imported data, if the Data initialization
value is Macro, a header file must be specified.

• File: The scope of each symbol is the file that defines it. File scope requires each
symbol to be used in a single file. If the same symbol is referenced in multiple files,
an error occurs at code generation time.

• Instance specific: Symbol scope is defined by the Data scope field of the
CoderInfo.CustomAttributes property of each data object.

• Data initialization: Controls how storage is initialized in generated code. Values:

• Auto: Storage initialization is determined internally by the code generation.
Parameters have Static initialization, and signals have Dynamic initialization.

• None: Initialization code is not generated.
• Static: A static initializer of the following form is generated:

datatype dataname[dimension] = {...};

• Dynamic: Variable storage is initialized at runtime, in the model_initialize
function.

• Macro: A macro definition of the following form is generated:

 #define data numeric_value

The Macro initialization option is available only for use with unstructured
parameters. It is not available when the class is configured for generation of
structured data, or for signals. If the Data scope value is Imported, a header file
must be specified.

10 Custom Storage Classes

10-18

• Instance specific: Initialization is defined by the Data initialization
property of each data object.

Note: The code generator might include dynamic initialization code for signals
and states even if the CSC has Data initialization set to None or Static, if the
initialization is required.

• Data access: Controls whether imported symbols are declared as variables
or pointers. This field is enabled only when Data scope is set to Imported or
Instance-specific. Values:

• Direct: Symbols are declared as simple variables, such as

extern myType myVariable;

• Pointer: Symbols are declared as pointer variables, such as

extern myType *myVariable;

• Instance specific: Data access is defined by the Data access property of each
data object.

• Header file: Defines the name of a header file that contains exported or imported
variable declarations for objects of this class. Values:

• Specify: An edit field is displayed to the right of the property. This lets you
specify a header file for exported or imported storage declarations. Specify the full
filename, including the filename extension (such as .h). Use quotes or brackets as
in C code to specify the location of the header file. Leave the edit field empty to not
specify a header file.

• Instance specific: The header file for each data object is defined by the
Header file property of the object. Leave the property undefined to not specify a
header file for that object.

If the Data scope is Exported, specifying a header file is optional. If you specify
a header file name, the custom storage class generates a header file containing the
storage declarations to be exported. Otherwise, the storage declarations are exported
in model.h.

If the Data scope of the class is Imported, and Data initialization is Macro,
you must specify a header file name. A #include directive for the header file is
generated.

 Design Custom Storage Classes and Memory Sections

10-19

Comments Category

Comments

The Comments panel lets you specify comments to be generated with definitions and
declarations.

Comments must conform to the ANSI C standard (/*...*/). Use \n to specify a new
line.

Properties in the Comments tab are as follows:

• Comment rules: If Specify is selected, edit fields are displayed for entering
comments. If Default is selected, comments are generated under control of the code
generation software.

• Type comment: The comment entered in this field precedes the typedef or struct
definition for structured data.

• Declaration comment: Comment that precedes the storage declaration.
• Definition comment: Comment that precedes the storage definition.

Structure Attributes Category

The Structure Attributes panel gives you detailed control over code generation for
structs (including bitfields). The Structure Attributes tab is displayed for CSCs whose
Type parameter is set to FlatStructure. The following figure shows the Structure
Attributes panel.

The Structure Attributes properties are as follows:

• Struct name: If you select Instance specific, specify the struct name when
configuring each instance of the class.

If you select Specify, an edit field appears for entry of the name of the structure to
be used in the struct definition. Edit fields Type tag, Type token, and Type name
are also displayed.

• Is typedef: When this option is selected a typedef is generated for the struct
definition, for example:

typedef struct {

 ...

} SignalDataStruct;

10 Custom Storage Classes

10-20

Otherwise, a simple struct definition is generated.
• Bit-pack booleans: When this option is selected, signals and/or parameters that

have Boolean data type are packed into bit fields in the generated struct.
• Type tag: Specifies a tag to be generated after the struct keyword in the struct

definition.
• Type name: Specifies the string to be used in typedef definitions. This field is

visible if Is typedef is selected.
• Type token: Some compilers support an additional token (which is simply another

string) after the type tag. To generate such a token, enter the string in this field.

Validate Definitions Category

To validate a CSC definition, select the definition on the Custom Storage Class panel
and click Validate. The Custom Storage Class Designer then checks the definition
for consistency. The Validation result panel displays a errors encountered when the
selected CSC definition is validated. The next figure shows the Validation result panel
with a typical error message:

Validation is also performed whenever CSC definitions are saved. In this case, all CSC
definitions are validated. (See “Save Definitions” on page 10-14.)

Use Custom Storage Class References

Packages can access and use custom storage classes that are defined in other packages,
including both user-defined packages and predefined packages such as Simulink
and mpt. Only one copy of the storage class exists, in the package that first defined

 Design Custom Storage Classes and Memory Sections

10-21

it. Other packages refer to it by pointing to it in its original location. Changes to the
class, including changes to a predefined class in later MathWorks product releases, are
immediately available in every referencing package.

To configure a package to use a custom storage class that is defined in another package:

1 Type cscdesigner to launch the Custom Storage Class Designer.

2 Select the Custom Storage Class tab.
3 Use Select Package to select the package in which you want to reference a class or

section defined in some other package. The selected package must be writable.

10 Custom Storage Classes

10-22

4 In the Custom storage class definitions pane, select the existing definition below
which you want to insert the reference. For example:

5 Click New Reference.

A new reference with a default name and properties appears below the previously
selected definition. The new reference is selected, and a Reference tab appears that
shows the reference's initial properties. A typical appearance is:

 Design Custom Storage Classes and Memory Sections

10-23

6 Use the Name field to enter a name for the new reference. The name must be unique
in the importing package, but can duplicate the name in the source package. The
name cannot be a TLC keyword. Violating this rule causes an error.

7 Set Refer to custom storage class in package to specify the package that
contains the custom storage class you want to reference.

8 Set Custom storage class to reference to specify the custom storage class to be
referenced. Trying to create a circular reference generates an error and leaves the
package unchanged.

9 Click OK or Apply to save the changes to memory. See “Save Definitions” on page
10-14 for information about saving changes permanently.

For example, the next figure shows the custom storage class ConstVolatile imported
from the Simulink package into mypkg, and given the same name that it has in the
source package. Other names could have been used without affecting the properties of
the storage class.

10 Custom Storage Classes

10-24

You can use Custom Storage Class Designer capabilities to copy, reorder, validate, and
otherwise manage classes that have been added to a class by reference. However, you
cannot change the underlying definitions. You can change a custom storage class only in
the package where it was originally defined.

Change Existing Custom Storage Class References

To change an existing CSC reference, select it in the Custom storage class definitions
pane. The Reference tab appears, showing the current properties of the reference. Make
changes, then click OK or Apply to save the changes to memory. See “Save Definitions”
on page 10-14 for information about saving changes permanently.

Protect Custom Storage Class Definitions

You can prevent changes to the custom storage class definitions of an entire data class
package by converting the package CSC registration file from a MATLAB file to a P-file.
To learn more about CSC registration files, see “Custom Storage Class Implementation”.

 Design Custom Storage Classes and Memory Sections

10-25

Create and Edit Memory Section Definitions

Memory section definitions add comments, qualifiers, and #pragma directives to
generated symbol declarations. The Memory Section tab lets you create, view, edit, and
verify memory section definitions. The steps for creating a memory section definition are
essentially the same as for creating a custom storage class definition:

1 Select a writable package in the Select package field.
2 Select the Memory Section tab. In a new package, only a Default memory section

initially appears.
3 Select the existing memory section below which you want to create a new memory

section.
4 Click New.

A new memory section definition with a default name appears below the selected
memory section.

5 Set the name and other properties of the memory section.
6 Click OK or Apply.

The next figure shows mypkg with a memory section called MyMemSect:

10 Custom Storage Classes

10-26

The Memory section definitions list lets you select a memory section definition to
view or edit. The available memory section definitions also appear in the Memory
section name menu in the Custom Storage Class panel. The properties of a memory
section definition are as follows:

• Memory section name: Name of the memory section (displayed in Memory section
definitions list).

• Is const: If selected, a const qualifier is added to the symbol declarations.

 Design Custom Storage Classes and Memory Sections

10-27

• Is volatile: If selected, a volatile qualifier is added to the symbol declarations.
• Qualifier: The string entered into this field is added to the symbol declarations as a

further qualifier. Note that verification is not performed on this qualifier.
• Memory section comment: Comment inserted before declarations belonging to this

memory section. Comments must conform to the ANSI C standard (/*...*/). Use \n
to specify a new line.

• Pragma surrounds: Specifies whether the pragma should surround All
variables or Each variable. When Pragma surrounds is set to Each
variable, the %<identifier> token is allowed in pragmas and will be replaced by
the variable or function name.

• Pre-memory section pragma: pragma directive that precedes the storage definition
of data belonging to this memory section. The directive must begin with #pragma.

• Post-memory section pragma: pragma directive that follows the storage definition
of data belonging to this memory section. The directive must begin with #pragma.

Preview Generated Code

If you click Validate on the Memory Section panel, the Pseudocode preview panel
displays a preview of code that is generated from objects of the given class. The panel
also displays messages (in blue) to highlight changes as they are made. The code preview
changes dynamically as you edit the class properties. The next figure shows a code
preview for the MemConstVolatile memory section.

10 Custom Storage Classes

10-28

Use Memory Section References

Packages can access and use memory sections that are defined in other packages,
including both user-defined packages and predefined packages such as Simulink
and mpt. Only one copy of the section exists, in the package that first defined it; other
packages refer to it by pointing to it in its original location. Changes to the section,
including changes to a predefined section in later MathWorks product releases, are
immediately available in every referencing package.

To configure a package to use a memory section that is defined in another package:

1 Type cscdesigner to launch the Custom Storage Class Designer.
2 Select the Memory Section tab.
3 Use Select Package to select the package in which you want to reference a class or

section defined in some other package.
4 In the Memory section definitions pane, select the existing definition below which

you want to insert the reference.
5 Click New Reference.

A new reference with a default name and properties appears below the previously
selected definition. The new reference is selected, and a Reference tab appears that
shows the reference's initial properties.

6 Use the Name field to enter a name for the new reference. The name must be unique
in the importing package, but can duplicate the name in the source package.

7 Set Refer to memory section in package to specify the package that contains the
memory section you want to reference.

8 Set Memory section to reference to specify the memory section to be referenced.
Trying to create a circular reference generates an error and leaves the package
unchanged.

9 Click OK or Apply to save the changes to memory. See “Save Definitions” on page
10-14 for information about saving changes permanently.

For example, the next figure shows the memory section MemConstVolatile imported
from the Simulink package into mypkg, and given the same name that it has in the
source package. Other names could have been used without affecting the properties of
the memory section.

 Design Custom Storage Classes and Memory Sections

10-29

You can use Custom Storage Class Designer capabilities to copy, reorder, validate,
and otherwise manage memory sections that have been added to a class by reference.
However, you cannot change the underlying definitions. You can change a memory
section only in the package where it was originally defined.

Change Existing Memory Section References

To change an existing memory section reference, select it in the Memory section
definitions pane. The Reference tab appears, showing the current properties of the
reference. Make changes, then click OK or Apply to save the changes to memory. See
“Save Definitions” on page 10-14 for information about saving changes permanently.

Related Examples
• “Control Data Code by Creating Custom Storage Class”
• “Apply Custom Storage Classes”
• “Generate Code with Custom Storage Classes”

10 Custom Storage Classes

10-30

More About
• “ Data Objects”
• “Introduction to Custom Storage Classes”
• “Define Advanced Custom Storage Classes Types”

 Apply Custom Storage Classes

10-31

Apply Custom Storage Classes

In this section...

“About Applying Custom Storage Classes” on page 10-31
“Apply Custom Storage Classes to Parameters” on page 10-32
“Apply Custom Storage Classes to Signals” on page 10-33
“Custom Storage Classes Using Signal Objects” on page 10-34
“Custom Storage Classes Using Embedded Signal Objects” on page 10-35
“Specify Custom Storage Classes Using GUI” on page 10-42
“Specify Custom Storages Classes Using API” on page 10-44

About Applying Custom Storage Classes

You can apply a custom storage class to a parameter or a signal using the GUI or the
API.

• To apply a custom storage class to a parameter, you specify the storage class in the
Simulink.Parameter object that defines the parameter in the base workspace.

• To apply a custom storage class to a signal, you specify the storage class in a
Simulink.Signal object that is bound to the signal. You can provide this object in
two ways:

• Create the object in the base workspace, then bind it to the signal as described
in “Symbol Resolution”. When you save the model, you must save the object in a
separate file, as with base workspace objects.

• Use the Signal Properties dialog box to embed the object in the model on the port
where the signal originates. When you save the model, Simulink automatically
saves the embedded signal object as part of the model file.

Most of the GUI techniques, and most of the API techniques, are the same for parameter
and signal objects, and for base workspace and embedded signal objects. Only the initial
steps differ, after which you apply the same GUI or API instructions within the context
that you established in the initial steps.

The following instructions assume that you have already created packages, custom
storage classes, and memory sections, as described in “Design Custom Storage Classes
and Memory Sections” on page 10-9.

10 Custom Storage Classes

10-32

Apply Custom Storage Classes to Parameters

To apply a custom storage class to a parameter, you specify the storage class in the
Simulink.Parameter object that defines the parameter in the base workspace. The
instructions that begin in this section show you how to create that object using the GUI
or API. Later instructions show you how to specify a custom storage class and custom
attributes.

For information about using parameter objects to specify block parameter values, see
“Use Parameter Objects to Specify Parameter Values”. For information about parameter
storage in generated code, see “Parameters”.

Create Parameter Objects Using GUI

1 In the Model window, choose View > Model Explorer.
2 In the Model Hierarchy pane, select the Base Workspace.
3

Click the Add Parameter tool or choose Add > Simulink Parameter.

Simulink creates a Simulink.Parameter object in the base workspace with the
default name, Param.

4 Change the parameter name by editing it in the Contents pane. Example: MyParam.
5 Set parameter attributes other than Code generation options in the Dialog pane.
6 Follow the instructions in “Specify Custom Storage Classes Using GUI” on page

10-42.

Create Parameter Objects Using API

1 In the MATLAB Command Window, enter:

ParamName=ParamClass

where ParamClass is Simulink.Parameter or a subclass of it that you have
defined.

2 Simulink creates a ParamClass object with the specified name:

MyParam =

Simulink.Parameter (handle)

 Value: []

 Apply Custom Storage Classes

10-33

 CoderInfo: [1x1 Simulink.CoderInfo]

 Description: ''

 DataType: 'auto'

 Min: []

 Max: []

 DocUnits: ''

 Complexity: 'real'

 Dimensions: [0 0]

3 Set parameter attributes other than CoderInfo, which controls custom storage
classes.

4 Follow the instructions in “Specify Custom Storages Classes Using API” on page
10-44.

Apply Custom Storage Classes to Signals

To apply a custom storage class to a signal, you specify the storage class in a
Simulink.Signal object. This object can exist in either of two locations:

• In the MATLAB base workspace
• On the port where the signal originates

The object itself is the same in either case; only its location and some of the techniques
for managing it differ. The instructions that begin in this section show you how to create
a signal object in either location using the GUI or API. Later instructions show you how
to specify the custom storage class and custom attributes.

A given signal can be associated with at most one signal object. The signal can refer to
the object more than once, but every reference must resolve to exactly the same object. A
different signal object that has exactly the same properties will not meet the requirement
for uniqueness. A compile-time error occurs if a model associates more than one signal
object with a signal.

Assigning a signal to a non-Auto storage class automatically makes the signal a test
point, overriding the setting of Signal Properties > Logging and accessibility > Test
point. See “Test Points”for more information.

For information about using signal objects to specify signal attributes, see “Using Signal
Objects to Initialize Signals and Discrete States”. For information about signal storage in
generated code, see “Signal Representation in Generated Code”.

10 Custom Storage Classes

10-34

Custom Storage Classes Using Signal Objects

The first step is to create the signal object in the base workspace, after which you specify
signal attributes and the custom storage class and attributes.

Create Signal Objects in Base Workspace Using GUI

1 In the Simulink Editor, select View > Model Explorer.
2 In the Model Hierarchy pane, select the Base Workspace.
3

Click the Add Signal tool or choose Add > Simulink Signal.

Simulink creates a Simulink.Signal object in the base workspace, with a default
name, Sig.

4 Change the signal name by editing it in the Contents pane. Example: MySig.
5 Set signal attributes other than Code generation options in the Dialog pane.
6 Give the signal the same name as the signal object, as described in “Signal Names”.
7 Arrange for the signal to resolve to the object, as described in “Symbol Resolution”.
8 Follow the instructions in “Specify Custom Storage Classes Using GUI” on page

10-42.

Create Signal Objects in Base Workspace Using API

1 In the MATLAB Command Window, enter:

SignalName=SignalClass

where SignalClass is Simulink.Signal or a subclass of it that you have defined.
2 Simulink creates a SignalClass object with the specified name:

MySig =

Simulink.Signal (handle)

 CoderInfo: [1x1 Simulink.CoderInfo]

 Description: ''

 DataType: 'auto'

 Min: []

 Max: []

 DocUnits: ''

 Dimensions: -1

 Apply Custom Storage Classes

10-35

 Complexity: 'auto'

 SampleTime: -1

 SamplingMode: 'auto'

 InitialValue: ''

3 Set parameter attributes other than CoderInfo, which controls custom storage
classes.

4 Give the signal the same name as the signal object, as described in “Signal Names”.
5 Arrange for the signal to resolve to the object, as described in “Symbol Resolution”.
6 Follow the instructions in “Specify Custom Storages Classes Using API” on page

10-44.

Custom Storage Classes Using Embedded Signal Objects

You can use the GUI or the API to apply a CSC using an embedded signal object.

• If you use the GUI, you use the Signal Properties dialog box to specify the attributes
you want. The software then creates a Simulink.Signal object and assigns it to the
output port where the signal originates.

• If you use the API, you instantiate Simulink.Signal or a subclass of it, set the
attribute values that you want, and assign the object to the output port where the
signal originates.

In either case, the generated code is the same as if you had created a base workspace
signal object that specified the same name, CSC, and custom attributes as the embedded
signal object. For more information, see “Custom Storage Classes Using Signal Objects”
on page 10-34.

The advantages of using embedded signal objects are that they do not clutter the
base workspace, and they do not need to be saved separately from the model, as base
workspace objects do. When you save a model, Simulink saves embedded signal objects in
the model file, and reloads the objects when you later reload the model.

The disadvantage of embedded signal objects is that you can use such an object only
to specify a custom storage class, custom attributes, and an alias; you must accept the
default values for other signal attributes. You cannot work around this restriction by
providing additional information in a base workspace signal object on the same signal,
because a signal object can have at most one associated signal object, as described in
“Multiple Signal Objects”.

10 Custom Storage Classes

10-36

Create Embedded Signal Objects Using GUI

1 Give the signal a name, which must be a valid ANSI C identifier. Example: MySig.
2 Right-click the signal and choose Properties from the context menu.

The Signal Properties dialog box opens:

3 Do not select Signal name must resolve to Simulink signal object. Selecting
it would require a base workspace signal object, which would conflict with the
embedded signal object.

4 Click the Code Generation tab.
5 The Package is initially ---None---. When a package is not specified, only the

non-custom built-in storage classes defined for both GRT and ERT targets are
available:

 Apply Custom Storage Classes

10-37

Applying a storage class when the package is ---None--- sets internal storage
class attributes rather than creating an embedded signal object. For information
about built-in storage classes, see “Signal Representation in Generated Code” in the
Simulink Coder documentation.

6 To apply a custom storage class, you must first specify the package where it is
defined. Initially, viewing the Package menu displays only the built-in Simulink
and mpt packages:

10 Custom Storage Classes

10-38

7 Click Refresh to load other available packages, including user-defined packages,
available on the MATLAB path. After a brief delay, a timer box tracks the progress
of the package search. After the search completes, viewing the Package menu
displays available packages:

 Apply Custom Storage Classes

10-39

Once you have used Refresh in the Signal Properties dialog, Simulink saves the
information for later use, so you do not have to click Refresh again during the
current MATLAB session.

8 Select the package that contains the custom storage class you want to apply, e.g.
Simulink:

10 Custom Storage Classes

10-40

9 Follow the instructions in “Specify Custom Storage Classes Using GUI” on page
10-42.

Delete Embedded Signal Objects Using GUI

To delete an embedded signal object with the Model Explorer, delete the name of the
signal to which the object applies, by editing the name in the graphical model or in the
Signal Properties dialog box. Simulink automatically deletes the embedded signal object
as soon as its signal does not have a name.

Create Embedded Signal Objects Using API

To provide an embedded signal object using the API, you create the object, set its custom
storage class and custom attributes, then assign the object to the output port on which it
will be embedded.

1 Name the signal if it does not already have a name. The name must be a valid ANSI
C identifier.

 Apply Custom Storage Classes

10-41

2 In the MATLAB Command Window, enter:

SignalName=SignalClass

where SignalClass is Simulink.Signal or a subclass of it that you have defined.
The name of the signal object does not need to match the name of the signal to which
the object will be applied.

3 Simulink creates a SignalClass object with the specified name. Example:

MySig =

Simulink.Signal (handle)

 CoderInfo: [1x1 Simulink.CoderInfo]

 Description: ''

 DataType: 'auto'

 Min: []

 Max: []

 DocUnits: ''

 Dimensions: -1

 Complexity: 'auto'

 SampleTime: -1

 SamplingMode: 'auto'

 InitialValue: ''

4 Do not set attributes. An embedded signal object can specify only custom storage
class information.

5 Follow the instructions in “Specify Custom Storages Classes Using API” on page
10-44. After specifying the custom storage class, be sure to assign the signal
object to its output port, as described under “Assign Embedded Signal Objects to
Output Ports” on page 10-47.

Change Embedded Signal Objects Using API

To change an embedded signal object using the API, you obtain a copy of the object from
the output port on which it is embedded, change the object, then assign the changed
object back to the port.

1 Obtain a copy of the signal object using a handle to the output port. Example:

hps=get_param(gcb,'PortHandles')

hp=hps.Outport(1)

MySig=get_param(hp,'SignalObject')

10 Custom Storage Classes

10-42

2 Change the signal object using the techniques described in “Specify Custom Storages
Classes Using API” on page 10-44. After making the changes, be sure to copy the
signal object to its output port, as described in “Assign Embedded Signal Objects to
Output Ports” on page 10-47.

Delete Embedded Signal Objects Using API

To delete an embedded signal object with the API, obtain a handle to the output port
where the signal object is embedded, then set the port's SignalObject parameter to []:

hps=get_param(gcb,'PortHandles')

hp=hps.Outport(1)

set_param(hp,'SignalObject',[])

Resolve Signal Names to Simulink Signal Objects Using API

To set the name of a signal to resolve to a Simulink signal object using the API, obtain
the handle to the output port and then set the port's MustResolveToSignalObject
property to on:

hps=get_param(gcb,'PortHandles')

hp=hps.Outport(1)

set_param(hp,'MustResolveToSignalObject', 'on')

Specify Custom Storage Classes Using GUI

The initial steps for applying a CSC with the GUI differ depending on whether you are
applying the CSC to a parameter using a base workspace object, to a signal using a base
workspace object, or to a signal using an embedded object. The initial steps for each of
these three cases appear in:

• “Create Parameter Objects Using GUI” on page 10-32
• “Create Signal Objects in Base Workspace Using GUI” on page 10-34
• “Create Embedded Signal Objects Using GUI” on page 10-36

After the initial steps, applying a CSC with the GUI is the same for the three cases.
The following instructions show you how to finish applying a CSC with the GUI. The
instructions assume that you have completed one of the previous sets of instructions, and
that the dialog you used to execute those instructions is still open.

The available custom storage classes and custom attributes depend on the package
that you select. The examples in this section assume that you are using the Simulink

 Apply Custom Storage Classes

10-43

package. To use a package that you define, you must first create the data object from
your package.

The dialog that you used to begin the process of applying a CSC with the GUI by
providing an object contains two fields: one for specifying a custom storage class and one
for optionally specifying an alias.

Storage class is Auto because that is the default storage class in the Simulink
package. Other packages may have different defaults. You can specify an Alias whenever
the Storage class is not Auto. If Storage class is Auto, Simulink deletes aliases you
try to specify, leaving the field blank. If you specify an alias, it appears in generated code
instead of the name of the object.

To specify a custom storage class and its custom attributes:

1 View the Storage Class menu, which looks like this for the Simulink package:

Each custom storage class has (custom) suffixed to its name. The storage
classes SimulinkGlobal, ExportedGlobal, ImportedExtern, and
ImportedExternPointer are the built-in non-custom storage classes described in
“Signal Representation in Generated Code” in the Simulink Coder documentation.

2 Choose the desired custom storage class from Storage class, for example, Struct.
3 Provide values for custom attributes. Struct has only one, Struct name. For

example, set Struct name to MyStruct:

10 Custom Storage Classes

10-44

4 Click Apply.

In generated code, data whose storage is controlled by this custom storage class
specification will appear in a structure named MyStruct. See “Generate Code with
Custom Storage Classes” on page 10-53 for an example.

Specify Custom Storages Classes Using API

The initial steps for applying a CSC with the API differ depending on whether you are
applying the CSC to a parameter using a base workspace object, to a signal using a base
workspace object, or to a signal using an embedded object. The initial steps for each of
these three cases appear in:

• “Create Parameter Objects Using API” on page 10-32
• “Create Signal Objects in Base Workspace Using API” on page 10-34
• “Create Embedded Signal Objects Using API” on page 10-40

After the initial steps, applying a CSC with the API is the same for the three cases,
except for the case of an assignment for an embedded signal object. The following
instructions show you how to finish applying a CSC with the API. The instructions
assume that you have completed one of the previous sets of instructions, and that the
resulting objects an attributes are unchanged.

The available custom storage classes and custom attributes depend on the package
that you select. The examples in this section assume that you are using the Simulink
package. The examples also assume that the object for which you want to specify a
custom storage class is named MyObj, which is a parameter or signal object that exists in
the base workspace, or a signal object that will be assigned to an output port.

The rest of this section provides information that is specific to custom storage classes
in Embedded Coder. See “Simulink Package Custom Storage Classes” on page 10-6 for

 Apply Custom Storage Classes

10-45

a list of the custom storage classes that are built into the Simulink package for use by
Embedded Coder software.

CoderInfo Properties

Each Simulink parameter object or signal object defines properties called CoderInfo
properties. Code generation software uses these properties to control storage class
assignment in the generated code. The CoderInfo properties and their default values
are as follows:
 StorageClass: 'Auto'

 Alias: ''

 CustomStorageClass: 'Default'

 CustomAttributes: [1x1 SimulinkCSC.AttribClass_Simulink_Default]

For more information about CoderInfo properties, see “Signal Representation in
Generated Code” in the Simulink Coder documentation.

Specify a Custom Storage Class

To specify a custom storage class using CoderInfo properties:

1 Set StorageClass to 'Custom'.
2 Set CustomStorageClass to the name of the storage class.

For example, to specify the Struct custom storage class:

MyObj.CoderInfo.StorageClass='Custom'

MyObj.CoderInfo.CustomStorageClass='Struct'

Whenever you have specified a custom storage class other than Auto, you can specify an
alias by setting the Alias attribute. If you specify an alias, it appears in generated code
instead of the name of the object.

Specify Instance-Specific Attributes

A custom storage class can have properties that define attributes that are specific to
that CSC. Such properties are called instance-specific attributes. For example, if you
specify the Struct custom storage class, you must specify the name of the C language
structure that will store the data. That name is an instance-specific attribute of the
Struct CSC.

Instance-specific attributes are stored in the CoderInfo property CustomAttributes.
This property is initially defined as follows:

10 Custom Storage Classes

10-46

SimulinkCSC.AttribClass_Simulink_Default

1x1 struct array with no fields

When you specify a custom storage class, Simulink automatically populates
CoderInfo.CustomAttributes with fields to represent instance-specific attributes of
that CSC. For example, if you set the MySig CSC to Struct, as described in “Specify a
Custom Storage Class” on page 10-45, then enter:

MyObj.CoderInfo.CustomAttributes

MATLAB displays:

SimulinkCSC.AttribClass_Simulink_Struct

 StructName: ''

To specify that StructName is MyStruct, enter:

MyObj.CoderInfo.CustomAttributes.StructName='MyStruct'

MATLAB displays:

SimulinkCSC.AttribClass_Simulink_Struct

 StructName: 'MyStruct'

Class Name Instance-Specific Property Purpose

BitField CustomAttributes.StructNameName of the bitfield struct into
which the code generator packs the
object's Boolean data.

ExportToFile CustomAttributes.HeaderFileName of header (.h) file that
contains exported variable
declarations and export directives
for the object.

CustomAttributes.HeaderFileName of header (.h) file to
#include in the generated code.
See “GetSet Custom Storage Class”
on page 10-61.

CustomAttributes.GetFunctionString that specifies the name of a
function call to read data.

GetSet

CustomAttributes.SetFunctionString that specifies the name of a
function call to write data.

 Apply Custom Storage Classes

10-47

Class Name Instance-Specific Property Purpose

ImportedDefine CustomAttributes.HeaderFileThe header file that defines the
values of code variant preprocessor
conditionals. See “Generate
Preprocessor Conditionals for
Variant Systems”.

ImportFromFile CustomAttributes.HeaderFileName of header (.h) file containing
global variable declarations the
code generator imports for the
object.

Struct CustomAttributes.StructNameName of the struct into which the
code generator packs the object's
data.

Assign Embedded Signal Objects to Output Ports

If you are operating on an embedded signal object with the API, you must copy the object
to the port after providing or changing its CoderInfo properties. For example, if MyObj
is a signal object that you want to copy to the output port, enter:

hps=get_param(gcb,'PortHandles')

hp=hps.Outport(1)

set_param(hp,'SignalObject','MyObj')

Subsequent changes to the source object in the base workspace have no effect on the
output port copy, and you can delete the source object:

clear ('MyObj')

Related Examples
• “Control Data Code by Creating Custom Storage Class”
• “Generate Code with Custom Storage Classes”
• “Design Custom Storage Classes and Memory Sections”

More About
• “ Data Objects”
• “Introduction to Custom Storage Classes”
• “Define Advanced Custom Storage Classes Types”

10 Custom Storage Classes

10-48

Control Data Code by Creating Custom Storage Class

When you integrate code generated from a model with existing code from another source,
you can design custom storage classes to control the declaration and definition of model
signals and block parameters. This example shows how to control code generated from a
model by creating and applying your own custom storage class.

In this section...

“Explore Example Model” on page 10-48
“Create Data Class Package” on page 10-48
“Create Custom Storage Class” on page 10-49
“Apply Custom Storage Class” on page 10-50
“Generate Code” on page 10-51

Explore Example Model

Open the model rtwdemo_cscpredef. You can control code generated from this model by
defining your own data classes and creating your own custom storage classes.

This example shows you how to export the declarations and definitions of multiple
signals and parameters in the model to one declaration header file and one definition file.

Create Data Class Package

To create custom storage classes, you first create a data class package to contain the
custom storage class definitions. Data objects created from your package can use all of
the custom storage classes that the package defines.

1 Create your own data class package by copying the example package folder
+SimulinkDemos. Navigate to the example package folder.

% Remember the current folder path

currentPath = pwd;

% Navigate to the example package folder

demoPath = '\toolbox\simulink\simdemos\dataclasses';

cd([matlabroot,demoPath])

2 Copy the +SimulinkDemos folder to your clipboard.

 Control Data Code by Creating Custom Storage Class

10-49

3 Return to your working folder.

cd(currentPath)

4 Paste the +SimulinkDemos folder from your clipboard into your working folder.
Rename the copied folder to +myPackage.

5 Navigate inside the +myPackage folder to the file Signal.m to edit the definition of
the Signal class.

6 Uncomment the methods section that defines the method setupCoderInfo. In the
call to the function useLocalCustomStorageClasses, replace 'packageName'
with 'myPackage'. When you finish, the section appears as follows:

 methods

 function setupCoderInfo(h)

 % Use custom storage classes from this package

 useLocalCustomStorageClasses(h, 'myPackage');

 end

 end % methods

The function useLocalCustomStorageClasses allows you to apply the custom
storage classes that myPackage defines to data objects that you create from
myPackage.

7 Save and close the file.
8 Navigate inside the +myPackage folder to the file Parameter.m to edit the

definition of the Parameter class. Uncomment the methods section that defines the
method setupCoderInfo and replace 'packageName' with 'myPackage'.

9 Save and close the file.

Create Custom Storage Class

You can use the Custom Storage Class Designer to create or to edit the custom storage
classes that a data class package defines.

1 Set your current folder to the folder that contains the package myPackage.
2 Open the Custom Storage Class Designer.

cscdesigner('myPackage')

3 Select the custom storage class ExportToFile.
4 In the Name field, rename the custom storage class to ExportToGlobal.

10 Custom Storage Classes

10-50

5 In the Header file drop-down list, change the selection from Instance specific
to Specify. In the new field, provide the header file name global.h.

6 In the Definition file drop-down list, change the selection from Instance
specific to Specify. In the new field, provide the definition file name global.c.

7 Click OK. Click Yes to save changes to the data class package myPackage.

Apply Custom Storage Class

To apply your own custom storage class, you create data objects from your package and
configure the objects to use your custom storage class.

1 Create data objects to represent some of the parameters and signals in the example
model. Create the objects using the data class package myPackage.

% Parameters

templimit = myPackage.Parameter(202);

pressurelimit = myPackage.Parameter(45.2);

O2limit = myPackage.Parameter(0.96);

rpmlimit = myPackage.Parameter(7400);

% Signals

tempalarm = myPackage.Signal;

pressurealarm = myPackage.Signal;

O2alarm = myPackage.Signal;

rpmalarm = myPackage.Signal;

2 Set the custom storage class of each object to ExportToGlobal.

% Parameters

templimit.CoderInfo.StorageClass = 'Custom';

templimit.CoderInfo.CustomStorageClass = 'ExportToGlobal';

pressurelimit.CoderInfo.StorageClass = 'Custom';

pressurelimit.CoderInfo.CustomStorageClass = 'ExportToGlobal';

O2limit.CoderInfo.StorageClass = 'Custom';

O2limit.CoderInfo.CustomStorageClass = 'ExportToGlobal';

rpmlimit.CoderInfo.StorageClass = 'Custom';

rpmlimit.CoderInfo.CustomStorageClass = 'ExportToGlobal';

% Signals

tempalarm.CoderInfo.StorageClass = 'Custom';

tempalarm.CoderInfo.CustomStorageClass = 'ExportToGlobal';

pressurealarm.CoderInfo.StorageClass = 'Custom';

pressurealarm.CoderInfo.CustomStorageClass = 'ExportToGlobal';

 Control Data Code by Creating Custom Storage Class

10-51

O2alarm.CoderInfo.StorageClass = 'Custom';

O2alarm.CoderInfo.CustomStorageClass = 'ExportToGlobal';

rpmalarm.CoderInfo.StorageClass = 'Custom';

rpmalarm.CoderInfo.CustomStorageClass = 'ExportToGlobal';

3 Select the Signal name must resolve to Simulink signal object option for each
of the target signals in the model. You can select the option by using the Signal
Properties dialog box or by using the command prompt.

% Signal tempalarm

portHandles = get_param('rtwdemo_cscpredef/RelOp1','PortHandles');

outputPortHandle = portHandles.Outport;

set_param(outputPortHandle,'MustResolveToSignalObject','on')

% Signal pressurealarm

portHandles = get_param('rtwdemo_cscpredef/RelOp2','PortHandles');

outputPortHandle = portHandles.Outport;

set_param(outputPortHandle,'MustResolveToSignalObject','on')

% Signal O2alarm

portHandles = get_param('rtwdemo_cscpredef/RelOp3','PortHandles');

outputPortHandle = portHandles.Outport;

set_param(outputPortHandle,'MustResolveToSignalObject','on')

% Signal rpmalarm

portHandles = get_param('rtwdemo_cscpredef/RelOp4','PortHandles');

outputPortHandle = portHandles.Outport;

set_param(outputPortHandle,'MustResolveToSignalObject','on')

Generate Code

1 Generate code for the example model.

rtwbuild('rtwdemo_cscpredef')

2 In the code generation report, view the generated header file global.h. The file
contains the extern declarations of all of the model signals and parameters that use
the custom storage class ExportToGlobal.

/* Declaration for custom storage class: ExportToGlobal */

extern boolean_T O2alarm;

extern real_T O2limit;

extern boolean_T pressurealarm;

extern real_T pressurelimit;

extern boolean_T rpmalarm;

10 Custom Storage Classes

10-52

extern real_T rpmlimit;

extern boolean_T tempalarm;

extern real_T templimit;

3 View the generated file global.c. The file contains the definitions of the model
signals and parameters that use the custom storage class ExportToGlobal.

/* Definition for custom storage class: ExportToGlobal */

boolean_T O2alarm;

real_T O2limit = 0.96;

boolean_T pressurealarm;

real_T pressurelimit = 45.2;

boolean_T rpmalarm;

real_T rpmlimit = 7400.0;

boolean_T tempalarm;

real_T templimit = 202.0;

Related Examples
• “Generate Code with Custom Storage Classes”
• “Apply Custom Storage Classes”
• “Design Custom Storage Classes and Memory Sections”

More About
• “ Data Objects”
• “Introduction to Custom Storage Classes”
• “Define Advanced Custom Storage Classes Types”

 Generate Code with Custom Storage Classes

10-53

Generate Code with Custom Storage Classes

This example shows code generation with custom storage classes.

Before you generate code for a model that uses custom storage classes, clear the
Configuration Parameters > Code Generation > Data specification override >
Ignore custom storage classes model option. Otherwise, the code generator ignores
custom storage class specifications and treats data objects as if their Storage Class were
Auto.

The model above contains three named signals: aa, bb, and cc. Using the predefined
Struct custom storage class, the example generates code that packs these signals into
a struct named mySignals. The struct declaration is then exported to externally
written code.

To specify the struct, you provide Simulink.Signal objects that specify the Struct
custom storage class, and associate the objects with the signals as described in “Apply
Custom Storage Classes” on page 10-31. The three objects have the same properties. This
figure shows the signal object properties for aa:

10 Custom Storage Classes

10-54

The association between identically named model signals and signal objects is formed as
described in “Symbol Resolution”. In this example, the symbols aa, bb, and cc resolve
to the signal objects aa, bb, and cc, which have custom storage class Struct. In the
generated code, storage for the three signals will be allocated within a struct named
mySignals.

To display the storage class of the signals in the model, select Display > Signals
& Ports > Storage Class in the Simulink editor. The figure below shows the block
diagram with signal data types and signal storage classes displayed.

 Generate Code with Custom Storage Classes

10-55

With the model’s signal objects defined and associated with signals, you can generate
code that uses the custom storage classes to generate the desired data structure for the
signals. After code generation, the relevant definitions and declarations are located in
three files:

• model_types.h defines the following struct type for storage of the three signals:

typedef struct MySignals_tag {

 boolean_T bb;

 uint8_T aa;

 uint8_T cc;

} mySignals_type;

• model.c (or .cpp) defines the variable mySignals, as specified in the object's
instance-specific StructName attribute. The variable is referenced in the code
generated for the Switch block:

/* Definition for Custom Storage Class: Struct */

mySignals_type mySignals = {

/* cc */

FALSE,

/* bb */

0,

/* aa */

 0

};

...

/* Switch: '<Root>/Switch1' */

 if(mySignals.cc) {

 rtb_Switch1 = mySignals.aa;

 } else {

10 Custom Storage Classes

10-56

 rtb_Switch1 = mySignals.bb;

 }

• model.h exports the mySignals Struct variable:

/* Declaration for Custom Storage Class: Struct */

extern mySignals_type mySignals;

Grouped Custom Storage Classes

A custom storage class that results in multiple data objects being referenced with a
single variable in the generated code, in the previous example, is called a grouped custom
storage class. In the Simulink package, Bitfield and Struct (shown in the preceding
example) are grouped CSCs. Data grouped by a CSC is referred to as grouped data.

Note: If you use a grouped custom storage class, you cannot specify its properties on an
instance-specific basis. This is because a grouped custom storage class combines multiple
pieces of data into a single data structure. Data in this structure must have the same
properties such as Header file, Data scope, and Data initialization.

Related Examples
• “Control Data Code by Creating Custom Storage Class”
• “Apply Custom Storage Classes”
• “Design Custom Storage Classes and Memory Sections”

More About
• “ Data Objects”
• “Introduction to Custom Storage Classes”
• “Define Advanced Custom Storage Classes Types”

 Define Advanced Custom Storage Classes Types

10-57

Define Advanced Custom Storage Classes Types

In this section...

“Introduction” on page 10-57
“Create Your Own Parameter and Signal Classes” on page 10-57
“Create Custom Attributes Classes for Custom Storage Classes” on page 10-57
“Write TLC Code for Custom Storage Classes” on page 10-58
“Register Custom Storage Class Definitions” on page 10-58

Introduction

Certain data layouts, such as nested structures, cannot be generated using the standard
Unstructured and FlatStructure custom storage class types. You can define an
advanced custom storage class if you want to generate other types of data. Creating
advanced CSCs requires understanding TLC programming and using a special advanced
mode of the Custom Storage Class Designer. This sections explain how to define
advanced CSC types.

Create Your Own Parameter and Signal Classes

The first step is to create your own package containing classes derived from
Simulink.Parameter or Simulink.Signal. This procedure is described in “Define
Data Classes” in the Simulink documentation.

Create Custom Attributes Classes for Custom Storage Classes

If you have instance-specific properties that are relevant only to your CSC, you should
create a custom attributes class for the package. A custom attributes class is a subclass
of Simulink.CustomStorageClassAttributes. The name, type, and default value
properties you set for the custom attributes class define the user view of instance-specific
properties. For instructions, see “Define Data Classes” in the Simulink documentation.

For example, the ExportToFile custom storage class requires that you set the
CoderInfo.CustomAttributes.HeaderFile property to specify a .h file used for
exporting each piece of data. See “Simulink Package Custom Storage Classes” on page
10-6 for further information on instance-specific properties.

10 Custom Storage Classes

10-58

Note: If you rename or remove custom attributes, you may need to manually edit the
csc_registration file for the associated package to remove references to the custom
attributes that you renamed or removed.

Write TLC Code for Custom Storage Classes

The next step is to write TLC code that implements code generation for data of your new
custom storage class. A template TLC file is provided for this purpose. To create your
TLC code, follow these steps:

1 Create a tlc directory inside your package's +directory (if it does not already exist).
The naming convention to follow is

+PackageName/tlc

2 Copy TEMPLATE_v1.tlc (or another CSC template) from matlabroot/toolbox/
rtw/targets/ecoder/csc_templates into your tlc directory to use as a starting
point for defining your custom storage class.

3 Write your TLC code, following the comments in the CSC template file. Comments
describe how to specify code generation for data of your custom storage class (for
example, how data structures are to be declared, defined, and whether they are
accessed by value or by reference).

Alternatively, you can copy a custom storage class TLC file from another existing
package as a starting point for defining your custom storage class.

Register Custom Storage Class Definitions

After you have created a package for your new custom storage class and written its
associated TLC code, you must register your class definitions with the Custom Storage
Class Designer, using its advanced mode.

The advanced mode supports selection of an additional storage class Type, designated
Other. The Other type is designed to support special CSC types that cannot be
accommodated by the standard Unstructured and FlatStructure custom storage
class types. The Other type cannot be assigned to a CSC except when the Custom
Storage Class Designer is in advanced mode.

To register your class definitions:

 Define Advanced Custom Storage Classes Types

10-59

1 Launch the Custom Storage Class Designer in advanced mode by typing the
following command at the MATLAB prompt:

cscdesigner -advanced

2 Select your package and create a new custom storage class.
3 Set the Type of the custom storage class to Other. Note that when you do this, the

Other Attributes pane is displayed. This pane is visible only for CSCs whose Type
is set to Other.

If you specify a customized package, additional options, as defined by the package,
also appear on the Other Attributes pane.

4 Set the properties shown on the Other Attributes pane. The properties are:

• Is grouped: Select this option if you intend to combine multiple data objects of
this CSC into a single variable in the generated code. (for example, a struct).

• TLC file name: Enter the name of the TLC file corresponding to this custom
storage class. The location of the file is assumed to be in the /tlc subdirectory
for the package, so you should not enter the path to the file.

• CSC attributes class name: (optional) If you created a custom attributes class
corresponding to this custom storage class, enter the full name of the custom
attributes class. (see “Create Custom Attributes Classes for Custom Storage
Classes” on page 10-57).

5 Set the remaining properties on the General and Comments panes based on the
layout of the data that you wish to generate (as defined in your TLC file).

Related Examples
• “Control Data Code by Creating Custom Storage Class”
• “Apply Custom Storage Classes”

10 Custom Storage Classes

10-60

• “Generate Code with Custom Storage Classes”
• “Design Custom Storage Classes and Memory Sections”

 GetSet Custom Storage Class

10-61

GetSet Custom Storage Class

In this section...

“About GetSet Custom Storage Class” on page 10-61
“GetSet Custom Storage Class Properties” on page 10-61
“Apply the GetSet Custom Storage” on page 10-62
“GetSet Custom Storage Class Restrictions” on page 10-62
“Increase Code Efficiency With GetSet CSC” on page 10-62

About GetSet Custom Storage Class

GetSet is a built-in advanced custom storage class that generates specialized function
calls to read from (get) and write to (set) the memory associated with a Data Store
Memory block that is read and written many times in a single model. See “Data Stores”
for information about data stores and the Data Store Memory block, and “Define
Advanced Custom Storage Classes Types” on page 10-57 for information about advanced
CSCs.

The GetSet custom storage class is designed primarily for use with the state of the Data
Store Memory block. However, GetSet is capable of handling signals other than data
stores, and is supported for the outputs of most built-in blocks provided by MathWorks.
For more about the definition of the GetSet storage class, look at its associated TLC code
in the file:

matlabroot\toolbox\simulink\simulink\dataclasses\+Simulink\tlc\GetSet.tlc

GetSet Custom Storage Class Properties

The next table summarizes the instance-specific properties of the GetSet storage class:

Property Description

GetFunction String that specifies the name of a function call to read data.
SetFunction String that specifies the name of a function call to write data.
HeaderFile

(optional)
String that specifies the name of a header (.h) file to add as an
#include in the generated code.

10 Custom Storage Classes

10-62

For example, if the GetFunction of signal X is specified as 'get_X' then the generated
code calls get_X() wherever the value of X is used. Similarly, if the SetFunction of
signal X is specified as 'set_X' then the generated code calls set_X(value) wherever
the value of X is assigned.

Apply the GetSet Custom Storage

The GetSet storage class cannot be represented by the standard Unstructured or
FlatStructure custom storage class types, so it is an advanced CSC, as described in
“Define Advanced Custom Storage Classes Types” on page 10-57. To access the CSC
definition for GetSet, you must launch Custom Storage Class designer in advanced
mode:

cscdesigner -advanced

If you omit the HeaderFile property for a GetSet data object, you must specify
a header file by an alternative means, such as the Header file field of the Code
Generation > Custom Code pane of the Configuration Parameters dialog box.
Otherwise, the generated code might not compile or might function improperly.

For wide signals, an additional index argument is passed, so the calls to the get and set
functions are get_X(idx) and set_X(idx, value) respectively.

GetSet Custom Storage Class Restrictions

• The GetSet supports only signals of noncomplex data types.
• Some built-in blocks do not directly support GetSet.
• User-written S-functions do not directly support GetSet.

To use GetSet with a nonsupporting built-in block or a user-written S-function:

1 Insert a Signal Conversion block at the outport of the block or function.
2 Select the Signal Conversion Block's Exclude this block from 'Block reduction'

optimization property.
3 Assign the GetSet storage class to the output of the Signal Conversion block.

Increase Code Efficiency With GetSet CSC

The model below contains a Data Store Memory block that resolves to the Simulink
signal object X:

 GetSet Custom Storage Class

10-63

The following specifications configure the signal object X to use the GetSet custom
storage class:

X = Simulink.Signal;

X.CoderInfo.StorageClass = 'Custom';

X.CoderInfo.CustomStorageClass = 'GetSet';

X.CoderInfo.CustomAttributes.GetFunction = 'get_X';

X.CoderInfo.CustomAttributes.SetFunction = 'set_X';

X.CoderInfo.CustomAttributes.HeaderFile = 'user_file.h';

The GetSet CSC appears as follows in the code generated for the model:

/* Includes for objects with custom storage classes. */

 #include "user_file.h"

 void getset_csc_step(void)

 {

 /* local block i/o variables */

 real_T rtb_DSRead_o;

 /* DataStoreWrite: '<Root>/DSWrite' incorporates:

 * Inport: '<Root>/In1'

 */

 set_X(getset_csc_U.In1);

 /* DataStoreRead: '<Root>/DSRead' */

 rtb_DSRead_o = get_X();

 /* Outport: '<Root>/Out1' */

 getset_csc_Y.Out1 = rtb_DSRead_o;

 }

Note that the code uses a local variable rtb_DSRead_o rather than multiple calls to the
get_X function. This technique increases code efficiency and prevents changes to the
value within a simulation step.

Related Examples
• “Control Data Code by Creating Custom Storage Class”

10 Custom Storage Classes

10-64

• “Apply Custom Storage Classes”
• “Generate Code with Custom Storage Classes”
• “Design Custom Storage Classes and Memory Sections”

More About
• “Introduction to Custom Storage Classes”
• “Define Advanced Custom Storage Classes Types”

 Custom Storage Class Implementation

10-65

Custom Storage Class Implementation

You can skip this section unless you want to ship custom storage class definitions in an
uneditable format, or you intend to bypass the Custom Storage Class designer and work
directly with files that contain custom storage class definitions.

The file that defines a package's custom storage classes is called a CSC registration
file. The file is named csc_registration and resides in the +package directory that
defines the package. A CSC registration file can be a P-file (csc_registration.p) or a
MATLAB file (csc_registration.m). A built-in package defines custom storage classes
in both a P-file and a functionally equivalent MATLAB file. A user-defined package
initially defines custom storage classes only in a MATLAB file.

P-files take precedence over MATLAB files, so when MATLAB looks for a package's CSC
registration file and finds both a P-file and a MATLAB file, MATLAB loads the P-file
and ignores the MATLAB file. The capabilities and tools, including the Custom Storage
Class Designer, then use the CSC definitions stored in the P-file. P-files cannot be edited,
so CSC Designer editing capabilities are disabled for CSCs stored in a P-file. If a P-file
does not exist, MATLAB loads CSC definitions from the MATLAB file. MATLAB files are
editable, so CSC Designer editing capabilities are enabled for CSCs stored in a MATLAB
file.

Because CSC definitions for a built-in package exist in both a P-file and a MATLAB
file, they are uneditable. You can make the definitions editable by deleting the P-file,
but it is not recommended to modify built-in CSC registration files or other files under
matlabroot. The preferred technique is to create packages, data classes, and custom
storage classes, as described in “Define Data Classes” in the Simulink documentation.

The CSC Designer saves CSC definitions for user-defined packages in a MATLAB file,
so the definitions are editable. You can make the definitions uneditable by using the
pcode function to create an equivalent P-file, which will then shadow the MATLAB
file. However, you should preserve the MATLAB file if you may need to make further
changes, because you cannot modify CSC definitions that exist only in a P-file.

You can also use tools or techniques other than the Custom Storage Class Designer to
create and edit MATLAB files that define CSCs. However, that practice is vulnerable
to syntax errors and can give unexpected results. When MATLAB finds an older P-file
that shadows a newer MATLAB file, it displays a warning in the MATLAB Command
Window.

10 Custom Storage Classes

10-66

Custom Storage Class Limitations

• Data objects cannot have a CSC and a multi-word data type.
• The Fcn block does not support parameters with custom storage class in code

generation.
• For CSCs in models that use referenced models:

• If data is assigned a grouped CSC, such as Struct or Bitfield, the CSC's Data
scope property must be Imported and the data declaration must be provided in a
user-supplied header file. See “Grouped Custom Storage Classes” on page 10-56 for
more information about grouped CSCs.

• If data is assigned an ungrouped CSC, such as Const, and the data's Data scope
property is Exported, its Header file property must be unspecified. This results
in the data being exported with the standard header file, model.h. Note that for
ungrouped data, the Data scope and Header file properties are either specified
by the selected CSC, or as one of the data object's instance-specific properties.

Related Examples
• “Apply Custom Storage Classes”
• “Generate Code with Custom Storage Classes”

More About
• “Introduction to Custom Storage Classes”

11

User Package Registration

• “About Data Object Wizard and User Packages” on page 11-2
• “Register User Packages Using sl_customization.m” on page 11-3
• “User Package Customization Using sl_customization.m” on page 11-5

11 User Package Registration

11-2

About Data Object Wizard and User Packages

Data Object Wizard (DOW) can be run in connection with a Simulink model to quickly
determine which model data are not associated with data objects and to create and
associate data objects with the data. (For more information about Data Object Wizard,
see “Data Object Wizard” in the Simulink documentation and “Create Data Objects with
Data Object Wizard”.) If you want the wizard to use data object classes from a package
other than the standard Simulink class package to create the data objects, you select
the package from the wizard's Choose package for selected data objects list. You
can customize the package list by adding and removing packages and modifying the list
order.

Note: User-defined packages that you add to the list must contain a Simulink.Signal
subclass named Signal and a Simulink.Parameter subclass named Parameter.

To register Data Object Wizard user package customizations, use the Simulink
customization file sl_customization.m. This file is a mechanism that allows you to
use MATLAB code to perform customizations of the standard Simulink user interface.
The Simulink software reads the sl_customization.m file, if present on the MATLAB
path, when it starts and the customizations specified in the file are applied to the
Simulink session. For more information on the sl_customization.m customization file,
see “Registering Customizations”.

 Register User Packages Using sl_customization.m

11-3

Register User Packages Using sl_customization.m

To register Data Object Wizard user package customizations, you create an instance of
sl_customization.m and include it on the MATLAB path of the Simulink installation
that you want to customize. The sl_customization function accepts one argument: a
handle to a customization manager object. For example,

function sl_customization(cm)

As a starting point for your customizations, the sl_customization function must first
get the default (factory) customizations, using the following assignment statement:

hObj = cm.slDataObjectCustomizer;

You then invoke methods to register your customizations. The customization manager
object includes the following methods for registering DOW user package customizations:

• addUserPackage(hObj, packageName)

addUserPackage(hObj, cellArrayOfStrings)

Adds the specified user package(s) to the top of the package list, as displayed in the
Choose package for selected data objects pull-down list in Data Object Wizard.

• moveUserPackageToTop(hObj, packageName)

Moves the specified user package to the top of the package list, as displayed in the
Choose package for selected data objects pull-down list in Data Object Wizard.

• moveUserPackageToEnd(hObj, packageName)

Moves the specified user package to the end of the package list, as displayed in the
Choose package for selected data objects pull-down list in Data Object Wizard.

• removeUserPackage(hObj, packageName)

Removes the specified user package from the package list.
• setUserPackages(hObj, cellArrayOfStrings)

Replaces the entire package list with a specified list of user packages.

Your instance of the sl_customization function should use these methods to register
DOW user package customizations for your Simulink installation.

11 User Package Registration

11-4

The Simulink software reads the sl_customization.m file when it starts. If you
subsequently change the file, in order to use your changes, you must restart your
Simulink session or enter the following command at the MATLAB command line:

sl_refresh_customizations

 User Package Customization Using sl_customization.m

11-5

User Package Customization Using sl_customization.m

The sl_customization.m file shown in sl_customization.m for User Package
Customizations uses the following methods:

• addUserPackage to add the user packages ECoderDemos and SimulinkDemos
(present by default in the MATLAB path) to the top of the package list, as displayed
in the Choose package for selected data objects pull-down list in Data Object
Wizard

Note: PackagesECoderDemos and SimulinkDemos must contain a
Simulink.Signal subclass named Signal and a Simulink.Parameter subclass
named Parameter.

• moveUserPackageToEnd to move SimulinkDemos to the end of the package list

sl_customization.m for User Package Customizations

function sl_customization(cm)

% Register user customizations

% Get default (factory) customizations

hObj = cm.slDataObjectCustomizer;

% Add user packages

hObj.addUserPackage({'ECoderDemos', 'SimulinkDemos'});

% Move SimulinkDemos to end of list

hObj.moveUserPackageToEnd('SimulinkDemos');

end

11 User Package Registration

11-6

If you include the above file on the MATLAB path of the Simulink installation that you
want to customize, the specified customizations will appear in Data Object Wizard. For
example, you could view the customizations as follows:

1 Start a MATLAB session.
2 Launch a model, such as rtwdemo_udt.
3 Open Data Object Wizard, for example, by selecting Code > Data Objects > Data

Object Wizard in the Simulink window.
4 In the Data Object Wizard dialog box, click the Find button to generate a list of one

or more data objects.
5 Examine the Choose package for selected data objects drop-down list, noting

the impact of the changes specified in sl_customization.m for User Package
Customizations.

To replace the entire Data Object Wizard package list with a specified list of user
packages, you can use a method invocation similar to the following:

 User Package Customization Using sl_customization.m

11-7

hObj.setUserPackages({'myPackage1', 'ECoderDemos', 'mpt'});

12

Function and Class Interfaces

• “Function Prototype Control” on page 12-2
• “C++ Class Interface Control” on page 12-25
• “Atomic Subsystem Code” on page 12-55

12 Function and Class Interfaces

12-2

Function Prototype Control

In this section...

“About Function Prototype Control” on page 12-2
“Configure Function Prototypes Using Graphical Interfaces” on page 12-3
“Sample Procedure for Configuring Function Prototypes” on page 12-13
“Configure Function Prototypes Programmatically” on page 12-18
“Sample Script for Configuring Function Prototypes” on page 12-22
“Verify Generated Code for Customized Functions” on page 12-22
“Function Prototype Control Limitations” on page 12-23

About Function Prototype Control

The Embedded Coder software provides a Configure Model Functions button, located
on the Code Generation > Interface pane of the Configuration Parameters dialog box,
that allows you to control the model function prototypes that are generated for ERT-
based Simulink models.

By default, the function prototype of an ERT-based model's generated model_step
function resembles the following:
void model_step(void);

The function prototype of an ERT-based model's generated model_initialize function
resembles the following:
void model_initialize(void);

(For more detailed information about the default calling interface for the model_step
function, see the model_step reference page.)

The Configure Model Functions button on the Interface pane provides you flexible
control over the model function prototypes that are generated for your model. Clicking
Configure Model Functions launches a Model Interface dialog box (see “Configure
Function Prototypes Using Graphical Interfaces” on page 12-3). Based on the
Function specification value you specify for your model function (supported values
include Default model initialize and step functions and Model specific
C prototypes), you can preview and modify the function prototypes. Once you validate
and apply your changes, you can generate code based on your function prototype
modifications.

 Function Prototype Control

12-3

For more information about using the Configure Model Functions button and the
Model Interface dialog box, see “Sample Procedure for Configuring Function Prototypes”
on page 12-13 and the model rtwdemo_fcnprotoctrl, which is preconfigured to
demonstrate function prototype control.

Alternatively, you can use function prototype control functions to programmatically
control model function prototypes. For more information, see “Configure Function
Prototypes Programmatically” on page 12-18.

You can also control model function prototypes for nonvirtual subsystems, if you generate
subsystem code using right-click build. To launch the Model Interface for subsystem
dialog box, use the RTW.configSubsystemBuild function.

Right-click building the subsystem generates the step and initialization functions
according to the customizations you make. For more information, see “Configure
Function Prototypes for Nonvirtual Subsystems” on page 12-11.

For limitations that apply, see “Function Prototype Control Limitations” on page
12-23.

Configure Function Prototypes Using Graphical Interfaces

• “Launch the Model Interface Dialog Boxes” on page 12-3
• “Default Model Initialize and Step Functions View” on page 12-4
• “Model Specific C Prototypes View” on page 12-5
• “Combine Input and Output Arguments in Model Step Interface” on page 12-8
• “Configure Function Prototypes for Nonvirtual Subsystems” on page 12-11

Launch the Model Interface Dialog Boxes

Clicking the Configure Model Functions button on the Interface pane of the
Configuration Parameters dialog box launches the Model Interface dialog box. This
dialog box is the starting point for configuring the model function prototypes that
are generated during code generation for ERT-based Simulink models. Based on the
Function specification value you select for your model function (supported values
include Default model initialize and step functions and Model specific
C prototypes), you can preview and modify the function prototype. Once you validate
and apply your changes, you can generate code based on your function prototype
modifications.

12 Function and Class Interfaces

12-4

To configure function prototypes for a right-click build of a nonvirtual subsystem, invoke
the RTW.configSubsystemBuild function, which launches the Model Interface for
subsystem dialog box. For more information, see “Configure Function Prototypes for
Nonvirtual Subsystems” on page 12-11

Default Model Initialize and Step Functions View

The figure below shows the Model Interface dialog box in the Default model
initialize and step functions view.

The Default model initialize and step functions view allows you to validate
and preview the predicted default model step and initialization function prototypes.
To validate the default function prototype configuration against your model, click the
Validate button. If the validation succeeds, the predicted step function prototype
appears in the Step function preview subpane.

Note: You cannot use the Default model initialize and step functions view
to modify the function prototype configuration.

 Function Prototype Control

12-5

Model Specific C Prototypes View

Selecting Model specific C prototypes for the Function specification parameter
displays the Model specific C prototypes view of your model function prototypes.
This view provides controls that you can use to customize the function names, the order
of arguments, and argument attributes including name, passing mechanism, and type
qualifier for each of the model's root-level I/O ports.

To begin configuring your function control prototype configuration, click the Get Default
Configuration button. This activates and initializes the function names and properties
in the Configure model initialize and step functions subpane, as shown below.
If you click Get Default Configuration again later, only the properties of the step
function arguments are reset to default values.

12 Function and Class Interfaces

12-6

In the Configure model initialize and step functions subpane:

 Function Prototype Control

12-7

Parameter Description

Step function name Name of the model_step function.
Initialize function name Name of the model_initialize function.

Note: A referenced model contains at least one
initialization function. This parameter controls the name
of the function that initializes states to nonzero values.
A model generates this function only if it contains such
states or requires the function for some other less common
reason. The code generator determines the names of the
other initialization functions.

Order Order of the argument. A return argument is listed as
Return.

Port Name Name of the port.
Port Type Type of the port.
Category Specifies how an argument is passed in or out from

the customized step function, either by copying a value
(Value) or by a pointer to a memory space (Pointer).

Argument Name Name of the argument.

12 Function and Class Interfaces

12-8

Parameter Description

Qualifier (optional) Specifies a const type qualifier for a function argument.
The available values are dependent on the Category
specified. When you change the Category, if the specified
type is not available, the Qualifier changes to none. The
possible values are:

• none

• const (value)
• const* (value referenced by the pointer)
• const*const (value referenced by the pointer and the

pointer itself)

Note: When a model includes a referenced model, the
const type qualifier for the root input argument of the
referenced model's specified step function interface is
set to none, and the qualifier for the source signal in the
referenced model's parent is set to a value other than
none, code generation honors the referenced model's
interface specification by generating a type cast that
discards the const type qualifier from the source signal.
To override this behavior, add a const type qualifier to
the referenced model.

The Step function preview subpane provides a preview of how your step function
prototype is interpreted in generated code. The preview is updated dynamically as you
make modifications.

An argument foo whose Category is Pointer is previewed as * foo. If its Category
is Value, it is previewed as foo. Notice that argument types and qualifiers are not
represented in the Step function preview subpane.

Combine Input and Output Arguments in Model Step Interface

When using C function prototype control or C++ class interface control, you can configure
a pair of model step function arguments, an input and an output, to allow the code
generator to reuse their buffers. This merging of input and output can eliminate buffers

 Function Prototype Control

12-9

in the generated code. The following requirements apply to combining model step
function input and output arguments:

• The input and output arguments must be assigned the same argument name.
• The corresponding inport and outport blocks must have the same data type and

sampling rate.

Additionally, the following limitations apply to combining model step function input and
output arguments:

• The sample rate of the inport and outport blocks must be the same as the base rate of
the model.

• The outport cannot be driven by a conditionally-executed subsystem.
• The outport must be driven by a single, nonvirtual block output. For example, it

cannot be connected to a Mux block, which merges multiple buffers.

To configure model step function I/O arguments to allow buffer reuse:

1 In the Configuration Parameters dialog box, select the Code Generation >
Interface pane. To initiate C function prototype control, click the Configure Model
Functions button. To initiate C++ class interface control, click the Configure C++
Class Interface button.

2 Navigate to the view that allows you to modify model step function I/O arguments
– Model specific C prototypes view for C function prototype control or I/O
arguments step method for C++ class interface control.

3 Select an inport/outport pair, configure their Category and Argument Name
settings to match, and make sure that Category is not set to Value. Set Qualifier
to none for both ports.

12 Function and Class Interfaces

12-10

When you generate code from the model, the arguments are combined in the function
prototype. For example:

The shared argument appears in inport read code and outport write code. For example:

 Function Prototype Control

12-11

Configure Function Prototypes for Nonvirtual Subsystems

You can control step and initialization function prototypes for nonvirtual subsystems
in ERT-based Simulink models, if you generate subsystem code using right-click build.
Function prototype control is supported for the following types of nonvirtual blocks:

• Triggered subsystems
• Enabled subsystems
• Enabled trigger subsystems
• While subsystems
• For subsystems
• Stateflow blocks
• MATLAB function block

To launch the Model Interface for Subsystem dialog box, open the model containing the
subsystem and invoke the RTW.configSubsystemBuild function.

The Model Interface dialog box for modifying the model-specific C prototypes for the
rtwdemo_counter/Amplifier subsystem appears as follows:

12 Function and Class Interfaces

12-12

Right-click building the subsystem generates the step and initialization functions
according to the customizations you make.

 Function Prototype Control

12-13

Sample Procedure for Configuring Function Prototypes

The following procedure shows how to use the Configure Model Functions button on
the Code Generation > Interface pane of the Configuration Parameters dialog box to
control the model function prototypes when generating code for your Simulink model.

1 Open a MATLAB session and launch the rtwdemo_counter model.
2 In the rtwdemo_counter Model Editor, double-click the Generate Code Using

Embedded Coder (double-click) button to generate code for an ERT-based
version of rtwdemo_counter. The code generation report for rtwdemo_counter
appears.

3 In the code generation report, click the link for rtwdemo_counter.c.
4 In the rtwdemo_counter.c code display, locate and examine the generated code for

the rtwdemo_counter_step and the rtwdemo_counter_initialize functions:

/* Model step function */

void rtwdemo_counter_step(void)

{

 ...

}

/* Model initialize function */

void rtwdemo_counter_initialize(void)

{

 ...

}

You can close the report window after you have examined the generated code.
Optionally, you can save rtwdemo_counter.c and other generated files to a
different location for later comparison.

5 From the rtwdemo_counter model, open the Configuration Parameters dialog box.
6 Navigate to the Code Generation > Interface pane and click the Configure

Model Functions button. The Model Interface dialog box appears.
7 In the initial (Default model initialize and step funtions) view of the

Model Interface dialog box, click the Validate button to validate and preview the
default function prototype for the rtwdemo_counter_step function. The function
prototype arguments under Step function preview should correspond to the
default prototype in step 4.

12 Function and Class Interfaces

12-14

8 In the Model Interface dialog box, set Function specification field to Model
specific C prototypes. Making this selection switches the dialog box from
the Default model initialize and step functions view to the Model
specific C prototypes view.

 Function Prototype Control

12-15

9 In the Model specific C prototypes view, click the Get Default
Configuration button to activate the Configure model initialize and step
functions subpane.

12 Function and Class Interfaces

12-16

10 In the Configure model initialize and step functions subpane, change
Initialize function name to rtwdemo_counter_cust_init.

 Function Prototype Control

12-17

11 In the Configure model initialize and step functions subpane, in the row for the
Input argument, change the value of Category from Value to Pointer and change
the value of Qualifier from none to const *. The preview reflects your changes.

12 Function and Class Interfaces

12-18

12 Click the Validate button to validate the modified function prototype. The
Validation subpane displays a message that the validation succeeded.

13 Click OK to exit the Model Interface dialog box.
14 Generate code for the model. When the build completes, the code generation report

for rtwdemo_counter appears.
15 In the code generation report, click the link for rtwdemo_counter.c.
16 Locate and examine the generated code for the rtwdemo_counter_custom and

rtwdemo_counter_cust_init functions:

/* Model step function */

void rtwdemo_counter_custom(const int32_T *arg_Input, int32_T *arg_Output)

{

 ...

}

 /* Model initialize function */

void rtwdemo_counter_cust_init(void)

{

 ...

}

17 Verify that the generated code is consistent with the function prototype
modifications that you specified in the Model Interface dialog box.

Configure Function Prototypes Programmatically

You can use the function prototype control functions (listed in Function Prototype
Control Functions), to programmatically control model function prototypes. Typical uses
of these functions include:

• Create and validate a new function prototype

1 Create a model-specific C function prototype with obj =
RTW.ModelSpecificCPrototype, where obj returns a handle to a newly
created, empty function prototype.

2 Add argument configuration information for your model ports using
RTW.ModelSpecificCPrototype.addArgConf.

3 Attach the function prototype to your loaded ERT-based Simulink model using
RTW.ModelSpecificCPrototype.attachToModel.

4 Validate the function prototype using
RTW.ModelSpecificCPrototype.runValidation.

 Function Prototype Control

12-19

5 If validation succeeds, save your model and then generate code using the
rtwbuild function.

• Modify and validate an existing function prototype

1 Get the handle to an existing model-specific C function prototype that
is attached to your loaded ERT-based Simulink model with obj =
RTW.getFunctionSpecification(modelName), where modelName is a string
specifying the name of a loaded ERT-based Simulink model, and obj returns a
handle to a function prototype attached to the specified model.

You can use other function prototype control functions on the returned handle
only if the test isa(obj,'RTW.ModelSpecificCPrototype') returns 1. If the
model does not have a function prototype configuration, the function returns [].
If the function returns a handle to an object of type RTW.FcnDefault, you cannot
modify the existing function prototype.

2 Use the Get and Set functions listed in Function Prototype Control Functions
to test and reset such items as the function names, argument names, argument
positions, argument categories, and argument type qualifiers.

3 Validate the function prototype using
RTW.ModelSpecificCPrototype.runValidation.

4 If validation succeeds, save your model and then generate code using the
rtwbuild function.

• Create and validate a new function prototype, starting with default
configuration information from your Simulink model

1 Create a model-specific C function prototype using obj =
RTW.ModelSpecificCPrototype, where obj returns a handle to a newly
created, empty function prototype.

2 Attach the function prototype to your loaded ERT-based Simulink model using
RTW.ModelSpecificCPrototype.attachToModel.

3 Get default configuration information from your model using
RTW.ModelSpecificCPrototype.getDefaultConf.

4 Use the Get and Set functions listed in Function Prototype Control Functions
to test and reset such items as the function names, argument names, argument
positions, argument categories, and argument type qualifiers.

5 Validate the function prototype using
RTW.ModelSpecificCPrototype.runValidation.

12 Function and Class Interfaces

12-20

6 If validation succeeds, save your model and then generate code using the
rtwbuild function.

• Reset the model function prototype to the default ERT function
configuration Create an object of the ERT default function signature. Reset
the model function prototype and undo any custom settings, by calling the
RTW.FcnDefault method, attachToModel, as follows:

obj = RTW.FcnDefault;

obj.attachToModel(model);

model must be a loaded ERT-based model.

Note: You should not use the same model-specific C function prototype object across
multiple models. If you do, changes that you make to the step and initialization function
prototypes in one model are propagated to other models, which is usually not desirable.

Function Prototype Control Functions

Function Description

RTW.ModelSpecificCPrototype.addArgConf Add step function argument configuration
information for Simulink model port to
model-specific C function prototype

RTW.ModelSpecificCPrototype.attachToModel Attach model-specific C function prototype
to loaded ERT-based Simulink model

RTW.ModelSpecificCPrototype.getArgCategoryGet step function argument category for
Simulink model port from model-specific C
function prototype

RTW.ModelSpecificCPrototype.getArgName Get step function argument name for
Simulink model port from model-specific C
function prototype

RTW.ModelSpecificCPrototype.getArgPositionGet step function argument position for
Simulink model port from model-specific C
function prototype

RTW.ModelSpecificCPrototype.getArgQualifierGet step function argument type qualifier
for Simulink model port from model-specific
C function prototype

 Function Prototype Control

12-21

Function Description

RTW.ModelSpecificCPrototype.getDefaultConfGet default configuration information for
model-specific C function prototype from
Simulink model to which it is attached

RTW.ModelSpecificCPrototype.getFunctionNameGet function names from model-specific C
function prototype

RTW.ModelSpecificCPrototype.getNumArgs Get number of step function arguments from
model-specific C function prototype

RTW.ModelSpecificCPrototype.getPreview Get model-specific C function prototype code
previews

RTW.configSubsystemBuild Launch GUI to configure C function
prototype or C++ class interface for right-
click build of specified subsystem

RTW.getFunctionSpecification Get handle to model-specific C function
prototype object

RTW.ModelSpecificCPrototype.runValidation Validate model-specific C function prototype
against Simulink model to which it is
attached

RTW.ModelSpecificCPrototype.setArgCategorySet step function argument category for
Simulink model port in model-specific C
function prototype

RTW.ModelSpecificCPrototype.setArgName Set step function argument name for
Simulink model port in model-specific C
function prototype

RTW.ModelSpecificCPrototype.setArgPositionSet step function argument position for
Simulink model port in model-specific C
function prototype

RTW.ModelSpecificCPrototype.setArgQualifierSet step function argument type qualifier
for Simulink model port in model-specific C
function prototype

RTW.ModelSpecificCPrototype.setFunctionNameSet function names in model-specific C
function prototype

12 Function and Class Interfaces

12-22

Sample Script for Configuring Function Prototypes

The following sample MATLAB script configures the model function prototypes for the
rtwdemo_counter model, using the Function Prototype Control Functions.

%% Open the rtwdemo_counter model

rtwdemo_counter

%% Select ert.tlc as the System Target File for the model

set_param(gcs,'SystemTargetFile','ert.tlc')

%% Create a model-specific C function prototype

a=RTW.ModelSpecificCPrototype

%% Add argument configuration information for Input and Output ports

addArgConf(a,'Input','Pointer','inputArg','const *')

addArgConf(a,'Output','Pointer','outputArg','none')

%% Attach the model-specific C function prototype to the model

attachToModel(a,gcs)

%% Rename the initialization function

setFunctionName(a,'InitFunction','init')

%% Rename the step function and change some argument attributes

setFunctionName(a,'StepFunction','step')

setArgPosition(a,'Output',1)

setArgCategory(a,'Input','Value')

setArgName(a,'Input','InputArg')

setArgQualifier(a,'Input','none')

%% Validate the function prototype against the model

[status,message]=runValidation(a)

%% if validation succeeded, generate code and build

if status

 rtwbuild(gcs)

end

Verify Generated Code for Customized Functions

You can use software-in-the-loop (SIL) testing to verify the generated code for your
customized step and initialization functions. This involves creating a SIL block with your
generated code, which then can be integrated into a Simulink model to verify that the
generated code provides the same result as the original model or nonvirtual subsystem.
For more information, see “Choose a SIL or PIL Approach”.

 Function Prototype Control

12-23

Function Prototype Control Limitations

The following limitations apply to controlling model function prototypes:

• Function prototype control supports only step and initialization functions generated
from a Simulink model.

• Function prototype control supports only single-instance implementations. For
standalone targets, you must set Code interface packaging to Nonreusable
function (on the Code Generation > Interface pane of the Configuration
Parameters dialog box). For model reference targets, you must select One for the
Total number of instances allowed per top model parameter (on the Model
Referencing pane of the Configuration Parameters dialog box).

• For model reference targets, if Code interface packaging is set to Reusable
function, the code generator ignores the setting.

• You must select the Single output/update function parameter (on the Interface
pane of the Configuration Parameters dialog box).

• Function prototype control does not support multitasking models. Multirate models
are supported, but you must configure the models for single-tasking.

• You must configure root-level inports and outports to use Auto storage classes.
• Do not control function prototypes with the static ert_main.c provided by

MathWorks. Specifying a function prototype control configuration other than the
default creates a mismatch between the generated code and the default static
ert_main.c.

• The code generator removes the data structure for the root inports of the model unless
a subsystem implemented by a nonreusable function uses the value of one or more of
the inports.

• The code generator removes the data structure for the root outports of the model
except when you enable MAT-file logging, or if the sample time of one or more of the
outports is not the fundamental base rate (including a constant rate).

• If you copy a subsystem block and paste it to create a new block in either a new model
or the same model, the function prototype control interface information from the
original subsystem block does not copy to the new subsystem block.

• If you have a Stateflow license, for a Stateflow chart that uses a model root inport
value, or that calls a subsystem that uses a model root inport value, you must do one
of the following to generate code:

• Clear the Execute (enter) Chart At Initialization check box in the Stateflow
chart.

12 Function and Class Interfaces

12-24

• Make the Stateflow function a nonreusable function.
• Insert a Simulink Signal Conversion block immediately after the root inport. In

the Signal Conversion block parameters dialog box, select Exclude this block
from 'Block reduction' optimization.

• If a model root inport value connects to a Simscape conversion block, you must
insert a Simulink Signal Conversion block between the root inport and the Simscape
conversion block. In the Signal Conversion block parameters dialog box, select
Exclude this block from 'Block reduction' optimization.

 C++ Class Interface Control

12-25

C++ Class Interface Control

In this section...

“About C++ Class Interface Control” on page 12-25
“Simple Use of C++ Class Control” on page 12-26
“Customize C++ Class Interfaces Using Graphical Interfaces” on page 12-32
“Customize C++ Class Interfaces Programmatically” on page 12-47
“Configure Step Method for Model Class” on page 12-49
“Specify Custom Storage Class for C++ Class Code Generation” on page 12-50
“Model Class Copy Constructor and Assignment Operator” on page 12-51
“C++ Class Interface Control Limitations” on page 12-52

About C++ Class Interface Control

Using the Code interface packaging option C++ class, on the Code Generation
> Interface pane of the Configuration Parameters dialog box, you can generate a C++
class interface to model code. The generated interface encapsulates required model data
into C++ class attributes and model entry point functions into C++ class methods. The
benefits of C++ class encapsulation include:

• Greater control over access to model data
• Ability to multiply instantiate model classes
• Easier integration of model code into C++ programming environments

C++ class encapsulation also works for right-click builds of nonvirtual subsystems.
(For information on requirements that apply, see “Configure C++ Class Interfaces for
Nonvirtual Subsystems” on page 12-46.)

If you have an Embedded Coder license and you have selected an ERT target for your
model, you can use additional Code Generation > Interface pane parameters in
the Configuration Parameter dialog box to customize and control the generated C++
class interface to model code. The general procedure for generating custom C++ class
interfaces to model code is as follows:

1 Configure your model to use an ert.tlc system target file provided by MathWorks.
2 Select the C++ language for your model.

12 Function and Class Interfaces

12-26

3 Select C++ class code interface packaging for your model.
4 Customize C++ class interface settings for your model code, using either a graphical

user interface (GUI) or application programming interface (API).
5 Generate model code.
6 Examine the C++ class interfaces in the generated files and the HTML code

generation report.

To get started with an example, see “Simple Use of C++ Class Control” on page 12-26.
For more details about customizing C++ class interfaces for your model code, see
“Customize C++ Class Interfaces Using Graphical Interfaces” on page 12-32 and
“Customize C++ Class Interfaces Programmatically” on page 12-47. For limitations
that apply, see “C++ Class Interface Control Limitations” on page 12-52.

Note: For an example of C++ class code generation, see the example model
rtwdemo_cppclass.

Simple Use of C++ Class Control

This example illustrates a simple use of C++ class code interface packaging.
It generates C+ class code interfaces from an example model, without extensive
modifications to default settings.

Note: For details about setting C++ class parameters, see the sections that follow this
example, beginning with “Customize C++ Class Interfaces Using Graphical Interfaces”
on page 12-32.

To generate C++ class interfaces for a Simulink model:

1 Open a model for which you would like to generate C++ class code interfaces. This
example uses the model rtwdemo_counter.

2 Configure the model to use an ert.tlc system target file provided by MathWorks.
For example, open the Configuration Parameters dialog box, go to the Code
Generation pane, select a target value from the System target file menu, and
click Apply.

3 On the Code Generation pane of the Configuration Parameters dialog box, set the
Language parameter to C++.

 C++ Class Interface Control

12-27

On the Code Generation > Interface pane, check that the Code interface
packaging parameter is set to C++ class.

Click Apply.

Note: To immediately generate the default style of C++ class code, without exploring
the related model configuration options, skip steps 4–8 and go directly to step 9.

4 Go to the Interface pane of the Configuration Parameters dialog box and examine
the Code interface subpane.

When you select C++ class code interface packaging for your model, additional
C++ class interface controls become available in the Code interface subpane.
See “Configure Code Interface Options” on page 12-33 for descriptions of
these controls. You might want to modify the default settings according to your
application.

5 Click the Configure C++ Class Interface button. This action opens the Configure
C++ class interface dialog box, which allows you to configure the step method for
your generated model class. The dialog box initially displays a view for configuring a

12 Function and Class Interfaces

12-28

void-void style step method (passing no I/O arguments) for the model class. In this
view, you can specify the model class name, step method name, and namespace for
your model.

See “Configure Step Method for Your Model Class” on page 12-37 for descriptions
of these controls.

Note: If the void-void interface style meets your needs, you can skip steps 6–8 and
go directly to step 9.

6 If you want root-level model input and output to be arguments on the step method,
select the value I/O arguments step method from the Function specification
menu. The dialog box displays a view for configuring an I/O arguments style step
method for the model class.

 C++ Class Interface Control

12-29

See “Configure Step Method for Your Model Class” on page 12-37 for descriptions
of these controls.

7 Click the Get Default Configuration button. This action causes a Configure C
++ class interface subpane to appear in the dialog box. The subpane displays the
initial interface configuration for your model, which provides a starting point for
further customization.

12 Function and Class Interfaces

12-30

See “Passing I/O Arguments” on page 12-39 for descriptions of these controls.
8 Perform this optional step only if you want to customize the configuration of the I/O

arguments generated for your model step method.

Note: If you choose to skip this step, you should click Cancel to exit the dialog box.

If you choose to perform this step, first you must check that the required option
Remove root level I/O zero initialization is selected on the Optimization pane,
and then navigate back to the I/O arguments step method view of the Configure
C++ class interface dialog box.

Now you can use the dialog box controls to configure I/O argument attributes.
For example, in the Configure C++ class interface subpane, in the row for the
Input argument, you can change the value of Category from Value to Pointer
and change the value of Qualifier from none to const *. The preview updates to
reflect your changes. Click the Validate button to validate the modified interface
configuration.

Continue modifying and validating until you are satisfied with the step method
configuration.

 C++ Class Interface Control

12-31

Click Apply and OK.
9 Generate code for the model. When the build completes, the code generation report

for rtwdemo_counter appears. Examine the report and observe that required
model data is encapsulated into C++ class attributes and model entry point
functions are encapsulated into C++ class methods. For example, click the link for
rtwdemo_counter.h to see the class declaration for the model.

12 Function and Class Interfaces

12-32

Note: If you configured custom I/O arguments for the model step method (optional
step 8), examine the generated code for the step method in rtwdemo_counter.h and
rtwdemo_counter.cpp. The arguments should reflect your changes. For example, if
you performed the Input argument modifications in step 8, the input argument should
appear as const int32_T *arg_Input.

Customize C++ Class Interfaces Using Graphical Interfaces

• “Select C++ Class Code Interface Packaging” on page 12-33
• “Configure Code Interface Options” on page 12-33

 C++ Class Interface Control

12-33

• “Configure Step Method for Your Model Class” on page 12-37
• “Use Namespaces to Scope C++ Model Classes” on page 12-42
• “Combine Input and Output Arguments in Model Step Interface” on page 12-8
• “Configure C++ Class Interfaces for Nonvirtual Subsystems” on page 12-46

Select C++ Class Code Interface Packaging

To select C++ class code interface packaging, in the Configuration Parameters dialog
box, on the Code Generation pane, set the Language parameter to C++. Then, in
the Code Generation > Interface pane, check that the Code interface packaging
parameter is set to C++ class:

Selecting this value:

• Disables model configuration options that C++ class does not support. For details,
see “C++ Class Interface Control Limitations” on page 12-52.

• Adds additional C++ class interface parameters, which are described in the next
section.

Configure Code Interface Options

When you select C++ class code interface packaging for your model, the Code
interface parameters shown below are displayed on the Interface pane.

12 Function and Class Interfaces

12-34

• Multi-instance code error diagnostic

Specifies the severity level for diagnostics displayed when a model violates
requirements for generating multi-instance code.

• None — Proceed with build without displaying a diagnostic message.
• Warning — Proceed with build after displaying a warning message.
• Error (default) — Abort build after displaying an error message.

• Terminate function required

Specifies whether to generate the model_terminate method (on by default). This
function contains model termination code and should be called as part of system
shutdown.

• Generate preprocessor conditionals

For a model containing Model blocks, specifies whether to generate preprocessor
conditional directives globally for a model, locally for each variant Model block,
or conditionally based on the Generate preprocessor conditionals setting in
the Model Reference Parameter dialog for each variant Model block (Use local
settings by default).

• Suppress error status in real-time model data structure

 C++ Class Interface Control

12-35

Specifies whether to omit the error status field from the generated real-time model
data structure rtModel (off by default). Selecting this option reduces memory usage.

Be aware that selecting this option can cause the code generator to omit the rtModel
data structure from generated code.

• Combine signal/state structures

Specifies whether to combine global block signals and global state data into one data
structure in the generated code (off by default). Selecting this option reduces RAM
and improves readability of the generated code.

• Block parameter visibility

Specifies whether to generate the block parameter structure as a public, private,
or protected data member of the C++ model class (private by default).

• Internal data visibility

Specifies whether to generate internal data structures, such as Block I/O, DWork
vectors, Runtime model, Zero-crossings, and continuous states, as public, private,
or protected data members of the C++ model class (private by default).

• Block parameter access

Specifies whether to generate access methods for block parameters for the C++ model
class (None by default). You can select noninlined access methods (Method) or inlined
access methods (Inlined method).

• Internal data access

Specifies whether to generate access methods for internal data structures, such as
Block I/O, DWork vectors, Runtime model, Zero-crossings, and continuous states,
for the C++ model class (None by default). You can select noninlined access methods
(Method) or inlined access methods (Inlined method).

• External I/O access

Specifies whether to generate access methods for root-level I/O signals for the C++
model class (None by default). If you want to generate access methods, you have the
following options:

• Generate either noninlined or inlined access methods.

12 Function and Class Interfaces

12-36

• Generate either per-signal or structure-based access methods. That is, you can
generate a series of set and get methods on a per-signal basis, or generate just one
set method that takes the address of an external input structure as an argument
and, for external outputs (if applicable), just one get method that returns a
reference to an external output structure. The generated code for structure-based
access methods has the following general form:

class ModelClass {

...

 // Root inports set method

 void setExternalInputs(const ExternalInputs* pExternalInputs);

 // Root outports get method

 const ExternalOutputs & getExternalOutputs() const;

}

Note: This parameter affects generated code only if you are using the default
(void-void style) step method for your model class; not if you are explicitly passing
arguments for root-level I/O signals using an I/O arguments style step method. For
more information, see “Passing No Arguments (void-void)” on page 12-37 and
“Passing I/O Arguments” on page 12-39.

• Generate destructor

Specifies whether to generate a destructor for the C++ model class (on by default).
• Use dynamic memory allocation for model block instantiation

For a model containing Model blocks, specifies whether generated code should use
dynamic memory allocation, during model object registration, to instantiate objects
for referenced models configured with a C++ class interface (off by default). If you
select this option, during instantiation of an object for the top model in a model
reference hierarchy, the generated code uses the operator new to instantiate objects
for referenced models.

Selecting this option frees a parent model from having to maintain information about
referenced models beyond its direct children. Clearing this option means that a parent
model maintains information about its referenced models, including its direct and
indirect children.

Note:

 C++ Class Interface Control

12-37

• If you select this option, be aware that a bad_alloc exception might be
thrown, per the C++ standard, if an out-of-memory error occurs during the use

of new. You must provide code to catch and process the bad_alloc exception in
case an out-of-memory error occurs for a new call during construction of a top
model object.

• If Use dynamic memory allocation for model block instantiation is
selected and the base model contains a Model block, the build process might
generate copy constructor and assignment operator functions in the private
section of the model class. The purpose of the functions is to prevent pointer
members within the model class from being copied by other code. For more
information, see “Model Class Copy Constructor and Assignment Operator” on
page 12-51.

• Configure C++ Class Interface

Opens the Configure C++ class interface dialog box, which allows you to configure the
step method for your model class. For more information, see “Configure Step Method
for Your Model Class” on page 12-37.

Configure Step Method for Your Model Class

To configure the step method for your model class, on the Code Generation > Interface
pane, click the Configure C++ Class Interface button, which is available when
you select C++ class code interface packaging for your model. This action opens the
Configure C++ class interface dialog box, where you can configure the step method for
your model class in either of two styles:

• “Passing No Arguments (void-void)” on page 12-37
• “Passing I/O Arguments” on page 12-39

Note: The void-void style of step method specification supports single-rate models
and multirate models, while the I/O arguments style supports single-rate models and
multirate single-tasking models.

Passing No Arguments (void-void)

The Configure C++ class interface dialog box initially displays a view for configuring a
void-void style step method for the model class.

12 Function and Class Interfaces

12-38

• Step method name

Allows you to specify a step method name other than the default, step.
• Class name

Allows you to specify a model class name other than the default, modelModelClass.
• Namespace

Allows you to specify a namespace for the model class. If specified, the namespace
is emitted in the generated code for the model class. The Namespace parameter
provides a means of scoping C++ model classes. In a model reference hierarchy, you
can specify a different namespace for each referenced model.

• Step function preview

Displays a preview of the model step function prototype as currently configured. The
preview display is dynamically updated as you make configuration changes.

 C++ Class Interface Control

12-39

• Validate

Validates your current model step function configuration. The Validation pane
displays the status and an explanation of any failure.

Passing I/O Arguments

If you select I/O arguments step method from the Function specification menu,
the dialog box displays a view for configuring an I/O arguments style step method for the
model class.

Note: To use the I/O arguments style step method, you must select the option Remove
root level I/O zero initialization on the Optimization pane of the Configuration
Parameters dialog box.

12 Function and Class Interfaces

12-40

• Get Default Configuration

Click this button to get the initial interface configuration that provides a starting
point for further customization.

• Step function preview

Displays a preview of the model step function prototype as currently configured. The
preview dynamically updates as you make configuration changes.

• Validate

Validates your current model step function configuration. The Validation pane
displays the status and an explanation of any failure.

 C++ Class Interface Control

12-41

When you click Get Default Configuration, the Configure C++ class interface
subpane appears in the dialog box, displaying the initial interface configuration. For
example:

• Step method name

Allows you to specify a step method name other than the default, step.
• Class name

Allows you to specify a model class name other than the default, modelModelClass.
• Namespace

Allows you to specify a namespace for the model class. If specified, the namespace
is emitted in the generated code for the model class. The Namespace parameter
provides a means of scoping C++ model classes. In a model reference hierarchy, you
can specify a different namespace for each referenced model.

• Order

Displays the numerical position of each argument. Use the Up and Down buttons to
change argument order.

• Port Name

Displays the port name of each argument (not configurable using this dialog box).
• Port Type

Displays the port type, Inport or Outport, of each argument (not configurable using
this dialog box).

• Category

12 Function and Class Interfaces

12-42

Displays the passing mechanism for each argument. To change the passing
mechanism for an argument, select Value, Pointer, or Reference from the
argument's Category menu.

• Argument Name

Displays the name of each argument. To change an argument name, click in the
argument's Argument name field, position the cursor for text entry, and enter the
new name.

• Qualifier

Displays the const type qualifier for each argument. To change the qualifier for
an argument, select an available value from the argument's Qualifier menu. The
possible values are:

• none

• const (value)
• const* (value referenced by the pointer)
• const*const (value referenced by the pointer and the pointer itself)
• const & (value referenced by the reference)

Tip When a model includes a referenced model, the const type qualifier for the root
input argument of the referenced model's specified step function interface is set to none
and the qualifier for the source signal in the referenced model's parent is set to a value
other than none, code generation honors the referenced model's interface specification by
generating a type cast that discards the const type qualifier from the source signal. To
override this behavior, add a const type qualifier to the referenced model.

Use Namespaces to Scope C++ Model Classes

Embedded Coder provides namespace control for scoping model classes generated using
C++ class code interface packaging. In the Configure C++ class interface dialog box, use
the Namespace parameter to specify a namespace for a model class. If specified, the
namespace is emitted in the generated code for the model class. To scope the C++ model
classes in a model reference hierarchy, you can specify a different namespace for each
referenced model.

 C++ Class Interface Control

12-43

For an example of namespace control, see the example model rtwdemo_cppclass. This
model assigns namespaces as follows:

• TopNS for top-level model rtwdemo_cppclass
• MiddleNS for referenced model rtwdemo_cppclass_refmid
• BottomNS for referenced model rtwdemo_cppclass_refbot

If you build the model with its default settings, you can examine the generated header
and source files for each model to see where the namespace is emitted. For example,
the Namespace setting for the model rtwdemo_cppclass_refmid is shown below,
followed by excerpts of the emitted namespace code in the model header and source files.

42 // Class declaration for model rtwdemo_cppclass_refmid

43 namespace MiddleNS {

44 class MiddleClass {

45 // public data and function members

46 public:

47 // Model entry point functions

...

52 // model step function

53 void StepMethod(const real_T *arg_In1, const real_T &arg_In2, real_T

54 *arg_Out1, real_T *arg_Out2);

...

87 };

88 }

15 #include "rtwdemo_cppclass_refmid.h"

16 #include "rtwdemo_cppclass_refmid_private.h"

17

18 namespace MiddleNS

19 {

20 // Model step function

21 void MiddleClass::StepMethod(const real_T *arg_In1, const real_T &arg_In2,

22 real_T *arg_Out1, real_T *arg_Out2)

12 Function and Class Interfaces

12-44

23 {

...

43 }

...

83 }

Combine Input and Output Arguments in Model Step Interface

When using C function prototype control or C++ class interface control, you can configure
a pair of model step function arguments, an input and an output, to allow the code
generator to reuse their buffers. This merging of input and output can eliminate buffers
in the generated code. The following requirements apply to combining model step
function input and output arguments:

• The input and output arguments must be assigned the same argument name.
• The corresponding inport and outport blocks must have the same data type and

sampling rate.

Additionally, the following limitations apply to combining model step function input and
output arguments:

• The sample rate of the inport and outport blocks must be the same as the base rate of
the model.

• The outport cannot be driven by a conditionally-executed subsystem.
• The outport must be driven by a single, nonvirtual block output. For example, it

cannot be connected to a Mux block, which merges multiple buffers.

To configure model step function I/O arguments to allow buffer reuse:

1 In the Configuration Parameters dialog box, select the Code Generation >
Interface pane. To initiate C function prototype control, click the Configure Model
Functions button. To initiate C++ class interface control, click the Configure C++
Class Interface button.

2 Navigate to the view that allows you to modify model step function I/O arguments
– Model specific C prototypes view for C function prototype control or I/O
arguments step method for C++ class interface control.

3 Select an inport/outport pair, configure their Category and Argument Name
settings to match, and make sure that Category is not set to Value. Set Qualifier
to none for both ports.

 C++ Class Interface Control

12-45

When you generate code from the model, the arguments are combined in the function
prototype. For example:

The shared argument appears in inport read code and outport write code. For example:

12 Function and Class Interfaces

12-46

Configure C++ Class Interfaces for Nonvirtual Subsystems

You can configure C++ class interfaces for right-click builds of nonvirtual subsystems in
Simulink models, if the following requirements are met:

• The model is configured for the C++ language and C++ class code interface
packaging.

• The subsystem is convertible to a Model block using the function
Simulink.SubSystem.convertToModelReference. For referenced
model conversion requirements, see the Simulink reference page
Simulink.SubSystem.convertToModelReference.

To configure C++ class interfaces for a subsystem that meets the requirements:

1 Open the containing model and select the subsystem block.
2 Enter the following MATLAB command:

RTW.configSubsystemBuild(gcb)

where gcb is the Simulink function gcb, returning the full block path name of the
current block.

This command opens a subsystem equivalent of the Configure C++ class interface
dialog sequence that is described in detail in the preceding section, “Configure Step
Method for Your Model Class” on page 12-37. (For more information about using
the MATLAB command, see RTW.configSubsystemBuild.)

3 Use the Configure C++ class interface dialog boxes to configure C++ class settings for
the subsystem.

4 Right-click the subsystem and select C/C++ Code > Build This Subsystem.

 C++ Class Interface Control

12-47

5 When the subsystem build completes, you can examine the C++ class interfaces in
the generated files and the HTML code generation report.

Customize C++ Class Interfaces Programmatically

If you select the Code interface packaging option C++ class for your model, you
can use the C++ class interface control functions (listed in C++ Class Interface Control
Functions) to programmatically configure the step method for your model class.

Typical uses of these functions include:

• Create and validate a new step method interface, starting with default
configuration information from your Simulink model

1 Create a model-specific C++ class interface with obj =
RTW.ModelCPPVoidClass or obj = RTW.ModelCPPArgsClass, where obj
returns a handle to an newly created, empty C++ class interface.

2 Attach the C++ class interface to your loaded ERT-based Simulink model using
attachToModel.

3 Get default C++ class interface configuration information from your model using
getDefaultConf.

4 Use the Get and Set functions listed in C++ Class Interface Control Functions
to test or reset the model class name and model step method name. Additionally,
if you are using the I/O arguments style step method, you can test and reset
argument names, argument positions, argument categories, and argument type
qualifiers.

5 Validate the C++ class interface using runValidation. (If validation fails,
use the error message information thatrunValidation returns to address the
issues.)

6 Save your model and then generate code using the rtwbuild function.
• Modify and validate an existing step method interface for a Simulink model

1 Get the handle to an existing model-specific C++ class interface that
is attached to your loaded ERT-based Simulink model using obj =
RTW.getClassInterfaceSpecification(modelName), where modelName
is a string specifying the name of a loaded ERT-based Simulink model, and obj
returns a handle to a C++ class interface attached to the specified model. If the
model does not have an attached C++ class interface configuration, the function
returns [].

12 Function and Class Interfaces

12-48

2 Use the Get and Set functions listed in C++ Class Interface Control Functions to
test or reset the model class name and model step method name. Additionally, if
the returned interface uses the I/O arguments style step method, you can test and
reset argument names, argument positions, argument categories, and argument
type qualifiers.

3 Validate the C++ class interface using runValidation. (If validation fails, use
the error message information that runValidation returns to address the
issues.)

4 Save your model and then generate code using the rtwbuild function.

Note: You should not use the same model-specific C++ class interface control
object across multiple models. If you do, changes that you make to the step method
configuration in one model propagate to other models, which is usually not desirable.

C++ Class Interface Control Functions

Function Description

attachToModel Attach model-specific C++ class interface to loaded ERT-based
Simulink model

getArgCategory Get argument category for Simulink model port from model-
specific C++ class interface

getArgName Get argument name for Simulink model port from model-
specific C++ class interface

getArgPosition Get argument position for Simulink model port from model-
specific C++ class interface

getArgQualifier Get argument type qualifier for Simulink model port from
model-specific C++ class interface

getClassName Get class name from model-specific C++ class interface
getDefaultConf Get default configuration information for model-specific C++

class interface from Simulink model to which it is attached
getNamespace Get namespace from model-specific C++ class interface
getNumArgs Get number of step method arguments from model-specific C+

+ class interface
getStepMethodName Get step method name from model-specific C++ class interface

 C++ Class Interface Control

12-49

Function Description

RTW.configSubsystemBuild Open GUI to configure C function prototype or C++ class
interface for right-click build of specified subsystem

RTW.getClass-

InterfaceSpecification

Get handle to model-specific C++ class interface control object

runValidation Validate model-specific C++ class interface against Simulink
model to which it is attached

setArgCategory Set argument category for Simulink model port in model-
specific C++ class interface

setArgName Set argument name for Simulink model port in model-specific
C++ class interface

setArgPosition Set argument position for Simulink model port in model-
specific C++ class interface

setArgQualifier Set argument type qualifier for Simulink model port in model-
specific C++ class interface

setClassName Set class name in model-specific C++ class interface
setNamespace Set namespace in model-specific C++ class interface
setStepMethodName Set step method name in model-specific C++ class interface

Configure Step Method for Model Class

The following sample MATLAB script configures the step method for the
rtwdemo_counter model class, using the C++ Class Interface Control Functions.
%% Open the rtwdemo_counter model

rtwdemo_counter

%% Select ert.tlc as the System Target File for the model

set_param(gcs,'SystemTargetFile','ert.tlc')

%% Select C++ as the target language for the model

set_param(gcs,'TargetLang','C++')

%% Select C++ class as the code interface packaging for the model

set_param(gcs,'CodeInterfacePackaging','C++ class')

%% Set required option for I/O arguments style step method (cmd off = GUI on)

set_param(gcs,'ZeroExternalMemoryAtStartup','off')

%% Create a C++ class interface using an I/O arguments style step method

a=RTW.ModelCPPArgsClass

12 Function and Class Interfaces

12-50

%% Attach the C++ class interface to the model

attachToModel(a,gcs)

%% Get the default C++ class interface configuration from the model

getDefaultConf(a)

%% Move the Output port argument from position 2 to position 1

setArgPosition(a,'Output',1)

%% Reset the model step method name from step to StepMethod

setStepMethodName(a,'StepMethod')

%% Change the Input port argument name, category, and qualifier

setArgName(a,'Input','inputArg')

setArgCategory(a,'Input','Pointer')

setArgQualifier(a,'Input','const *')

%% Validate the function prototype against the model

[status,message]=runValidation(a)

%% if validation succeeded, generate code and build

if status

 rtwbuild(gcs)

end

Specify Custom Storage Class for C++ Class Code Generation

To configure a Simulink parameter, signal, or state to use a custom storage class (CSC)
with C++ class code generation:

1 Open an ERT-based model for which Language is set to C++ and Code interface
packaging is set to C++ class.

2 Open the Configuration Parameters dialog box.
3 On the Code Generation > Interface pane, set the Multi-instance code error

diagnostic parameter to a value other than Error.

4 On the Code Generation pane, if the option Ignore custom storage classes is
selected, clear the option.

 C++ Class Interface Control

12-51

Apply the changes.
5 In the model, select a custom storage class for a parameter, signal, or state. For

example, select a signal, open its Properties dialog box, and view its code generation
options. In the Storage class drop-down list, select a custom storage class, and then
configure its attributes. Apply the changes.

Note: C++ class code generation does not support the following CSCs:

• CSCs with Volatile specifications.

• CSCs of type Other, except GetSet.
6 Build the model.
7 In the code generation report, examine the files model.h and model.cpp to observe

the use of CSCs in the generated C++ code.

Model Class Copy Constructor and Assignment Operator

Code generation automatically adds a copy constructor and an assignment operator
to C++ class declarations when required to securely handle pointer members. The
constructor and operator are added as private member functions when both of the
following conditions exist:

• The model option Use dynamic memory allocation for model block
instantiation is set to on.

• The base model contains a Model block. The Model block is not directly or indirectly
within a subsystem for which Function packaging is set to Reusable function.

Under these conditions, the software generates a private copy constructor and
assignment operator to prevent pointer members within the model class from being
copied by other code.

Note: To prevent generation of these functions, consider clearing the option Use
dynamic memory allocation for model block instantiation.

12 Function and Class Interfaces

12-52

The code excerpt below shows generated model.h code for a model class that has a
pointer member. (Look for instances of MiddleClass_ptr). The copy constructor and
assignment operator declarations are shown in bold.
class MiddleClass; // class forward declaration for <S1>/Bottom model instance

typedef MiddleClass* MiddleClass_ptr;

...

// Class declaration for model cppclass_top

class Top {

...

 // private data and function members

 private:

 // Block signals

 BlockIO_cppclass_top cppclass_top_B;

 // Block states

 D_Work_cppclass_top cppclass_top_DWork;

 // Real-Time Model

 RT_MODEL_cppclass_top cppclass_top_M;

 // private member function(s) for subsystem '<Root>/Subsystem'

 void cppclass_top_Subsystem_Init();

 void cppclass_top_Subsystem_Start();

 void cppclass_top_Subsystem();

 //Copy Constructor

 Top(const Top &rhs);

 //Assignment Operator

 Top& operator= (const Top &rhs);

 // model instance variable for '<S1>/Bottom model instance'

 MiddleClass_ptr Bottom_model_instanceMDLOBJ1;

};

C++ Class Interface Control Limitations

• The C++ class code interface packaging option does not support some Simulink
model configuration options. Selecting C++ class disables the following items in the
Configuration Parameters dialog box:

• Identifier format control subpane on the Symbols pane
• File customization template parameter on the Templates pane

Note: The code and data templates on the Templates pane are supported for C+
+ class code generation. However, the following template file features that are

 C++ Class Interface Control

12-53

supported for other language selections are not supported for C++ class generated
code:

• Free-form text outside template sections

• Custom tokens
• TLC commands (<! > tokens)

• Global data placement (custom storage classes only) subpane on the Code
Placement pane

• Memory Sections pane
• Among the data exchange interfaces available on the Interface pane of the

Configuration Parameters dialog box, only the C API interface is supported for C++
class code generation. If you select External mode or ASAP2, code generation fails
with a validation error.

• The I/O arguments style of step method specification supports single-rate models and
multirate single-tasking models, but not multirate multitasking models.

• The Code Generation > Export Functions capability does not support C++ class
code interface packaging.

• If you have a Stateflow license, for a Stateflow chart that resides in a root model
configured to use the I/O arguments step method function specification, and
that uses a model root inport value or calls a subsystem that uses a model root inport
value, you must do one of the following to generate code:

• Clear the Execute (enter) Chart At Initialization check box in the Stateflow
chart.

• Insert a Simulink Signal Conversion block immediately after the root inport. In
the Signal Conversion block parameters dialog box, select Exclude this block
from 'Block reduction' optimization.

• If a model root inport value connects to a Simscape conversion block, you must
insert a Simulink Signal Conversion block between the root inport and the Simscape
conversion block. In the Signal Conversion block parameters dialog box, select
Exclude this block from 'Block reduction' optimization.

• When building a referenced model that is configured to generate a C++ class
interface:

• You must use the I/O arguments step method style of the C++ class interface.
The void-void step method style is not supported for referenced models.

12 Function and Class Interfaces

12-54

• You cannot use a C++ class interface in cases when a referenced model cannot
have a combined output/update function. Cases include a model that

• Has a continuous sample time
• Saves states

 Atomic Subsystem Code

12-55

Atomic Subsystem Code

In this section...

“About Nonvirtual Subsystem Code Generation” on page 12-55
“Configure Subsystem for Generating Modular Function Code” on page 12-56
“Modular Function Code for Nonvirtual Subsystems” on page 12-61
“Nonvirtual Subsystem Modular Function Code Limitations” on page 12-66

About Nonvirtual Subsystem Code Generation

The Embedded Coder software provides a Subsystem Parameters dialog box option,
Function with separate data, that allows you to generate modular function code
for nonvirtual subsystems, including atomic subsystems and conditionally executed
subsystems.

By default, the generated code for a nonvirtual subsystem does not separate a
subsystem's internal data from the data of its parent Simulink model. This can make
it difficult to trace and test the code, particularly for nonreusable subsystems. Also, in
large models containing nonvirtual subsystems, data structures can become large and
potentially difficult to compile.

Function with separate data allows you to generate subsystem function code in which
the internal data for a nonvirtual subsystem is separated from its parent model and is
owned by the subsystem. The subsystem data structure is declared independently from
the parent model data structures. A subsystem with separate data has its own block I/O
and DWork data structure. As a result, the generated code for the subsystem is easier to
trace and test. The data separation also tends to reduce the maximum size of global data
structures throughout the model, because they are split into multiple data structures.

To use the Function with separate data parameter,

• Your model must use an ERT-based system target file (requires a Embedded Coder
license).

• Your subsystem must be configured to be atomic or conditionally executed. For more
information, see “Systems and Subsystems”.

• Your subsystem must use the Nonreusable function setting for Code
Generation > Function packaging.

12 Function and Class Interfaces

12-56

To configure your subsystem for generating modular function code, you invoke the
Subsystem Parameters dialog box and make a series of selections to display and enable
the Function with separate data option. See “Configure Subsystem for Generating
Modular Function Code” on page 12-56 and “Modular Function Code for Nonvirtual
Subsystems” on page 12-61 for details. For limitations that apply, see “Nonvirtual
Subsystem Modular Function Code Limitations” on page 12-66.

For more information about generating code for atomic subsystems, see the sections
“Code Generation of Subsystems” and “Generate Code and Executables for Individual
Subsystem” in the Simulink Coder documentation.

Configure Subsystem for Generating Modular Function Code

This section summarizes the steps to configure a nonvirtual subsystem in a Simulink
model for modular function code generation.

1 Verify that the Simulink model containing the subsystem uses an ERT-based system
target file (see the System target file parameter on the Code Generation pane of
the Configuration Parameters dialog box).

2 In your Simulink model, select the subsystem for which you want to generate
modular function code and launch the Subsystem Parameters dialog box (for
example, right-click the subsystem and select Block Parameters (Subsystem)).
The dialog box for an atomic subsystem is shown below. (In the dialog box for a
conditionally executed subsystem, the dialog box option Treat as atomic unit is
greyed out, and you can skip Step 3.)

 Atomic Subsystem Code

12-57

3 If the Subsystem Parameters dialog box option Treat as atomic unit is available
for selection but not selected, the subsystem is neither atomic nor conditionally
executed. Select the option Treat as atomic unit, which enables Function
packaging on the Code Generation tab. Select the Code Generation tab.

12 Function and Class Interfaces

12-58

4 For the Function packaging parameter, select the value Nonreusable
function. After you make this selection, the Function with separate data option
is displayed.

 Atomic Subsystem Code

12-59

Note: Before you generate nonvirtual subsystem function code with the Function
with separate data option selected, you might want to generate function code with
the option deselected and save the generated function .c and .h files in a separate
directory for later comparison.

5 Select the Function with separate data option. After you make this selection,
additional configuration parameters are displayed.

12 Function and Class Interfaces

12-60

Note: To control the naming of the subsystem function and the subsystem files in the
generated code, you can modify the subsystem parameters Function name options
and File name options.

6 To save your subsystem parameter settings and exit the dialog box, click OK.

This completes the subsystem configuration for generating modular function code.
You can now generate the code for the subsystem and examine the generated files,
including the function .c and .h files named according to your subsystem parameter
specifications. For more information on generating code for nonvirtual subsystems, see
“Code Generation of Subsystems”. For examples of generated subsystem function code,
see “Modular Function Code for Nonvirtual Subsystems” on page 12-61.

 Atomic Subsystem Code

12-61

Modular Function Code for Nonvirtual Subsystems

To illustrate the selection of the Function with separate data option for a nonvirtual
subsystem, the following procedure generates atomic subsystem function code with and
without the option selected and compares the results.

1 Open MATLAB and launch the model rtwdemo_atomic using the MATLAB
command rtwdemo_atomic. Examine the Simulink model.

2 Double-click the SS1 subsystem and examine the contents. (You can close the
subsystem window when you are finished.)

3 Use the Configuration Parameters dialog box to change the model's System target
file from GRT to ERT. For example, from the Simulink window, select Simulation >
Model Configuration Parameters. On the Configuration Parameters dialog box,
select the Code Generation pane and specify ert.tlc for the System target file
parameter. Click OK twice to confirm the change.

4 Create a variant of rtwdemo_atomic that illustrates function code without data
separation.

a In the Simulink view of rtwdemo_atomic, right-click the SS1 subsystem and
select Block Parameters (Subsystem). In the Subsystem Parameters dialog
box, verify that

• On the Main tab, Treat as atomic unit is selected

12 Function and Class Interfaces

12-62

• On the Code Generation tab, User specified is selected for Function
name options

• On the Code Generation tab, myfun is specified for Function name
b In the Subsystem Parameters dialog box, on the Code Generation tab

i Select the value Nonreusable function for the Function packaging
parameter. After this selection, additional parameters and options will
appear.

ii Select the value Use function name for the File name options
parameter. This selection is optional but simplifies the later task of code
comparison by causing the atomic subsystem function code to be generated
into the files myfun.c and myfun.h.

Do not select the option Function with separate data. Click Apply to apply
the changes and click OK to exit the dialog box.

c Save this model variant to a personal work directory, for example,
rtwdemo_atomic1 in d:/atomic.

5 Create a variant of rtwdemo_atomic that illustrates function code with data
separation.

a In the Simulink view of rtwdemo_atomic1 (or rtwdemo_atomic with step
3 reapplied), right-click the SS1 subsystem and select Block Parameters
(Subsystem). In the Subsystem Parameters dialog box, verify that

• On the Main tab, Treat as atomic unit is selected
• On the Code Generation tab, Function is selected for Function

packaging
• On the Code Generation tab, User specified is selected for Function

name options
• On the Code Generation tab, myfun is specified for Function name
• On the Code Generation tab, Use function name is specified for File

name options
b In the Subsystem Parameters dialog box, on the Code Generation tab, select

the option Function with separate data. Click Apply to apply the change and
click OK to exit the dialog box.

c Save this model variant, using a different name than the first variant, to a
personal work directory, for example, rtwdemo_atomic2 in d:/atomic.

 Atomic Subsystem Code

12-63

6 Generate code for each model, rtwdemo_atomic1 and rtwdemo_atomic2.
7 In the generated code directories, compare the model.c/.h and myfun.c/.h files

generated for the two models. (In this example, there are not significant differences
in the generated variants of ert_main.c, model_private.h, model_types.h, or
rtwtypes.h.)

H File Differences for Nonvirtual Subsystem Function Data Separation

The differences between the H files generated for rtwdemo_atomic1 and
rtwdemo_atomic2 help illustrate the selection of the Function with separate data
option for nonvirtual subsystems.

1 Selecting Function with separate data causes typedefs for subsystem data to be
generated in the myfun.h file for rtwdemo_atomic2:

/* Block signals for system '<Root>/SS1' */

typedef struct {

 real_T Integrator; /* '<S1>/Integrator' */

} rtB_myfun;

/* Block states (auto storage) for system '<Root>/SS1' */

typedef struct {

 real_T Integrator_DSTATE; /* '<S1>/Integrator' */

} rtDW_myfun;

By contrast, for rtwdemo_atomic1, typedefs for subsystem data belong to the
model and appear in rtwdemo_atomic1.h:

/* Block signals (auto storage) */

typedef struct {

...

 real_T Integrator; /* '<S1>/Integrator' */

} BlockIO_rtwdemo_atomic1;

/* Block states (auto storage) for system '<Root>' */

typedef struct {

 real_T Integrator_DSTATE; /* '<S1>/Integrator' */

} D_Work_rtwdemo_atomic1;

2 Selecting Function with separate data generates the following external
declarations in the myfun.h file for rtwdemo_atomic2:
/* Extern declarations of internal data for 'system '<Root>/SS1'' */

extern rtB_myfun rtwdemo_atomic2_myfunB;

12 Function and Class Interfaces

12-64

extern rtDW_myfun rtwdemo_atomic2_myfunDW;

extern void myfun_initialize(void);

By contrast, the generated code for rtwdemo_atomic1 contains model-level
external declarations for the subsystem's BlockIO and D_Work data, in
rtwdemo_atomic1.h:

/* Block signals (auto storage) */

extern BlockIO_rtwdemo_atomic1 rtwdemo_atomic1_B;

/* Block states (auto storage) */

extern D_Work_rtwdemo_atomic1 rtwdemo_atomic1_DWork;

C File Differences for Nonvirtual Subsystem Function Data Separation

The differences between the C files generated for rtwdemo_atomic1 and
rtwdemo_atomic2 illustrate the selection of the Function with separate data option
for nonvirtual subsystems.

1 Selecting Function with separate data causes a separate subsystem
initialize function, myfun_initialize, to be generated in the myfun.c file for
rtwdemo_atomic2:

void myfun_initialize(void) {

 {

 ((real_T*)&rtwdemo_atomic2_myfunB.Integrator)[0] = 0.0;

 }

 rtwdemo_atomic2_myfunDW.Integrator_DSTATE = 0.0;

}

The subsystem initialize function in myfun.c is invoked by the model initialize
function in rtwdemo_atomic2.c:

/* Model initialize function */

void rtwdemo_atomic2_initialize(void)

{

...

 /* Initialize subsystem data */

 myfun_initialize();

}

 Atomic Subsystem Code

12-65

By contrast, for rtwdemo_atomic1, subsystem data is initialized by the model
initialize function in rtwdemo_atomic1.c:

/* Model initialize function */

void rtwdemo_atomic1_initialize(void)

{

...

 /* block I/O */

 {

 ...

 ((real_T*)&rtwdemo_atomic1_B.Integrator)[0] = 0.0;

 }

 /* states (dwork) */

 rtwdemo_atomic1_DWork.Integrator_DSTATE = 0.0;

...

}

2 Selecting Function with separate data generates the following declarations in the
myfun.c file for rtwdemo_atomic2:

/* Declare variables for internal data of system '<Root>/SS1' */

rtB_myfun rtwdemo_atomic2_myfunB;

rtDW_myfun rtwdemo_atomic2_myfunDW;

By contrast, the generated code for rtwdemo_atomic1 contains model-
level declarations for the subsystem's BlockIO and D_Work data, in
rtwdemo_atomic1.c:

/* Block signals (auto storage) */

BlockIO_rtwdemo_atomic1 rtwdemo_atomic1_B;

/* Block states (auto storage) */

D_Work_rtwdemo_atomic1 rtwdemo_atomic1_DWork;

3 Selecting Function with separate data generates identifier naming that reflects
the subsystem orientation of data items. Notice the references to subsystem
data in subsystem functions such as myfun and myfun_update or in the
model's model_step function. For example, compare this code from myfun for
rtwdemo_atomic2

12 Function and Class Interfaces

12-66

/* DiscreteIntegrator: '<S1>/Integrator' */

rtwdemo_atomic2_myfunB.Integrator = rtwdemo_atomic2_myfunDW.Integrator_DSTATE;

to the corresponding code from myfun for rtwdemo_atomic1.
/* DiscreteIntegrator: '<S1>/Integrator' */

rtwdemo_atomic1_B.Integrator = rtwdemo_atomic1_DWork.Integrator_DSTATE;

Nonvirtual Subsystem Modular Function Code Limitations

The nonvirtual subsystem option Function with separate data has the following
limitations:

• The Function with separate data option is available only in ERT-based Simulink
models (requires a Embedded Coder license).

• The nonvirtual subsystem to which the option is applied cannot have multiple sample
times or continuous sample times; that is, the subsystem must be single-rate with a
discrete sample time.

• The nonvirtual subsystem cannot contain continuous states.
• The nonvirtual subsystem cannot output function call signals.
• The nonvirtual subsystem cannot contain noninlined S-functions.
• The generated files for the nonvirtual subsystem will reference model-wide header

files, such as model.h and model_private.h.
• The Function with separate data option is incompatible with the Classic

call interface option, located on the Code Generation > Interface pane of the
Configuration Parameters dialog box. Selecting both generates an error.

• The Function with separate data option is incompatible with setting Code
interface packaging to Reusable function (Code Generation > Interface
pane). Selecting both generates an error.

13

Memory Sections

• “About Memory Sections” on page 13-2
• “Requirements for Defining Memory Sections” on page 13-3
• “Define Memory Sections” on page 13-5
• “Configure Memory Sections” on page 13-9
• “Declare Constant Data as Volatile” on page 13-10
• “Apply Memory Sections” on page 13-13
• “Generated Code with Memory Sections” on page 13-21
• “Model-Level Data Structures” on page 13-23

13 Memory Sections

13-2

About Memory Sections

What Are Memory Sections?

Every custom storage class has an associated memory section definition. A memory
section is a named collection of properties related to placement of an object in memory;
for example, in RAM, ROM, or flash memory. Memory section properties let you specify
storage directives for data objects. For example, you can specify const declarations, or
compiler-specific #pragma statements for allocation of storage in ROM or flash memory
sections.

The Embedded Coder software provides a memory section capability that allows you to
insert comments and pragmas and to qualify constants as volatile in generated code
for

• Data in custom storage classes
• Model-level functions
• Model-level internal data
• Subsystem functions
• Subsystem internal data

Pragmas inserted into generated code can surround

• A contiguous block of function or data definitions
• Each function or data definition separately

When pragmas surround each function or data definition separately, the text of each
pragma can contain the name of the definition to which it applies.

To see an example of memory sections, type rtwdemo_memsec at the MATLAB command
line.

 Requirements for Defining Memory Sections

13-3

Requirements for Defining Memory Sections

Before you can define memory sections, you must do the following:

1 Set the Simulink model's code generation target to an embedded target such as
ert.tlc.

2 To create packages, specify package properties, or create classes, including custom
storage classes, see “Define Data Classes” in the Simulink documentation.

See also the instructions that appear when you click the Custom Storage Classes
tab.

3 If you need to specify custom storage class properties,

a Choose View > Model Explorer in the model window.

The Model Explorer appears.
b Choose Tools > Custom Storage Class Designer in the Model Explorer

window.

A notification box appears that states Please Wait ... Finding Packages. After
a brief pause, the notification box closes and the Custom Storage Class Designer
appears.

c Select the Custom Storage Class tab. The Custom Storage Class pane
initially looks like this:

13 Memory Sections

13-4

d Use the Custom Storage Class pane to select a writable package and specify
custom storage class properties. Instructions for using this pane appear in
“Design Custom Storage Classes and Memory Sections”.

 Define Memory Sections

13-5

Define Memory Sections

In this section...

“Edit Memory Section Properties” on page 13-5
“Specify the Memory Section Name” on page 13-6
“Specify a Qualifier for Custom Storage Class Data Definitions” on page 13-7
“Specify Comment and Pragma Text” on page 13-7
“Surround Individual Definitions with Pragmas” on page 13-7
“Include Identifier Names in Pragmas” on page 13-8

Edit Memory Section Properties

After you have satisfied the requirements in “Requirements for Defining Memory
Sections” on page 13-3, you can define memory sections and specify their properties. To
create new memory sections or specify memory section properties,

1 Choose View > Model Explorer in the model window.

The Model Explorer appears.
2 Choose Tools > Custom Storage Class Designer in the Model Explorer window.

A notification box appears that states Please Wait ... Finding Packages. After
a brief pause, the notification box closes and the Custom Storage Class Designer
appears.

3 Click the Memory Section tab of the Custom Storage Class Designer. The Memory
Section pane initially looks like this:

13 Memory Sections

13-6

4 If you intend to create or change memory section definitions, use the Select
package field to select a writable package.

The rest of this section assumes that you have selected a writable package, and describes
the use of the Memory section subpane on the lower left. For descriptions of the other
subpanes, instructions for validating memory section definitions, and other information,
see “Define Memory Sections” on page 13-5.

Specify the Memory Section Name

To specify the name of a memory section, use the Name field. A memory section name
must be a legal MATLAB identifier.

 Define Memory Sections

13-7

Specify a Qualifier for Custom Storage Class Data Definitions

To specify a qualifier for custom storage class data definitions in a memory section, enter
the components of the qualifier below the Name field.

• To specify const, check Is const.
• To specify volatile, check Is volatile.
• To specify anything else (e.g., static), enter the text in the Qualifier field.

The qualifier will appear in generated code with its components in the same left-to-
right order in which their definitions appear in the dialog box. A preview appears in the
Pseudocode preview subpane on the lower right.

Note: Specifying a qualifier affects only custom storage class data definitions. The code
generator omits the qualifier from other definition categories.

Specify Comment and Pragma Text

To specify a comment, prepragma, or postpragma for a memory section, enter the
comment in the text boxes on the left side of the Custom Storage Class Designer. In the
text boxes, you can type multiple lines separated by ordinary Returns.

Surround Individual Definitions with Pragmas

If the Pragma surrounds field for a memory section specifies Each variable, the
code generator will surround each definition in a contiguous block of definitions with the
comment, prepragma, and postpragma defined for the section.

If the Pragma surrounds field for a memory section specifies All variables, the
code generator will insert the comment and prepragma for the section before the
first definition in a contiguous block of custom storage class data definitions, and the
postpragma after the last definition in the block.

Note: Specifying All variables affects only custom storage class data definitions. For
other definition categories, the code generator surrounds each definition separately
regardless of the value of Pragma surrounds.

13 Memory Sections

13-8

Include Identifier Names in Pragmas

When pragmas surround each separate definition in a contiguous block, you can include
the string %<identifier> in a pragma. The string must appear without surrounding
quotes.

• When %<identifier> appears in a prepragma, the code generator will substitute
the identifier from the subsequent function or data definition.

• When %<identifier> appears in a postpragma, the code generator will substitute
the identifier from the previous function or data definition.

You can use %<identifier> with pragmas only when pragmas to surround each
variable. The Validate phase will report an error if you violate this rule.

Note: Although %<identifier> looks like a TLC variable, it is not: it is just a keyword
that directs the code generator to substitute the applicable data definition identifier
when it outputs a pragma. TLC variables cannot appear in pragma specifications in the
Memory Section pane.

 Configure Memory Sections

13-9

Configure Memory Sections

You configure memory sections by using the Code Generation > Memory Sections
pane of the Configuration Parameters dialog box.

To... Select...

Specify the package that contains memory
sections that you want to apply

The name of a package for Package. Click
Refresh package list to refresh the list of
available packages in your configuration.

Apply memory sections to initialize/start and
terminate functions

A value for Initialize/Terminate.

Apply memory sections to step, run-time
initialization, derivative, enable, and disable
functions

A value for Execution.

Apply memory sections to constant parameters,
constant block I/O, zero representation, and real-
time model data structure

A value for Constants.

Apply memory sections to root inputs and root
outputs

A value for Inputs/Outputs.

Apply memory sections to block I/O, D-work
vectors, and zero-crossings

A value for Internal data.

Apply memory sections to parameters A value for Parameters.

The interface checks whether the specified package is on the MATLAB path and that the
selected memory sections are in the package. The results of this validation appear in the
field Validation results.

13 Memory Sections

13-10

Declare Constant Data as Volatile

In the C language, the value of data declared with the storage type qualifier, volatile,
can be read from memory and written back to memory when changed without compiler
control or detection. Examples of use include variables for initialization at system power-
up or for system clock updates.

You can add the volatile qualifier to type definitions generated in code for model
constant block I/O, constant parameters, and ground data (zero representation).

To add the volatile qualifier to type definitions, you must configure your model as
follows:

• Enable inline parameters
• Specify an ERT target
• Set the memory section for constant data to MemVolatile or MemConstVolatile

If you choose to add the volatile qualifier to type definitions in your generated code,
note the following:

• If constant data that is qualified with volatile is passed by pointer, the code
generator casts away the volatility. This occurs because generated functions assume
that data values do not change during execution and, therefore, pass their arguments
as const * (not const volatile *).

• If a variable must be declared const and you specify MemVolatile, the code
generator declares the variable with the const and volatile qualifiers.

• If you set Constants to MemConst or MemConstVolatile, and a variable cannot be
declared as constant data, a TLC warning appears and the code generator does not
qualify the variable with const.

Consider the following simple lookup table model.

1 On the Configuration Parameters dialog box, in the Optimization > Signals and
Parameters pane, select Inline parameters.

 Declare Constant Data as Volatile

13-11

2 In the Code Generation pane, set System target file to ert.tlc.
3 In the Code Generation > Memory Sections pane, set Package to Simulink or

mpt, and Constants to MemConstVolatile.
4 Open the Signal Properties dialog box for signal INPUT. On the Code

Generation tab, set the Package to Simulink or mpt and the Storage class to
ExportedGlobal for storing state in a global variable.

5 Generate code. You should see the volatile qualifier in the generated files
model_data.c and model.h.

model_data.c

/* Constant parameters (auto storage) */

/* ConstVolatile memory section */

const volatile ConstParam_simple_lookup simple_lookup_ConstP = {

 /* Expression: [-5:5]

 * Referenced by: '<Root>/Lookup Table'

 */

 { -5.0, -4.0, -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0 },

 /* Expression: tanh([-5:5])

 * Referenced by: '<Root>/Lookup Table'

 */

 { -0.99990920426259511, -0.999329299739067,

 -0.99505475368673046, -0.9640275800758169,

 -0.76159415595576485, 0.0, 0.76159415595576485,

 0.9640275800758169, 0.99505475368673046,

 0.999329299739067, 0.99990920426259511 }

};

model.h

/* Real-time Model Data Structure */

struct RT_MODEL_simple_lookup {

 const char_T * volatile errorStatus;

};

/* Constant parameters (auto storage) */

extern const volatile ConstParam_simple_lookup simple_lookup_ConstP;

Also note in the model.c file that a typecast is inserted in the rt_Lookup function
call, removing the volatile qualifier.

/* Lookup: '<Root>/Lookup Table' incorporates:

13 Memory Sections

13-12

 * Inport: '<Root>/In1'

 */

OUTPUT = rt_Lookup(((const real_T*)

 &simple_lookup_ConstP.LookupTable_XData[0]), 11, INPUT, ((

 const real_T*) &simple_lookup_ConstP.LookupTable_YData[0]));

 Apply Memory Sections

13-13

Apply Memory Sections

In this section...

“Assign Memory Sections to Custom Storage Classes” on page 13-13
“Apply Memory Sections to Model-Level Functions and Internal Data” on page 13-15
“Apply Memory Sections to Atomic Subsystems” on page 13-17

Assign Memory Sections to Custom Storage Classes

To assign a memory section to a custom storage class,

1 Choose View > Model Explorer in the model window.

The Model Explorer appears.
2 Choose Tools > Custom Storage Class Designer in the Model Explorer window.

A notification box appears that states Please Wait ... Finding Packages. After
a brief pause, the notification box closes and the Custom Storage Class Designer
appears.

3 Select the Custom Storage Class tab. The Custom Storage Class pane initially
looks like this:

13 Memory Sections

13-14

4 Use the Select package field to select a writable package. The rest of this section
assumes that you have selected a writable package.

5 Select the desired custom storage class in the Custom storage class definitions
pane.

6 Select the desired memory section from the Memory section pull-down.
7 Click Apply to apply changes to the open copy of the model; Save to apply changes

and save them to disk; or OK to apply changes, save changes, and close the Custom
Storage Class Designer.

Generated code for data definitions in the specified custom storage class are enclosed
in the pragmas of the specified memory section. The pragmas can surround contiguous
blocks of definitions or each definition separately, as described in “Surround Individual
Definitions with Pragmas” on page 13-7. For more information, see “Design Custom
Storage Classes and Memory Sections”.

 Apply Memory Sections

13-15

Note: The code generator does not generate a pragma around definitions or declarations
for data that has the following built-in storage classes:

• ExportedGlobal

• ImportedExtern

• ImportedExternPointer

The code generator treats data with these built-in storage classes like custom storage
classes without a specified memory section.

Apply Memory Sections to Model-Level Functions and Internal Data

When using code generation software, you can apply memory sections to the following
categories of model-level functions:

Function Category Function Subcategory

Initialize/StartInitialize/Terminate functions
Terminate
Step functions
Run-time initialization
Derivative
Enable

Execution functions

Disable

When using code generation software, you can apply memory sections to the following
categories of internal data:

Data Category Data Definition Data Purpose

model_constP Constant parameters
model_constB Constant block I/O
model_constZ Zero representation

Constants

model_constM Real-time model data
structure

13 Memory Sections

13-16

Data Category Data Definition Data Purpose

model_U Root inputsInput/Output
model_Y Root outputs
model_B Block I/O
model_D D-work vectors

Internal data

model_Zero Zero-crossings
Parameters model_P Parameters

Memory section specifications for model-level functions and internal data apply to the top
level of the model and to its subsystems. However, these specifications are not applicable
to atomic subsystems that contain overriding memory section specifications, as described
in “Apply Memory Sections to Atomic Subsystems” on page 13-17.

To specify memory sections for model-level functions or internal data,

1 Open the Configuration Parameters dialog box and select Code Generation >
General.

2 Specify the System target file as an ERT target, such as ert.tlc .
3 Select Memory Sections. The Memory Sections pane looks like this:

 Apply Memory Sections

13-17

4 Initially, the Package field specifies ---None--- and the pull-down lists only built-
in packages. If you have defined packages of your own, click Refresh package list.
This action adds user-defined packages on your search path to the package list.

5 In the Package pull-down, select the package that contains the memory sections
that you want to apply.

6 In the pull-down for each category of internal data and model-level function, specify
the memory section that you want to apply to that category. Accepting or specifying
Default omits specifying memory section for that category.

7 Click Apply to save changes to the package and memory section selections.

Apply Memory Sections to Atomic Subsystems

For atomic subsystem whose generated code format is Function or Reusable
Function, you can specify memory sections for functions and internal data that exist in
that code format. Such specifications override model-level memory section specifications.
Such overrides apply only to the atomic subsystem itself, not to subsystems within it.

13 Memory Sections

13-18

Subsystems of an atomic subsystem inherit memory section specifications from the
containing model, not from the containing atomic subsystem.

To specify memory sections for an atomic subsystem,

1 Right-click the subsystem in the model window.
2 Choose Subsystem Parameters from the context menu. The Function Block

Parameters: Subsystem dialog box appears.
3 Select the Treat as atomic unit checkbox. If it is not selected, you cannot specify

memory sections for the subsystem.

For an atomic system, on the Code Generation tab, you can use the Function
packaging field to control the format of the generated code.

4 Specify Function packaging as Nonreusable function or Reusable
function. Otherwise, you cannot specify memory sections for the subsystem.

5 If the code format is Function and you want separate data, check Function with
separate data.

The Code Generation tab now shows applicable memory section options. The
available options depend on the values of Function packaging and the Function
with separate data check box. When the former is Nonreusable function and
the latter is checked, the pane looks like this:

 Apply Memory Sections

13-19

6 In the pull-down for each available definition category, specify the memory section
that you want to apply to that category.

• Selecting Inherit from model inherits the corresponding selection from the
model level (not parent subsystem).

• Selecting Default specifies that the category does not have an associated
memory section, overriding model-level specifications for that category.

7 Click Apply to save changes, or OK to save changes and close the dialog box.

Caution If you use Build This Subsystem or Build Selected Subsystem to generate
code for an atomic subsystem that specifies memory sections, the code generator ignores
the subsystem-level specifications and uses the model-level specifications instead.
The generated code is the same as if the atomic subsystem specified Inherit from
model for every category of definition. For information about building subsystems, see
“Generate Code and Executables for Individual Subsystem”.

13 Memory Sections

13-20

It is not possible to specify the memory section for a subsystem in a library. However,
you can specify the memory section for the subsystem after you have copied it into a
Simulink model. This is because in the library it is unknown what code generation target
will be used. You can copy a library block into many different models with different code
generation targets and different memory sections available.

 Generated Code with Memory Sections

13-21

Generated Code with Memory Sections

Sample ERT-Based Model with Subsystem

The next figures show an ERT-based Simulink model that defines one subsystem,
mySubsystem, and then the contents of that subsystem.

Assume that the subsystem is atomic. On the Code Generation tab, the Function
packaging parameter is Reusable function. Memory sections have been created and
assigned as shown in the next two tables; here, data memory sections specify Pragma
surrounds to be Each variable.

Model-Level Memory Section Assignments and Definitions

Section Assignment Section Name Field Name Field Value

Prepragma #pragma IO_beginInput/Output MemSect1

Postpragma #pragma IO-end

Prepragma #pragma InData-begin(%<identifier>)Internal data MemSect2

Postpragma #pragma InData-end

Prepragma #pragma Parameters-beginParameters MemSect3

Postpragma #pragma Parameters-end

Prepragma #pragma InitTerminate-beginInitialize/
Terminate

MemSect4

Postpragma #pragma InitTerminate-end

13 Memory Sections

13-22

Section Assignment Section Name Field Name Field Value

Prepragma #pragma ExecFunc-begin(%<identifier>)Execution
functions

MemSect5

Postpragma #pragma ExecFunc-begin(%<identifier>)

Subsystem-Level Memory Section Assignments and Definitions

Section Assignment Section Name Field Name Field Value

Prepragma #pragma DATA_SEC(%<identifier>,

"FAST_RAM")

Execution
functions

MemSect6

Postpragma

Given the preceding specifications and definitions, the code generator would create the
following code, with minor variations depending on the current version of the Target
Language Compiler.

 Model-Level Data Structures

13-23

Model-Level Data Structures

#pragma IO-begin

ExternalInputs_mySample mySample_U;

#pragma IO-end

#pragma IO-begin

ExternalOutputs_mySample mySample_Y;

#pragma IO-end

#pragma InData-begin(mySample_B)

BlockIO_mySample mySample_B;

#pragma InData-end

#pragma InData-begin(mySample_DWork)

D_Work_mySample mySample_DWork;

#pragma InData-end

#pragma InData-begin(mySample_M_)

RT_MODEL_mySample mySample_M_;

#pragma InData-end

#pragma InData-begin(mySample_M)

RT_MODEL_mySample *mySample_M = &mySample_M_;

#pragma InData-end

#pragma Parameters-begin

Parameters_mySample mySample_P = {

 0.0 , {2.3}

};

#pragma Parameters-end

Model-Level Functions

#pragma ExecFunc-begin(mySample_step)

void mySample_step(void)

{

 real_T rtb_UnitDelay;

 rtb_UnitDelay = mySample_DWork.UnitDelay_DSTATE;

 mySubsystem(rtb_UnitDelay, &mySample_B.mySubsystem;,

 (rtP_mySubsystem *) &mySample_P.mySubsystem);

 mySample_Y.Out1_o = mySample_B.mySubsystem.Gain;

 mySample_DWork.UnitDelay_DSTATE = mySample_U.In1;

13 Memory Sections

13-24

}

#pragma ExecFunc-end(mySample_step)

#pragma InitTerminate-begin

void mySample_initialize(void)

{

 rtmSetErrorStatus(mySample_M, (const char_T *)0);

 {

 ((real_T*)&mySample_B.mySubsystem.Gain)[0] = 0.0;

 }

 mySample_DWork.UnitDelay_DSTATE = 0.0;

 mySample_U.In1 = 0.0;

 mySample_Y.Out1_o = 0.0;

 mySample_DWork.UnitDelay_DSTATE = mySample_P.UnitDelay_X0;

}

#pragma InitTerminate-end

Subsystem Function

Because the subsystem specifies a memory section for execution functions that overrides
that of the parent model, subsystem code looks like this:

/* File: mySubsystem.c */

#pragma DATA_SEC(mySubsystem, “FAST_RAM”)

void mySubsystem(real_T rtu_In1,

rtB_mySubsystem *localB,

rtP_mySubsystem *localP)

{

 localB->Gain = rtu_In1 * localP->Gain_Gain;

}

If the subsystem had not defined its own memory section for execution functions, but
inherited that of the parent model, the subsystem code would have looked like this:

/* File: mySubsystem.c */

#pragma ExecFunc-begin(mySubsystem)

void mySubsystem(real_T rtu_In1,

rtB_mySubsystem *localB,

rtP_mySubsystem *localP)

{

 localB->Gain = rtu_In1 * localP->Gain_Gain;

}

 Model-Level Data Structures

13-25

#pragma ExecFunc-end(mySubsystem)

Code Generation

14

Configuration

• “Application Objectives” on page 14-2
• “High-Level Code Generation Objectives” on page 14-3
• “Determine Model Configuration for Specified Objectives” on page 14-5
• “Configure Model for Code Generation Objectives Using Code Generation Advisor” on

page 14-6
• “Configure Model for Code Generation Objectives Using Configuration Parameters

Dialog Box” on page 14-10
• “Configure Code Generation Objectives Programmatically” on page 14-14
• “Check Objectives in Referenced Models” on page 14-15
• “Checking Model and Configuration with Model Advisor” on page 14-16
• “Check Model During Code Generation” on page 14-17
• “Create Custom Objectives” on page 14-18
• “Code Generation Targets” on page 14-24
• “Configuration Variations” on page 14-32
• “Wizard” on page 14-33

14 Configuration

14-2

Application Objectives

The first step in applying Embedded Coder configuration options to the application
development process is to consider how your application objectives, particularly with
respect to efficiency, traceability, and safety, map to code generation options in a model
configuration set.

Parameters that you set in the Solver, Data Import/Export, Diagnostics, and Code
Generation panes of the Configuration Parameters dialog box specify the behavior of a
model in simulation and the code generated for the model.

Consider questions such as the following:

• What settings might help you debug your application?
• What is the highest objective for your application — efficiency, traceability, safety

precaution, debugging, or some other criteria?
• What is the second highest objective?
• Can the objective at the start of the project differ from the objective required for the

end result? What tradeoffs can you make?

After you answer these questions, you must:

• Define your objectives in the configuration set. For more information, see “High-Level
Code Generation Objectives” on page 14-3.

• Use the Code Generation Advisor to identify parameter values that are not configured
for the objectives that you selected. For more information, see “Determine Model
Configuration for Specified Objectives” on page 14-5.

 High-Level Code Generation Objectives

14-3

High-Level Code Generation Objectives

Based on your objective selections and prioritization, the Code Generation Advisor checks
your model and suggests changes that you can make to achieve your code generation
objectives.

Depending on the type of application that your model represents, you are likely to have
specific code generation objectives. For example, safety and traceability might be more
critical than efficient use of memory. If you have specific objectives, you can quickly
configure your model to meet those objectives by selecting and prioritizing from these
code generation objectives:

• Execution efficiency (all targets) — Configure code generation settings to achieve fast
execution time.

• ROM efficiency (ERT-based targets) — Configure code generation settings to reduce
ROM usage.

• RAM efficiency (ERT-based targets) — Configure code generation settings to reduce
RAM usage.

• Traceability (ERT-based targets) — Configure code generation settings to provide
mapping between model elements and code.

• Safety precaution (ERT-based targets) — Configure code generation settings to
increase clarity, determinism, robustness, and verifiability of the code.

• Debugging (all targets) — Configure code generation settings to debug the code
generation build process.

• MISRA-C:2004 guidelines (ERT-based targets) — Configure code generation settings
to increase compliance with MISRA-C:2004 guidelines.

• Polyspace (ERT-based targets) — Configure code generation settings to prepare the
code for Polyspace® analysis.

Based on your objective selections and prioritization, the Code Generation Advisor checks
your model and suggests changes that you can make to achieve your code generation
objectives.

Note: If you select the MISRA-C:2004 guidelines code generation objective, the Code
Generation Advisor checks:

• The model configuration settings for compliance with the MISRA-C:2004
configuration setting recommendations.

14 Configuration

14-4

• For blocks that are not supported or recommended for MISRA-C:2004 compliant code
generation.

Setting code generation objectives and running the Code Generation Advisor provides
information on how to meet code generation objectives for your model. The Code
Generation Advisor does not alter the generated code. You can use the Code Generation
Advisor to make the suggested changes to your model. The generated code is changed
only after you modify your model and regenerate code. If you use the Code Generation
Advisor to set code generation objectives and check your model, the generated code
includes comments identifying which objectives you specified, the checks the Code
Generation Advisor ran on the model, and the results of running the checks.

 Determine Model Configuration for Specified Objectives

14-5

Determine Model Configuration for Specified Objectives

You can use the Code Generation Advisor to review your model and identify the
parameters that are not configured for your objective. The Code Generation Advisor
reviews a subset of model configuration parameters. It displays the results in the Check
model configuration settings against code generation objectives check.

The Code Generation Advisor uses the information presented in “Recommended Settings
Summary” to determine the values. When there is a conflict due to multiple objectives,
the higher-priority objective takes precedence.

You can use the Code Generation Advisor to review a model before generating code, or as
part of the code generation process. When you choose to review a model before generating
code, you specify which model, subsystem, or referenced model the Code Generation
Advisor reviews. When you choose to review a model as part of the code generation
process, the Code Generation Advisor reviews the entire system.

14 Configuration

14-6

Configure Model for Code Generation Objectives Using Code
Generation Advisor

This example shows how to use the Code Generation Advisor to check and configure your
model to meet code generation objectives:

1 On the menu bar, select Code > C/C++ Code > Code Generation Advisor.
Alternatively:

•
On the toolbar drop-down list, select Code Generation Advisor.

• Right-click a subsystem, and then select C/C++ Code > Code Generation
Advisor. Go to step 3.

2 In the System Selector window, select the model or subsystem that you want to
review, and then click OK.

3 In the Code Generation Advisor, on the Code Generation Objectives pane, select
the code generation objectives. As you select objectives, on the left pane, the Code
Generation Advisor updates the list of checks it will run on your model. If your
model is configured with an ERT-based target, more objectives are available. For this
example, the model is configured with an ERT-based target. If your objectives are
execution efficiency and traceability, in that priority, do the following:

a In Available objectives, double-click Execution efficiency. Execution
efficiency is added to Selected objectives - prioritized.

b In Available objectives, double-click Traceability. Traceability is added
to Selected objectives - prioritized below Execution efficiency.

 Configure Model for Code Generation Objectives Using Code Generation Advisor

14-7

4 Click Run Selected Checks to run the checks listed in the left pane of the Code
Generation Advisor.

5 In the Code Generation Advisor window, review the results for Check model
configuration settings against code generation objectives by selecting it from
the left pane. The results for that check are displayed in the right pane.

Check model configuration settings against code generation objectives
triggers a warning for either of these reasons:

• Parameters are set to values other than the value recommended for the specified
code generation objectives.

• Selected code generation objectives differ from the objectives set in the model.

Click Modify Parameters to set:

• Parameter to the value recommended for the specified code generation objectives.
• Code generation objectives in the model to the objectives specified in the Code

Generation Advisor.

14 Configuration

14-8

6 In the Code Generation Advisor window, review the results for the remaining checks
by selecting them from the left pane. The right pane populates the results for the
checks.

7 After reviewing the check results, you can choose to fix warnings and failures, as
described in “Fix a Model Check Warning or Failure”.

 Configure Model for Code Generation Objectives Using Code Generation Advisor

14-9

Note: When you specify an efficiency or Safety precaution objective, the Code Generation
Advisor includes additional checks.

When you make changes to one check, the other check results could become invalid. You
must run the checks again.

14 Configuration

14-10

Configure Model for Code Generation Objectives Using
Configuration Parameters Dialog Box

This example shows how to configure and check your model to meet code generation
objectives using the Configuration Parameters dialog box:

1 Open the Configuration Parameters dialog box. Select Code Generation.
2 Specify a system target file. If you specify an ERT-based target, more objectives are

available. For this example, choose an ERT-based target such as ert.tlc.
3 Click Set Objectives.
4 In the “Set Objectives — Code Generation Advisor Dialog Box”, specify your

objectives. For example, if your objectives are execution efficiency and traceability, in
that priority, do the following:

a In Available objectives, double-click Execution efficiency. Execution
efficiency is added to Selected objectives - prioritized.

b In Available objectives, double-click Traceability. Traceability is added
to Selected objectives - prioritized below Execution efficiency.

 Configure Model for Code Generation Objectives Using Configuration Parameters Dialog Box

14-11

c Click OK to accept the objectives. In the Configuration Parameters dialog box,
Code Generation > General > Prioritized objectives is updated.

5 On the Configuration Parameters > Code Generation > General pane, click
Check Model.

6 In the System Selector window, select the model or subsystem that you want to
review, and then click OK. The Code Generation Advisor opens and reviews the
model or subsystem that you specified.

7 In the Code Generation Advisor window, review the results by selecting a check from
the left pane. The right pane populates the results for that check.

14 Configuration

14-12

8 After reviewing the check results, you can choose to fix warnings and failures, as
described in “Fix a Model Check Warning or Failure”.

Note: When you specify an efficiency or Safety precaution objective, the Code Generation
Advisor includes additional checks. When you make changes to one check, the other
check results could become invalid and you must run the checks again.

 Configure Model for Code Generation Objectives Using Configuration Parameters Dialog Box

14-13

For more information, see “Set Objectives — Code Generation Advisor Dialog Box”

14 Configuration

14-14

Configure Code Generation Objectives Programmatically

This example shows how to configure code generation objectives by writing a MATLAB
script or entering commands at the command line.

1 Specify a system target file. If you specify an ERT-based target, more objectives are
available. For this example, specify ert.tlc. model_name is the name or handle to
the model.

set_param(model_name, 'SystemTargetFile', 'ert.tlc');

2 Specify your objectives. For example, if your objectives are execution efficiency and
traceability, in that priority, enter:

set_param(model_name, 'ObjectivePriorities',...

{'Execution efficiency', 'Traceability'});

Note: When you specify a GRT-based system target file, you can specify an objective at
the command line. If you specify ROM efficiency, RAM efficiency, Traceability,
MISRA-C:2004 guidelines, Polyspace, or Safety precaution, the build process
changes the objective to Unspecified because you have specified a value that is invalid
when using a GRT-based target.

 Check Objectives in Referenced Models

14-15

Check Objectives in Referenced Models

When you check a model during the code generation process, you must specify the same
objectives in the top model and referenced models. If you specify different objectives for
the top model and referenced model, the build process generates an error.

To specify different objectives for the top model and each referenced model, review the
models separately without generating code.

14 Configuration

14-16

Checking Model and Configuration with Model Advisor

You can use the Model Advisor checks available with Embedded Coder to assess model
readiness for code generation. For information about the Model Advisor, see “Run Model
Checks”. For checks available with Embedded Coder, see “Embedded Coder Checks”.

If you want to check and configure your model for code generation objectives such as
traceability or safety, see “Application Considerations”.

 Check Model During Code Generation

14-17

Check Model During Code Generation

This example shows how to use the Code Generation Advisor to review a model as part of
the code generation process.

1 Specify your code generation objectives.
2 On the Configuration Parameters > Code Generation > General pane, select

one of the following from Check model before generating code:

• On (proceed with warnings)

• On (stop for warnings)

3 If you only want to generate code, select Generate code only; otherwise clear the
check box to build an executable.

4 Apply your changes, and then click Generate Code/Build. The Code Generation
Advisor starts and reviews the top model and subsystems.

If the Code Generation Advisor issues failures or warnings, and you specified:

• On (proceed with warnings) — The Code Generation Advisor window opens
while the build process proceeds. After the build process is complete, you can
review the results.

• On (stop for warnings) — The build process halts and displays the
Diagnostic Viewer. To continue, you must review and resolve the Code
Generation Advisor results or change the Check model before generating
code selection.

5 In the Code Generation Advisor window, review the results by selecting a check from
the left pane. The right pane populates the results for that check.

6 After reviewing the check results, you can choose to fix warnings and failures as
described in “Fix a Model Check Warning or Failure”.

Note: When you specify an efficiency or Safety precaution objective, the Code
Generation Advisor includes additional checks. When you make changes to one of
these checks, the other check results could become invalid and you must run the
check again.

For more information, see “Set Objectives — Code Generation Advisor Dialog Box”

14 Configuration

14-18

Create Custom Objectives

In this section...

“Specify Parameters in Custom Objectives” on page 14-18
“Specify Checks in Custom Objectives” on page 14-19
“Determine Checks and Parameters in Existing Objectives” on page 14-19
“How to Create Custom Objectives” on page 14-21

The Code Generation Advisor reviews your model based on objectives that you specify. If
the predefined efficiency, traceability, Safety precaution, and debugging objectives do not
meet your requirements, you can create custom objectives.

You can create custom objectives by:

• Creating a new objective and adding parameters and checks to a new objective.
• Creating a new objective based on an existing objective, then adding, modifying, and

removing the parameters and checks within the new objective.

Specify Parameters in Custom Objectives

When you create a custom objective, you specify the values of configuration parameters
that the Code Generation Advisor reviews. You can use the following methods:

• addParam — Add parameters and specify the values that the Code Generation
Advisor reviews in Check model configuration settings against code
generation objectives. When you add parameters that have dependencies, the
software includes the dependencies in the list of parameter values that the Code
Generation Advisor reviews.

• modifyInheritedParam — Modify inherited parameter values that the Code
Generation Advisor reviews in Check model configuration settings against code
generation objectives.

• removeInheritedParam — Remove inherited parameters from a new objective
that is based on an existing objective. When a user selects multiple objectives, if
another selected objective includes this parameter, the Code Generation Advisor
reviews the parameter value in Check model configuration settings against
code generation objectives.

 Create Custom Objectives

14-19

Specify Checks in Custom Objectives

Objectives include the Check model configuration settings against code
generation objectives check by default. When you create a custom objective, you
specify the list of additional checks that are associated with the custom objective. You
can use the following methods:

• addCheck — Add checks to the Code Generation Advisor. When a user selects the
custom objective, the Code Generation Advisor displays the check, unless the user
specifies an additional objective with a higher priority that excludes the check.

For example, you might add a check to the Code Generation Advisor to include a
custom check in the automatic model checking process.

• excludeCheck — Exclude checks from the Code Generation Advisor. When a user
selects multiple objectives, if the user specifies an additional objective that includes
this check as a higher priority objective, the Code Generation Advisor displays this
check.

For example, you might exclude a check from the Code Generation Advisor when a
check takes a long time to process.

• removeInheritedCheck — Remove inherited checks from a new objective that is
based on an existing objective. When a user selects multiple objectives, if another
selected objective includes this check, the Code Generation Advisor displays the
check.

For example, you might remove an inherited check, rather than exclude the check,
when the check takes a long time to process, but the check is important for another
objective.

Determine Checks and Parameters in Existing Objectives

When you base a new objective on an existing objective, you can determine what checks
and parameters the existing objective contains. The Code Generation Advisor contains
the list of checks in each objective.

For example, the Efficiency objective includes checks which you can see in the Code
Generation Advisor. To see the checks in the Code Generation Advisor:

1 Open the rtwdemo_rtwecintro model.
2 Specify an ERT-based target.

14 Configuration

14-20

3 On the model toolbar, select Code > C/C++ Code > Code Generation Advisor.
4 In the System Selector window, select the model or subsystem that you want to

review, and then click OK.
5 In the Code Generation Advisor, on the Code Generation Objectives pane, select

the code generation objectives. As you select objectives, on the left pane, the Code
Generation Advisor updates the list of checks it will run on your model. For this
example, select Execution efficiency.

• In Available objectives, double-click Execution efficiency. Execution
efficiency is added to Selected objectives - prioritized.

In the left pane, the Code Generation Advisor lists the checks for the Execution
efficiency objective. The first check, Check model configuration settings against
code generation objectives, lists parameters and values specified by the objective.
For example, the Code Generation Advisor displays the list of parameters and the
recommended values in the Execution efficiency objective. To see the list of
parameters and values:

1 Run Check model configuration settings against code generation objectives.
2 Click Modify Parameters.
3 Rerun the check.

In the check results, the Code Generation Advisor displays the list of parameters and
recommended values for the Execution efficiency objective.

 Create Custom Objectives

14-21

How to Create Custom Objectives

To create a custom objective:

1 Create an sl_customization.m file.

• Specify custom objectives in a single sl_customization.m file only, or the
software generates an error. This issue is true even if you have more than one
sl_customization.m file on your MATLAB path.

• Except for the matlabroot/work folder, do not place an sl_customization.m
file in your root MATLAB folder, or its subfolders. Otherwise, the software
ignores the customizations that the file specifies.

2 Create an sl_customization function that takes a single argument. When
the software invokes the function, the value of this argument is the Simulink
customization manager. In the function:

a Create a handle to the code generation objective, using the
ObjectiveCustomizer constructor.

b Register a callback function for the custom objectives, using the
ObjectiveCustomizer.addCallbackObjFcn method.

c Add a call to execute the callback function, using the
ObjectiveCustomizer.callbackFcn method.

For example:

function sl_customization(cm)

%SL_CUSTOMIZATION objective customization callback

objCustomizer = cm.ObjectiveCustomizer;

index = objCustomizer.addCallbackObjFcn(@addObjectives);

objCustomizer.callbackFcn{index}();

end

3 Create a MATLAB callback function that:

• Creates code generation objective objects using the
rtw.codegenObjectives.Objective constructor.

• Adds, modifies, and removes configuration parameters for each objective using
the addParam, modifyInheritedParam, and removeInheritedParam
methods.

14 Configuration

14-22

• Includes and excludes checks for each objective using the addCheck,
excludeCheck, and removeInheritedCheck methods.

• Registers objectives using the register method.

The following example shows how to create an objective, Reduce RAM Example.
Reduce RAM Example includes five parameters and three checks that the Code
Generation Advisor reviews.

function addObjectives

% Create the custom objective

obj = rtw.codegenObjectives.Objective('ex_ram_1');

setObjectiveName(obj, 'Reduce RAM Example');

% Add parameters to the objective

addParam(obj, 'InlineParams', 'on');

addParam(obj, 'BooleanDataType', 'on');

addParam(obj, 'OptimizeBlockIOStorage', 'on');

addParam(obj, 'EnhancedBackFolding', 'on');

addParam(obj, 'BooleansAsBitfields', 'on');

% Add additional checks to the objective

% The Code Generation Advisor automatically includes 'Check model

% configuration settings against code generation objectives' in every

% objective.

addCheck(obj, 'mathworks.design.UnconnectedLinesPorts');

addCheck(obj, 'mathworks.design.Update');

%Register the objective

register(obj);

end

The following example shows you how to create an objective, My Traceability
Example, based on the existing Traceability objective. The custom objective modifies,
removes, and adds parameters that the Code Generation Advisor reviews. It also
adds and removes checks from the Code Generation Advisor.

function addObjectives

% Create the custom objective from an existing objective

obj = rtw.codegenObjectives.Objective('ex_my_trace_1', 'Traceability');

setObjectiveName(obj, 'My Traceability Example');

% Modify parameters in the objective

modifyInheritedParam(obj, 'GenerateTraceReportSf', 'Off');

removeInheritedParam(obj, 'ConditionallyExecuteInputs');

addParam(obj, 'MatFileLogging', 'On');

% Modify checks in the objective

 Create Custom Objectives

14-23

addCheck(obj, 'mathworks.codegen.SWEnvironmentSpec');

removeInheritedCheck(obj, 'mathworks.codegen.CodeInstrumentation');

%Register the objective

register(obj);

end

4 If you previously opened the Code Generation Advisor, close the model from which
you opened the Code Generation Advisor.

5 Refresh the customization manager. At the MATLAB command line, enter the
sl_refresh_customizations command.

6 Open your model and review the new objectives.

14 Configuration

14-24

Code Generation Targets

In this section...

“About Target Selection” on page 14-24
“Select an ERT Target” on page 14-25
“Customize an ERT Target” on page 14-26
“Configure Support for Numeric Data” on page 14-26
“Configure Support for Time Values” on page 14-26
“Support for Non-inlined S-Functions” on page 14-27
“Configure Model Function Generation and Argument Passing” on page 14-27
“Set Up Support for Code Reuse” on page 14-29
“Configure a Code Replacement Library” on page 14-31

About Target Selection

The first step to configuring a model for code generation is to choose and configure a
code generation target. When you select a target, other model configuration parameters
change automatically to best serve requirements of the target. For example:

• Code interface parameters
• Build process parameters, such as the template make file
• Target hardware parameters, such as word size and byte ordering

Use the Browse button on the Code Generation pane to open the System Target File
Browser (see “Select a Target”. The browser lets you select a preset target configuration
consisting of a system target file, template makefile, and make command.

If you select a target configuration by using the System Target File Browser, your
selection appears in the System target file field (target.tlc).

If you are using a target configuration that does not appear in the System Target File
Browser, enter the name of your system target file in the System target file field. Click
Apply or OK to configure for that target.

“Targets and Code Formats” describes the use of the browser and includes a complete list
of available target configurations.

 Code Generation Targets

14-25

You also can select a system target file programmatically from MATLAB code, as
described in “Select a System Target File Programmatically”.

After selecting a system target, you can modify model configuration parameter settings.

If you want to switch between different targets in a single workflow for different code
generation purposes (for example, rapid prototyping versus product code deployment), set
up different configuration sets for the same model and switch the active configuration set
for the current operation. For more information on how to set up configuration sets and
change the active configuration set, see “Manage a Configuration Set”.

Select an ERT Target

The Browse button in the Target Selection subpane of the Code Generation >
General pane lets you select an ERT target with the System Target File Browser. See
“Targets and Code Formats” for a general discussion of target selection.

The code generator provides variants of the ERT target including the following:

• Default ERT target
• ERT target for generating and building a Visual C++® Solution (.sln) file for the

Visual C++ IDE
• ERT target for generating a Windows® or UNIX® host-based shared library

These targets are based on a common system target file, ert.tlc. They are displayed in
the System Target File Browser as shown in the figure below.

14 Configuration

14-26

You can use the ert_shrlib.tlc target to generate a host-based shared library from
your Simulink model. Selecting this target allows you to generate a shared library
version of your model code for your host platform, either a Windows dynamic link library
(.dll) file or a UNIX shared object (.so) file. This feature can be used to package your
source code securely for easy distribution and shared use.

Customize an ERT Target

For information on customizing ERT targets, see “Target Development”.

Configure Support for Numeric Data

By default, ERT targets support code generation for integer, floating-point, nonfinite, and
complex numbers.

To Generate Code that Supports... Do...

Integer data only Deselect Support floating-point numbers. If noninteger data
or expressions are encountered during code generation, an error
message reports the offending blocks and parameters.

Floating-point data Select Support floating-point numbers.
Nonfinite values (for example,
NaN, Inf)

Select Support floating-point numbers and Support non-
finite numbers .

Complex data Select Support complex numbers .

For more information, see “Code Generation Pane: Interface”.

Configure Support for Time Values

Certain blocks require the value of absolute time (that is, the time from the start of
program execution to the present time) , elapsed time (for example, the time elapsed
between two trigger events), or continuous time. Depending on the blocks used, you
might need to adjust the configuration settings for supported time values.

To... Select...

Generate code that creates
and maintains integer
counters for blocks that use

Support absolute time. For further information on the allocation
and operation of absolute and elapsed timers, see “Absolute and
Elapsed Time Computation” in the Simulink Coder documentation.
If you do not select this parameter and the model includes block that

 Code Generation Targets

14-27

To... Select...

absolute or elapsed time
values (default)

use absolute or elapsed time values, the build process generates an
error.

Generate code for blocks
that rely on continuous time

Support continuous time. If you do not select this parameter
and the model includes continuous-time blocks, the build process
generates an error.

For more information, see “Code Generation Pane: Interface”.

Support for Non-inlined S-Functions

To generate code for noninlined S-Functions in a model, select Support noninlined
S-functions. The generation of noninlined S-functions requires floating-point and
nonfinite numbers. Thus, when you select Support non-inlined S-functions, the ERT
target automatically selects Support floating-point numbers and Support non-
finite numbers.

When you select Support non-finite numbers, the build process generates an error
if the model includes a C MEX S-function that does not have a corresponding TLC
implementation (for inlining code generation).

Note that inlining S-functions is highly advantageous in production code generation, for
example in implementing device drivers. To enforce the use of inlined S-functions for
code generation, clear Support non-inlined S-functions.

When generating code for a model that contains non-inlined S-functions with an ERT
target and either of the following is true:

• On the Code Generation pane, Generate code only is cleared.
• On the Hardware Implementation pane, Test hardware is the same as

production hardware is cleared.

There might be a mismatch between the simulation and code generation results. To avoid
such a mismatch select Test hardware is the same as production hardware or
select Generate code only.

Configure Model Function Generation and Argument Passing

For ERT targets, you can configure how a model's functions are generated and how
arguments are passed to the functions.

14 Configuration

14-28

To... Do...

Generate model function calls that are
compatible with the main program
module of the pre-R2012a GRT target
(grt_main.c or .cpp)

Select Classic call interface and MAT-file logging.
In addition, deselect Suppress error status in real-
time model data structure. Classic call interface
provides a quick way to use code generated in R2012a or
higher with a pre-R2012a GRT-based custom target by
generating wrapper function calls that interface to the
generated code.

Reduce overhead and use more local
variables by combining the output
and update functions in a single
model_step function

Select Single output/update function

Errors or unexpected behavior can occur if a Model block
is part of a cycle and “Single output/update function” is
enabled (the default). See “Model Blocks and Direct Feed
through” for details.

Generate a model_terminate
function for a model not designed to
run indefinitely

Select Terminate function required. For more
information, see the description of model_terminate.

Generate reusable, reentrant code
from a model or subsystem

Select Generate reusable code. See “Set Up Support for
Code Reuse” on page 14-29 for details.

Statically allocate model data
structures and access them directly in
the model code

Deselect Generate reusable code. The generated code
is not reusable or reentrant. See “Entry-Point Functions
and Scheduling” for information on the calling interface
generated for model functions in this case.

Suppress the generation of an error
status field in the real-time model
data structure, rtModel, for example,
if you do not need to log or monitor
error messages

Select Suppress error status in real-time model data
structure. Selecting this parameter can also cause the
rtModel structure to be omitted completely from the
generated code.

When generating code for multiple integrated models, set
this parameter the same for all of the models. Otherwise,
the integrated application might exhibit unexpected
behavior. For example, if you select the option in one
model but not in another, the error status might not be
registered by the integrated application.

Do not select this parameter if you select the MAT-file
logging option. The two options are incompatible.

 Code Generation Targets

14-29

To... Do...

Open the Model Step Functions dialog
box preview and modify the model's
model_step function prototype
(see “Entry-Point Functions and
Scheduling”)

Click Configure Step Function. Based on the Function
specification value you select for your model_step
function (supported values include Default model-step
function and Model specific C prototype), you
can preview and modify the function prototype. Once you
validate and apply your changes, you can generate code
based on your function prototype modifications. For more
information about using the Configure Step Function
button and the Model Step Functions dialog box, see
“Function Prototype Control”.

For more information, see “Code Generation Pane: Interface”.

Set Up Support for Code Reuse

For ERT targets, you can configure how a model reuses code using the Generate
reusable code parameter.

Pass root-level I/O as provides options that control how model inputs and outputs at
the root level of the model are passed to the model_step function.

To... Select...

Pass each root-level model input and output
argument to the model_step function
individually (the default)

Generate reusable code and Pass root-level
I/O as > Individual arguments.

Pack root-level input arguments and root-level
output arguments into separate structures that
are then passed to the model_step function

Generate reusable code and Pass root-level
I/O as > Structure reference

In some cases, selecting Generate reusable code can generate code that compiles
but is not reentrant. For example, if a signal, DWork structure, or parameter data has
a storage class other than Auto, global data structures are generated. To handle such
cases, use the Reusable code error diagnostic parameter to choose the severity levels
for diagnostics.

In some cases, the Embedded Coder software is unable to generate valid and compilable
code. For example, if the model contains one of the following, the code generated would be
invalid.

14 Configuration

14-30

• An S-function that is not code-reuse compliant
• A subsystem triggered by a wide function call trigger

In these cases, the build terminates after reporting the problem.

For more information, see “Code Generation Pane: Interface”.

 Code Generation Targets

14-31

Configure a Code Replacement Library

You can configure the code generator to change the code that it generations for functions
and operators such that the code meets application requirements. Configure the code
generator to apply a code replacement library (CRL) during code generation. If you
have an Embedded Coder license, you can develop and apply custom code replacement
libraries.

For more information about replacing code, using code replacement libraries that
MathWorks provides, see “What Is Code Replacement?” and “Code Replacement
Libraries”. For information about developing code replacement libraries, see “What Is
Code Replacement Customization?” in the Embedded Coder documentation.

14 Configuration

14-32

Configuration Variations

Every model contains one or more named configuration sets that specify model
parameters such as solver options, code generation options, and other choices. A model
can contain multiple configuration sets, but only one configuration set is active at a
time. For more information on configuration sets and how to view and edit them in the
Configuration Parameters dialog box, see “About Model Configurations”.

A configuration set includes options that specify code generation in general. For more
information, see “Configure a Model for Code Generation”. With Embedded Coder and
an ERT target more parameters are available for fine-tuning the generated code with
respect to customizing the appearance and optimizing the generated code.

Multiple configuration sets can be useful in embedded systems development. By defining
multiple configuration sets in a model, you can easily retarget code generation from
that model. For example, one configuration set might specify the default ERT target
with external mode support enabled for rapid prototyping, while another configuration
set might specify the ERT-based target for Visual C++ to generate production code for
deployment of the application. Activation of either configuration set fully reconfigures the
model for that type of code generation.

 Wizard

14-33

Wizard

In this section...

“Configure and Optimize Model with Configuration Wizard Blocks” on page 14-33
“Add a Configuration Wizard Block” on page 14-34
“Use Configuration Wizard Blocks” on page 14-36
“Create a Custom Configuration Wizard Block” on page 14-36

Configure and Optimize Model with Configuration Wizard Blocks

The Embedded Coder software provides a library of Configuration Wizard blocks and
scripts to help you configure and optimize code generation from your models quickly and
easily.

The library provides a Configuration Wizard block you can customize, and four preset
Configuration Wizard blocks.

Block Description

Custom MATLAB file Automatically update active configuration
parameters of parent model using a custom
file

ERT (optimized for fixed-point) Automatically update active configuration
parameters of parent model for ERT fixed-
point code generation

ERT (optimized for floating-point) Automatically update active configuration
parameters of parent model for ERT
floating-point code generation

GRT (debug for fixed/floating-point) Automatically update active configuration
parameters of parent model for GRT fixed-
or floating-point code generation with
debugging enabled

GRT (optimized for fixed/floating-point) Automatically update active configuration
parameters of parent model for GRT fixed-
or floating-point code generation

14 Configuration

14-34

These are shown in the figure below.

When you add one of the preset Configuration Wizard blocks to your model and double-
click it, a predefined MATLAB file script executes and configures parameters of the
model's active configuration set without manual intervention. The preset blocks configure
the options optimally for one of the following cases:

• Fixed-point code generation with the ERT target
• Floating-point code generation with the ERT target
• Fixed/floating-point code generation with TLC debugging options enabled, with the

GRT target.
• Fixed/floating-point code generation with the GRT target

The Custom block is associated with an example MATLAB file script that you can adapt
to your requirements.

You can also set up the Configuration Wizard blocks to invoke the build process after
configuring the model.

Add a Configuration Wizard Block

This section describes how to add one of the preset Configuration Wizard blocks to a
model.

 Wizard

14-35

The Configuration Wizard blocks are available in the Embedded Coder block library. To
use a Configuration Wizard block:

1 Open the model that you want to configure.
2 Open the Embedded Coder library by typing the command rtweclib.
3 The top level of the library is shown below.

4 Double-click the Configuration Wizards icon. The Configuration Wizards sublibrary
opens.

5 Select the Configuration Wizard block you want to use and drag and drop it into
your model. In the figure below, the ERT (optimized for fixed-point)
Configuration Wizard block has been added to the model.

6 You can set up the Configuration Wizard block to invoke the build process after
executing its configuration script. If you do not want to use this feature, skip to the
next step.

14 Configuration

14-36

If you want the Configuration Wizard block to invoke the build process, right-
click on the Configuration Wizard block in your model, and select Mask > Mask
Parameters... from the context menu. Then, select the Invoke build process after
configuration parameter.

7 Click Apply, and close the Mask Parameters dialog box.

Note You should not change the Configure the model for option, unless you want
to create a custom block and script. In that case, see “Create a Custom Configuration
Wizard Block” on page 14-36.

8 Save the model.
9 You can now use the Configuration Wizard block to configure the model, as described

in the next section.

Use Configuration Wizard Blocks

Once you have added a Configuration Wizard block to your model, just double-click the
block. The script associated with the block automatically sets parameters of the active
configuration set that are relevant to code generation (including selection of the target).
You can verify that the options have changed by opening the Configuration Parameters
dialog box and examining the settings.

If the Invoke build process after configuration option for the block was selected, the
script also initiates the code generation and build process.

Note: You can add more than one Configuration Wizard block to your model. This
provides a quick way to switch between configurations.

Create a Custom Configuration Wizard Block

The Custom Configuration Wizard block is shipped with an associated MATLAB file
script, rtwsampleconfig.m. The script is located in the folder matlabroot/toolbox/
rtw/rtw.

Both the block and the script are intended to provide a starting point for customization.
This section describes:

 Wizard

14-37

• How to create a custom Configuration Wizard block linked to a custom script.
• Operation of the example script, and programming conventions and requirements for

a customized script.
• How to run a configuration script from the MATLAB command line (without a block).

Setting Up a Configuration Wizard Block

This section describes how to set up a custom Configuration Wizard block and link it to
a script. If you want to use the block in more than one mode, it is advisable to create a
Simulink library to contain the block.

To begin, make a copy of the example script for later customization:

1 Create a folder to store your custom script. This folder should not be anywhere inside
the MATLAB folder structure (that is, it should not be under matlabroot).

The discussion below refers to this folder as /my_wizards.
2 Add the folder to the MATLAB path. Save the path for future sessions.
3 Copy the example script (matlabroot/toolbox/rtw/rtw/rtwsampleconfig.m)

to the /my_wizards folder you created in the previous steps. Then, rename the
script as desired. The discussion below uses the name my_configscript.m.

4 Open the example script into the MATLAB editor. Scroll to the end of the file and
enter the following line of code:

disp('Custom Configuration Wizard Script completed.');

This statement is used later as a test to verify that your custom block has executed
the script.

5 Save your script and close the MATLAB editor.

The next step is to create a Simulink library and add a custom block to it. Do this as
follows:

1 Open the Embedded Coder library and the Configuration Wizards sublibrary, as
described in “Add a Configuration Wizard Block” on page 14-34.

2 Select New > Library from the File menu of the Configuration Wizards sublibrary
window. An empty library window opens.

3 Select the Custom MATLAB file block from the Configuration Wizards sublibrary
and drag and drop it into the empty library window.

14 Configuration

14-38

4 To distinguish your custom block from the original, edit the Custom MATLAB file
label under the block as desired.

5 Select Save as from the File menu of the new library window; save the library to
the /my_wizards folder, under your library name of choice. In the figure below,
the library has been saved as ex_custom_button, and the block has been labeled
my_wizard MATLAB-file.

The next step is to link the custom block to the custom script:

1 Right-click on the block in your model, and select Mask > Mask Parameters from
the context menu. Notice that the Configure the model for menu is set to Custom.
When Custom is selected, the Configuration function edit field is enabled, so that
you can enter the name of a custom script.

2 Enter the name of your custom script into the Configuration function field. (Do
not enter the .m filename extension, which is implicit.) In the figure below, the script
name my_configscript has been entered into the Configuration function field.
This establishes the linkage between the block and script.

3 Note that by default, the Invoke build process after configuration option is
deselected. You can change the default for your custom block by selecting this option.
For now, leave this option deselected.

4 Click Apply and close the Mask Parameters dialog box.
5 Save the library.

 Wizard

14-39

6 Close the Embedded Coder library and the Configuration Wizards sublibrary. Leave
your custom library open for use in the next step.

Now, test your block and script in a model. Do this as follows:

1 Open the vdp model by typing the command:

vdp

2 Open the Configuration Parameters dialog box and view the options by clicking on
Code Generation in the list in the left pane of the dialog box.

3 Observe that vdp is configured, by default, for the GRT target. Close the
Configuration Parameters dialog box.

4 Select your custom block from your custom library. Drag and drop the block into the
vdp model.

5 In the vdp model, double-click your custom block.
6 In the MATLAB window, you should see the test message you previously added to

your script:

Custom Configuration Wizard Script completed.

This indicates that the custom block executed the script.
7 Reopen the Configuration Parameters dialog box and view the Code Generation

pane again. You should now see that the model is configured for the ERT target.

Before applying further edits to your custom script, proceed to the next section to learn
about the operation and conventions of Configuration Wizard scripts.

14 Configuration

14-40

Create a Configuration Wizard Script

You should create your custom Configuration Wizard script by copying and modifying the
example script, rtwsampleconfig.m. This section provides guidelines for modification.

The Configuration Function

The example script implements a single function without a return value. The function
takes a single argument cs:

function rtwsampleconfig(cs)

The argument cs is a handle to a proprietary object that contains information about the
model's active configuration set. The Simulink software obtains this handle and passes
it in to the configuration function when the user double-clicks a Configuration Wizard
block.

Your custom script should conform to this prototype. Your code should use cs as a “black
box” object that transmits information to and from the active configuration set, using the
accessor functions described below.

Access Configuration Set Parameters

To set parameters or obtain parameter values, use the Simulink set_param and
get_param functions.

Option names are passed in to set_param and get_param as strings specifying an
internal option name. The internal option name may not correspond to the option
label on the GUI (for example, the Configuration Parameters dialog box). The example
configuration accompanies each set_param and get_param call with a comment that
correlates internal option names to GUI option labels. For example:

set_param(cs,'LifeSpan','1'); % Application lifespan (days)

To obtain the current setting of an option in the active configuration set, call get_param.
Pass in the cs object as the first argument, followed by the internal option name. For
example, the following code excerpt tests the setting of the Create code generation
report option:

if strcmp(get_param(cs, 'GenerateReport'), 'on')

 ...

To set an option in the active configuration set, call set_param. Pass in the cs object
as the first argument, followed by one or more parameter/value pairs that specify the

 Wizard

14-41

internal option name and its value. For example, the following code excerpt turns off the
Support absolute time option:

set_param(cs,'SupportAbsoluteTime','off');

Select a Target

A Configuration Wizard script must select a target configuration. The example script
uses the ERT target as a default. The script first stores string variables that correspond
to the required System target file, Template makefile, and Make command
settings:

stf = 'ert.tlc';

tmf = 'ert_default_tmf';

mc = 'make_rtw';

The system target file is selected by passing the cs object and the stf string to the
switchTarget function:

switchTarget(cs,stf,[]);

The template makefile and make command options are set by set_param calls:

set_param(cs,'TemplateMakefile',tmf);

set_param(cs,'MakeCommand',mc);

To select a target, your custom script needs only to set up the string variables stf, tmf,
and mc and pass them to the calls, as above.

Obtain Target and Configuration Set Information

The following utility functions and properties are provided so that your code can obtain
information about the current target and configuration set, with the cs object:

• isValidParam(cs, 'option'): The option argument is an internal option name.
isValidParam returns true if option is a valid option in the context of the active
configuration set.

• getPropEnabled(cs, 'option'): The option argument is an internal option
name. Returns true if this option is enabled (that is, writable).

• IsERTTarget property: Your code can detect whether or not the currently selected
target is derived from the ERT target is selected by checking the IsERTTarget
property, as follows:

 isERT = strcmp(get_param(cs,'IsERTTarget'),'on');

14 Configuration

14-42

This information can be used to determine whether or not the script should configure
ERT-specific options, for example:

if isERT

 set_param(cs,'ZeroExternalMemoryAtStartup','off');

 set_param(cs,'ZeroInternalMemoryAtStartup','off');

 set_param(cs,'InitFltsAndDblsToZero','off');

 set_param(cs,'InlinedParameterPlacement',...

 'NonHierarchical');

 set_param(cs,'NoFixptDivByZeroProtection','on')

end

Invoke a Configuration Wizard Script from the MATLAB Command Prompt

Configuration Wizard scripts can be run from the MATLAB command prompt. (The
Configuration Wizard blocks are provided as a graphical convenience, but are not
essential.)

Before invoking the script, you must open a model and instantiate a cs object to pass in
as an argument to the script. After running the script, you can invoke the build process
with the rtwbuild command. The following example opens, configures, and builds a
model.

open my_model;

cs = getActiveConfigSet ('my_model');

rtwsampleconfig(cs);

rtwbuild('my_model');

15

Code Appearance

• “Add Custom Comments to Generated Code” on page 15-3
• “Add Custom Comments for Signal or Parameter Identifiers” on page 15-5
• “Add Global Comments” on page 15-7
• “Specify Comment Style” on page 15-13
• “Customize Generated Identifier Naming Rules” on page 15-14
• “Identifier Format Control” on page 15-19
• “Control Name Mangling in Generated Identifiers” on page 15-22
• “Avoid Identifier Name Collisions with Referenced Models” on page 15-24
• “Maintain Traceability for Generated Identifiers” on page 15-26
• “Exceptions to Identifier Formatting Conventions” on page 15-27
• “Identifier Format Control Parameters Limitations” on page 15-28
• “Control Code Style” on page 15-30
• “Customize Code Organization and Format” on page 15-38
• “Specify Templates For Code Generation” on page 15-40
• “Code Generation Template (CGT) Files” on page 15-41
• “Custom File Processing (CFP) Templates” on page 15-45
• “Change the Organization of a Generated File” on page 15-47
• “Generate Source and Header Files with a Custom File Processing (CFP) Template”

on page 15-50
• “Comparison of a Template and Its Generated File” on page 15-58
• “Code Template API Summary” on page 15-62
• “Generate Custom File and Function Banners” on page 15-65
• “Template Symbols and Rules” on page 15-74
• “Code Annotation for Justifying Polyspace Checks” on page 15-82
• “Manage Placement of Data Definitions and Declarations” on page 15-84

15 Code Appearance

15-2

• “Specify Delimiter for #Includes” on page 15-110
• “Enhance Readability of Code for Flow Charts” on page 15-111

 Add Custom Comments to Generated Code

15-3

Add Custom Comments to Generated Code

You can include auto-generated comments in the generated code as described in
“Configure Code Comments”. For ERT targets, include additional custom comments by
setting parameters on the Code Generation > Comments pane in the Configuration
Parameters dialog box. With these parameters, you can enable or suppress generation of
descriptive information in comments for blocks and other model elements.

Goal Specify

Include the text specified in the Description
field of a block's Block Properties dialog box as
comments in the code generated for each block.

Simulink block descriptions

Add a comment that includes the block name at
the start of the code for each block.

Simulink block descriptions

Include the text specified in the Description
field of a Simulink data object (such as a signal,
parameter, data type, or bus) in the Simulink
Model Explorer as comments in the code
generated for each object.

Simulink data object descriptions

Include comments just above signals and
parameter identifiers in the generated code as
specified in the MATLAB or TLC function.

Custom comments (MPT objects only)

Include the text specified in the Description
field in the Properties dialog box for a Stateflow
object as comments just above the code
generated for each object.

Stateflow object descriptions

Include requirements assigned to Simulink
blocks in the generated code comments (for more
information, see “Generate Code for Models with
Requirements Links”).

Requirements in block comments

When you select Simulink block descriptions:

• The description text for blocks and Stateflow objects and block names generated
as comments can include international (non-US-ASCII) characters. For details on
international character support, see “International Character Support”.

15 Code Appearance

15-4

• The code generation software automatically inserts comments into the generated
code for custom blocks. Therefore, you do not need to include block comments in the
associated TLC file for a custom block.

Note: If you have existing TLC files with manually inserted comments for block
descriptions, the code generation process emits these comments instead of the
automatically generated comments. Consider removing existing block comments
from your TLC files. Manually inserted comments might be poorly formatted in the
generated code and code-to-model traceability might not work.

• For virtual blocks or blocks that have been removed due to block reduction, comments
are not generated.

For more information, see “Code Generation Pane: Comments”.

 Add Custom Comments for Signal or Parameter Identifiers

15-5

Add Custom Comments for Signal or Parameter Identifiers

This example shows you how to add a comment just above a signal or parameter
identifier in the generated code. Do the following:

1 Write a MATLAB or TLC function and save it in a .m or .tlc file
2 In the Configuration Parameters dialog box, on the Code Generation > Comments

pane, select the Custom comments (MPT objects only) check box.
3 In the Custom comments function field, select the .m or .tlc file.

You can include some or all of the property values for the data object. Each Simulink
signal or parameter data object has properties, as described in “Parameter and Signal
Property Values”. This example comment contains some of the property values for the
data object MAP as specified on the Model Explorer:

/* DocUnits: PSI */

/* Owner: */

/* DefinitionFile: specialDef */

real_T MAP = 0.0;

You can type text in the Description field in the Model Explorer for a signal or
parameter data object. If you select the Simulink data object descriptions check
box on the Comments pane in the Configuration Parameters dialog box, this text
appears beside the signal or parameter identifier in the generated code as a comment.
For example, typing Manifold Absolute Pressure in the Description field for the
data object MAP results in the following in the generated code:

real_T MAP = 0.0; /* Manifold Absolute Pressure */

To add a comment just above a signal or parameter identifier in the generated code:

1 The signal or parameter MPT object must use a custom storage class. Open the MPT
object properties dialog box and confirm that the Storage class is a custom storage
class ((Custom) suffixed to its name). The default storage class for an MPT object is
Global (Custom).

2 Write a MATLAB or TLC function that places comments in the generated files. An
example .m file named rtwdemo_comments_mptfun.m is provided in the matlab/
toolbox/rtw/rtwdemos folder.

The MATLAB function must have three arguments that correspond to objectName,
modelName, and request, respectively. The TLC function must have three

15 Code Appearance

15-6

arguments that correspond to objectName, modelName, and request, respectively.
For the TLC file, you can use the library function LibGetSLDataObjectInfo to get
every property value of the data object.

3 Save the function as a .m file or a .tlc file and place it in a folder in the MATLAB
path.

4 Open the model and the Configuration Parameters dialog box.
5 On the left pane, under Code Generation, click Comments.
6 In the Comments pane, on the right, select the Custom comments (MPT objects

only) check box.
7 In the Custom comments function field, type the file name of the .m file or .tlc

file that you created.
8 Click Apply.
9 Click Generate Code.
10 Open the generated files and inspect their content to verify that the comments are

what you want.

 Add Global Comments

15-7

Add Global Comments

In this section...

“Use a Simulink DocBlock to Add a Comment” on page 15-7
“Use a Simulink Annotation to Add a Comment” on page 15-10
“Use a Stateflow Note to Add a Comment” on page 15-10
“Use Sorted Notes to Add Comments” on page 15-11

The following examples show how to add a global comment to a Simulink model so
that the comment text appears in the generated file or files where you want. Specify a
template symbol name with a Simulink DocBlock, a Simulink annotation, or a Stateflow
note. You can also use a sorted-notes capability that works with Simulink annotations or
Stateflow notes (but not DocBlocks). For more information about template symbols, see
“Template Symbols and Rules” on page 15-74.

Note Template symbol names Description and ModifiedHistory also are fields
in the Model Properties dialog box. If you use one of these symbol names for global
comment text, and its Model Properties field also has text in it, both names appear in the
generated files.

Use a Simulink DocBlock to Add a Comment

1 With the model open, from the View menu, select Library Browser.
2 Drag the DocBlock from Model-Wide Utilities in the Simulink library into the

model.
3 Double-click the DocBlock and type the comment that you want in the editor. Save

and close the editor.
4 Right-click the DocBlock and select Mask > Mask Parameters.
5 In the Code generation template symbol box, type one of the following:

• Abstract

• Description

• History

• ModifiedHistory

15 Code Appearance

15-8

• Notes

Click OK. Template symbol names are case sensitive.

If you are using a DocBlock to add comments to your code, set the Document type
to Text. If you set Document type to RTF or HTML, your comments will not appear
in the code.

6 In the Block Properties dialog box, on the Block Annotation tab, select
%<ECoderFlag> and click OK. The symbol name that you typed in the previous step
now appears under the DocBlock in the model.

 Add Global Comments

15-9

7 Save the model. After you generate code, the code generator places the comment in
each generated file whose template has the symbol name that you typed. The code
generator places the comment in the generated file at the location that corresponds
to where the symbol name is located in the template file.

8 To add more comments to the generated files, repeat steps 1–7.

15 Code Appearance

15-10

Use a Simulink Annotation to Add a Comment

1 Double-click the unoccupied area on the model where you want to place the
comment. See “Annotations”.

2 Type <S:Symbol_name> followed by the comment. Symbol_name is one of the
following:

• Abstract

• Description

• History

• ModifiedHistory

• Notes

For example, type <S:Description>This is the description I want.
Template symbol names are case sensitive. (The "S" before the colon indicates
"symbol.") If you want the code generator to sort multiple comments for the Notes
symbol name, replace the next step with “Use Sorted Notes to Add Comments” on
page 15-11.

3 Click outside the rectangle and save the model. After you generate code, the code
generator places the comment in each generated file whose template has the symbol
name that you typed. The code generator places the comment in the generated file
at the location that corresponds to where the symbol name is located in the template
file. If you want the code generator to sort multiple comments for the Notes symbol
name, replace the next step with “Use Sorted Notes to Add Comments” on page
15-11.

4 To add one or more other comments to the generated files, repeat steps 1–3.

Use a Stateflow Note to Add a Comment

1 Right-click the unoccupied area on the Stateflow chart where you want to place the
comment.

2 Select the annotation icon from the palette.
3 Type <S:Symbol_name> followed by the comment. Symbol_name is one of the

following:

• Abstract

• Description

 Add Global Comments

15-11

• History

• ModifiedHistory

• Notes

For example, type <S:Description>This is the description I want.
Template symbol names are case sensitive. If you want the code generator to sort
multiple comments for the Notes symbol name, replace the next step with “Use
Sorted Notes to Add Comments” on page 15-11.

4 Click outside the note and save the model. After you generate code, the code
generator places the comment in each generated file whose template has the symbol
name that you typed. The code generator places the comment in the generated file
at the location that corresponds to where the symbol name is located in the template
file.

5 To add one or more other comments to the generated files, repeat steps 1–4.

Use Sorted Notes to Add Comments

The sorted-notes capability allows you to add automatically sorted comments to the
generated files. The code generator places these comments in each generated file at the
location that corresponds to where the Notes symbol is located in the template file.

The code generator uses the following sorting order:

• Numbers before letters.
• Among numbers, 0 is first.
• Among letters, uppercase are before lowercase.

You can use sorted notes with a Simulink annotation or a Stateflow note, but not with a
DocBlock.

• In the Simulink annotation or the Stateflow note, type <S:NoteY> followed by the
first comment. Y is a number or a letter.

• Repeat for as many additional comments you want. Replace Y with a subsequent
number or letter.

The figure illustrates sorted notes on a model, and where the code generator places each
note in a generated file.

15 Code Appearance

15-12

The relevant fragment from the generated file for this model is:

** NOTES

** Note1: This is the first comment I want

associated with the Notes symbol.

Note2: This is the second comment I want under Notes.

Noteb: This is the third comment.

**

 Specify Comment Style

15-13

Specify Comment Style

For ERT-based models, the comment style used in generated code is determined by the
programming language selected for the model:

• C code uses /*...*/ notation for both single-line and multiple-line comments.
• C++ code uses //... notation and contains only single-line comments.

If you have an Embedded Coder license, you can modify the comment style for generated
code using the command-line parameter CommentStyle. The parameter takes the
following values:

Value Description

Auto (default) For C, generate single or multiple-line comments delimited by /*
and */.
For C++, generate single-line comments preceded by //.

Multi-line Generate single or multiple-line comments delimited by /* and */.
Single-line Generate single-line comments preceded by //.

For example, the following command sets the comment style to single-line comments:
>> set_param('rtwdemo_counter','CommentStyle','Single-line')

Here is an example of code generated using the single-line comment style:
// Sum: '<Root>/Sum' incorporates:

// Constant: '<Root>/INC'

// UnitDelay: '<Root>/X'

rtb_sum_out = (uint8_T)(1U + rtwdemo_counter_DW.X);

Note: For C code generation, select Single-line only if your compiler supports it

15 Code Appearance

15-14

Customize Generated Identifier Naming Rules

In this section...

“Apply Naming Rules to Identifiers Globally” on page 15-14
“Apply Naming Rules to Simulink Data Objects” on page 15-15

For GRT and RSim targets, the code generator constructs identifiers for variables and
functions in the generated code. For ERT targets, you can customize the naming of
identifiers in the generated code by specifying parameters on the Code Generation
> Symbols pane in the Configuration Parameters dialog box. You can also specify
parameters that control identifiers generated from Simulink data objects. For detailed
information about these parameters, see “Code Generation Pane: Symbols”.

Apply Naming Rules to Identifiers Globally

Goal Specify

Set the maximum number of characters that the
code generator uses for function, typedef, and
variable names (default 31) .

An integer value for the “Maximum identifier
length” parameter. For more information, see
“Specify Identifier Length to Avoid Naming
Collisions”. If you expect your model to generate
lengthy identifiers (due to use of long signal or
parameter names, for example), or if identifiers
are mangled more than you expect, increase the
value of this parameter.

Define a macro string that specifies certain
substrings included within generated identifiers
for:

• Global variables
• Global types
• Field names of global types
• Subsystem methods
• Subsystem method arguments
• Local temporary variables
• Local block output variables
• Constant macros

A macro string for the Identifier format
control parameters. For more information, see
“Identifier Format Control” on page 15-19.
See also “Exceptions to Identifier Formatting
Conventions” on page 15-27 and “Identifier
Format Control Parameters Limitations” on
page 15-28.

 Customize Generated Identifier Naming Rules

15-15

Goal Specify

• Shared utilities
Set the minimum number of characters that the
code generator uses for the mangling string.

An integer value for the “Minimum mangle
length” parameter. For more information,
see “Control Name Mangling in Generated
Identifiers” on page 15-22

Control whether the software uses shortened
names for system-generated identifiers.

Shortened for the “System-generated
identifiers” parameter. This setting:

• Provides more space for user names.
• Provides a more predictable and consistent

naming system that uses camel case.
• Does not include underscores or plurals.
• Provides consistent abbreviations for both a

type and a variable.
Control whether the generated code expresses
scalar inlined parameter values as literal values
or as macros.

The value Literals or Macros for the
“Generate scalar inlined parameter as”
parameter.

• Literals: If you select Inline parameters,
parameters are expressed as numeric
constants.

• Macros: Parameters are expressed as
variables (with #define macros). This
setting makes code more readable.

Apply Naming Rules to Simulink Data Objects

When your model uses Simulink data objects from the Simulink package,
identifiers in generated code copy the names of the objects by default. For example, a
Simulink.Signal object named Speed appears as the identifier Speed in generated
code.

You can control these identifiers by specifying naming rules that are specific to
Simulink data objects. On the Code Generation > Symbols pane of the Configuration
Parameters dialog box, adjust the settings in the Simulink data object naming rules
section .

15 Code Appearance

15-16

When you specify naming rules for generated code, follow ANSI C3/C++ rules for naming
identifiers.

Specify Naming Rule Using a Function

This example shows how to customize identifiers in generated code by defining a
MATLAB function.

1 Write a MATLAB function that returns an identifier by modifying a data object
name, and save the function in your working folder. For example, the following
function returns an identifier name by appending the string _param to a data object
name.

function revisedName = append_string(name, object)

% APPEND_STRING: Returns an identifier for generated

% code by appending a string to a data object name.

%

% Input arguments:

% name: data object name as spelled in model

% object: target data object

%

% Output arguments:

% revisedName: altered identifier returned for use in

% generated code.

%

%

string = '_param';

revisedName = [name,string];

2 Open the model rtwdemo_namerules.
3 Double-click the yellow box labeled View Symbols Configuration to open the

Code Generation > Symbols pane in the Configuration Parameters dialog box.
4 From the Parameter naming drop-down list, select Custom M-function.

3. ANSI is a registered trademark of the American National Standards Institute, Inc.

 Customize Generated Identifier Naming Rules

15-17

5 In the M-function field, type the name of the file that defines the MATLAB
function, append_string.m.

6 Click Apply.
7 Generate code for the model.
8 Inspect the code generation report to confirm the parameter object naming rule.

For example, the generated file rtwdemo_namerules.h represents the parameter
objects G1, G2, and G3 with the variables G1_param, G2_param, and G3_param.

Specify Naming Rule for Storage Class Define

You can specify a naming rule that applies only to Simulink data objects whose storage
class you set to Define. For these data objects, the specified naming rule overrides the
other parameter and signal object naming rules. On the Code Generation > Symbols
pane in the Configuration Parameters dialog box, adjust the #define naming setting.

Override Data Object Naming Rules

This example shows how to override a data object naming rule for a single data object.

You can override data object naming rules by specifying the Alias property of an
individual Simulink data object. Generated code uses the string that you specify as the
identifier to represent the data object, regardless of naming rules.

1 Open the model rtwdemo_namerules.
2 Open Model Explorer and navigate to the base workspace.
3 Click the parameter object G1 and specify the Alias property as mySpecialParam.

Click Apply.

15 Code Appearance

15-18

4 Generate code for the model.
5 In the code generation report, confirm the alias for the parameter object G1.

The generated file rtwdemo_namerules.h represents G1 with the variable
mySpecialParam.

 Identifier Format Control

15-19

Identifier Format Control

You can customize generated identifiers by specifying the Identifier format control
parameters on the Code Generation > Symbols pane in the Configuration Parameters
dialog box. For each parameter, you can enter a macro string that specifies whether, and
in what order, certain substrings are included within generated identifiers. For example,
you can specify that the root model name be inserted into each identifier using the $R
token.

The macro string can include:

• Valid tokens, which are listed in Identifier Format Tokens. You can use or omit
tokens depending on what you want to include in the identifier name. The Shared
utilities parameter requires you to specify the checksum string token, $C . The
other parameters require the mangling string token, $M. For more information, see
“Control Name Mangling in Generated Identifiers” on page 15-22. The mangling
string token is subject to the use and ordering restrictions noted in Identifier Format
Control Parameter Values.

• Valid C or C++ language identifier characters (a-z, A-Z, _ , 0-9).

The build process generates each identifier by expanding tokens and inserting the
resultant strings into the identifier. The tokens are expanded in the order listed in
Identifier Format Tokens. Character strings are inserted in the positions that you specify
around tokens directly into the identifier. Contiguous token expansions are separated by
the underscore (_) character.

Identifier Format Tokens

Token Description

$M This token is required. If necessary, the code generator inserts a name
mangling string to avoid naming collisions. The position of the $M token
in the Identifier format control parameter specification determines
the position of the name mangling string in the generated identifier. For
example, if you use the specification RN$M, the name mangling string is
appended (if required) to the end of the identifier. For more information,
see “Control Name Mangling in Generated Identifiers” on page 15-22
.

$F Insert method name (for example, _Update for update method). This
token is available only for subsystem methods.

15 Code Appearance

15-20

Token Description

$N Insert name of object (block, signal or signal object, state, parameter,
shared utility function or parameter object) for which identifier is being
generated.

$R Insert root model name into identifier, replacing unsupported characters
with the underscore (_) character. When you use referenced models, this
token is required in addition to $M (see “Avoid Identifier Name Collisions
with Referenced Models” on page 15-24).

Note: This token replaces the Prefix model name to global identifiers
option in previous releases.

$H Insert tag indicating system hierarchy level. For root-level blocks, the tag
is the string root_. For blocks at the subsystem level, the tag is of the
form sN_. N is a unique system number assigned by the Simulink software.
This token is available only for subsystem methods and field names of
global types.

Note: This token replaces the Include System Hierarchy Number in
Identifiers option in previous releases.

$A Insert data type acronym (for example, i32 for integers) to signal and
work vector identifiers. This token is available for local block output
variables, local temporary variables, and field names of global types.

Note: This token replaces the Include data type acronym in identifier
option in previous releases.

$I Insert u if the argument is an input or y if the argument is an output. (For
example, rtu_ for an input argument and rty_ for an output argument).
This token is available only for subsystem method arguments.

$C This token is required for Shared utilities. If the identifier exceeds the
Maximum identifier length, the code generator inserts an 8-character
checksum to avoid naming collisions. The position of the $C token in
the Identifier format control parameter specification determines the
position of the checksum in the generated identifier. For example, if you
use the specification NC, the checksum is appended to the end of the
identifier. This token is available only for shared utilities.

Identifier Format Control Parameter Values lists the default macro string, the supported
tokens, and the applicable restrictions for each Identifier format control parameter.

 Identifier Format Control

15-21

Identifier Format Control Parameter Values

Parameter Default Value Supported
Tokens

Restrictions

Global variables rtNM $R, $N, $M $F, $H, $A, and $I are not allowed.
Global types NR$M_T $N, $R, $M $F, $H, $A, and $I are not allowed.
Field name of
global types

NM $N, $M, $H, $A $R, $F, and $I are not allowed.

Subsystem
methods

FN$M $R, $N, $M,
$F, $H

$F and $H are empty for Stateflow
functions; $A and $I are not
allowed.

Subsystem method
arguments

rtIN$M $N, $M, $I $R, $F, $H, and $A are not allowed.

Local temporary
variables

NM $N, $M, $R, $A $F, $H, and $I are not allowed.

Local block output
variables

rtb_NM $N, $M, $A $R, $F, $H, and $I are not allowed.

Constant macros RN$M $R, $N, $M $F, $H, $A, and $I are not allowed.
Shared utilities NC $N, $C $C is required. $M, $R, $F, $H, $A ,

and $I are not allowed.

Non-ERT-based targets (such as the GRT target) implicitly use a default RN$M
specification. This default specification consists of the root model name, followed by the
name of the generating object (signal, parameter, state, and so on), followed by a name
mangling string.

For limitations that apply to Identifier format control parameters, see “Exceptions
to Identifier Formatting Conventions” on page 15-27 and “Identifier Format Control
Parameters Limitations” on page 15-28.

15 Code Appearance

15-22

Control Name Mangling in Generated Identifiers

The position of the $M token in the Identifier format control parameter specification
determines the position of the name mangling string in the generated identifiers. For
example, if you use the specification RN$M, the name mangling string is appended
(if required) to the end of the identifier. For more information, see “Identifier Format
Control” on page 15-19.

Name Mangling String Per Object

Object Type Source of Mangling String

Block diagram Name of block diagram
Simulink block “Simulink Identifier” (SID)
Simulink parameter Full name of parameter owner (model or block) and parameter

name
Simulink signal Signal name, full name of source block, and port number
Stateflow objects Complete path to Stateflow block and Stateflow computed name

(unique within chart)

The length of the name mangling string is specified by the Minimum mangle length
parameter. The default value is 1, but this automatically increases during code
generation as a function of the number of collisions. To minimize disturbance to the
generated code during development, specify a larger Minimum mangle length. A
Minimum mangle length of 4 is a conservative value. A value of 4 allows for over 1.5
million collisions for a particular identifier before the mangle length is increased.

Minimize Name Mangling

The length of generated identifiers is limited by the Maximum identifier length
parameter. When a name collision exists, the $M token is expanded to the minimum
number of characters required to avoid the collision. Other tokens and character
strings are expanded in the order listed in Identifier Format Tokens. If the Maximum
identifier length is not large enough to accommodate full expansions of the other
tokens, partial expansions are used. To avoid partial expansions, it is good practice to:

• Avoid name collisions. One way to avoid name collisions is to not use default block
names (for example, Gain1, Gain2...) when there are many blocks of the same type
in the model.

 Control Name Mangling in Generated Identifiers

15-23

• Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers that you expect to generate.

• Set the Maximum identifier length parameter to reserve at least three characters
for the name mangling string. The length of the name mangling string increases as
the number of name collisions increases.

If changes to the model create more or fewer collisions, an existing name mangling
string increases or decreases in length. If the length of the name mangling string
increases, additional characters are appended to the existing string. For example,
the mangling string 'xyz' can change to 'xyzQ'. For fewer collisions, the name
mangling string 'xyz' changes to 'xy'.

15 Code Appearance

15-24

Avoid Identifier Name Collisions with Referenced Models

Within a model that uses referenced models, collisions between the names of the models
are not allowed. When generating code from a model that uses model referencing:

• You must include the $R token in the Identifier format control parameter
specifications (in addition to the $M token).

• The Maximum identifier length must be large enough to accommodate full
expansions of the $R and $M tokens. If Maximum identifier length is too small, a
code generation error occurs.

When a name conflict occurs between an identifier within the scope of a higher-level
model and an identifier within the scope of a referenced model, the identifier from the
referenced model is preserved. Name mangling is performed on the identifier from the
higher-level model.

If your model contains two referenced models with the same input or output port
names, and one of the referenced models contains an atomic subsystem with “Function
packaging” set to Nonreuseable function, a name conflict can occur and the build
process produces an error.

Use Model Advisor to Detect Identifier Names Changed During Code
Generation

For a referenced model, if the following Configuration Parameters > Code
Generation > Symbols parameters have settings that do not contain a $R token (which
represents the name of the reference model), code generation prepends the $R token to
the identifier format.

• Global variables
• Global types
• Subsystem methods
• Constant macros

You can use the Model Advisor to identify referenced models in a model referencing
hierarchy for which code generation changes these configuration parameter settings.

1 In the Simulink Editor, select Analysis > Model Advisor.
2 Select By Task.

 Avoid Identifier Name Collisions with Referenced Models

15-25

3 Run the Check code generation identifier formats used for model reference
check.

15 Code Appearance

15-26

Maintain Traceability for Generated Identifiers

To verify your model, you can trace back and forth between generated identifiers and
corresponding entities within the model. To maintain traceability, it is important that
incremental revisions to a model have minimal impact on the identifier names that
appear in generated code. There are two ways to minimally impact the identifier names:

• Choose unique names for Simulink objects (blocks, signals, states, and so on) as much
as possible.

• Use name mangling when conflicts cannot be avoided.

The position of the name mangling string is specified by the placement of the $M token in
the Identifier format control parameters. Mangle characters consist of alphanumeric
characters that are unique to each object. For more information, see “Control Name
Mangling in Generated Identifiers” on page 15-22.

 Exceptions to Identifier Formatting Conventions

15-27

Exceptions to Identifier Formatting Conventions

There are some exceptions to the identifier formatting conventions described in
“Identifier Format Control” on page 15-19.

• Type name generation: name mangling conventions do not apply to type names (that
is, typedef statements) generated for global data types. If the $R token is included in
the Identifier format control parameter specification, the model name is included
in the typedef. When generating type definitions, the Maximum identifier length
parameter is not respected.

• Non-Auto storage classes: the Identifier format control parameters specification
does not affect objects (such as signals and parameters) that have a storage class
other than Auto (such as ImportedExtern or ExportedGlobal).

• For shared utilities, code generation inserts the checksum specified by $C to prevent
name collisions in the following situations:

• $C is specified without $N.
• The length of $N plus the length of the text that you specify exceeds the

Maximum identifier length. Code generation truncates $N and inserts an 8-
character checksum where you specified $C in the formatting string.

.

15 Code Appearance

15-28

Identifier Format Control Parameters Limitations

The following limitations apply to the Identifier format control parameters:

• The following autogenerated identifiers currently do not fully comply with the setting
of the Maximum identifier length parameter on the Code Generation > Symbols
pane of the Configuration Parameters dialog box.

• Model methods

• The applicable format string is RF, and the longest $F is _derivatives,
which is 12 characters long. The model name can be up to 19 characters
without exceeding the default Maximum identifier length of 31.

• Local functions generated by S-functions or by add-on products such as DSP
System Toolbox™ that rely on S-functions

• Local variables generated by S-functions or by add-on products such as DSP
System Toolbox that rely on S-functions

• DW identifiers generated by S-functions in referenced models
• Fixed-point shared utility macros or shared utility functions
• Simulink rtm macros

• Most are within the default Maximum identifier
length of 31, but some exceed the limit. Examples are
RTMSpecAccsGetStopRequestedValStoredAsPtr,
RTMSpecAccsGetErrorStatusPointer, and
RTMSpecAccsGetErrorStatusPointerPointer.

• Define protection guard macros

• Header file guards, such as _RTW_HEADER_$(filename)_h_, which can
exceed the default Maximum identifier length of 31 given a filename such as
$R_private.h.

• Include file guards, such as _$R_COMMON_INCLUDES_.
• typedef guards, such as _CSCI_$R_CHARTSTRUCT_.

• In some situations, the following identifiers potentially can conflict with others.

• Model methods
• Reentrant model function arguments

 Identifier Format Control Parameters Limitations

15-29

• Local functions generated by S-functions or by add-on products such as DSP
System Toolbox that rely on S-functions

• Local variables generated by S-functions or by add-on products such as DSP
System Toolbox that rely on S-functions

• Fixed-point shared utility macros or shared utility functions
• Include header guard macros

• The following external identifiers that are unknown to the Simulink software might
conflict with autogenerated identifiers.

• Identifiers defined in custom code
• Identifiers defined in custom header files
• Identifiers introduced through a non-ANSI C standard library
• Identifiers defined by custom TLC code

• Identifiers generated for simulation targets might exceed the Maximum identifier
length. Simulation targets include the model reference simulation target, the
accelerated simulation target, the RSim target, and the S-function target.

• Identifiers generated using a model name and bus object data type name, which are
both long names, might exceed the Maximum identifier length. For example, a
ground value variable name is generated as <model_name>_rtZ<bus_name>. If the
model_name and bus_name are close to the maximum identifier length, the name
exceeds the maximum identifier length.

15 Code Appearance

15-30

Control Code Style

In this section...

“Control Parentheses in Generated Code” on page 15-31
“Control Indentation Style in Generated Code” on page 15-31
“Control Cast Expressions in Generated Code” on page 15-33

You can change the code style, cast expressions, and indentation of your generated code
to conform to certain coding standards. Modify style options by setting parameters on the
Code Generation > Code Style pane.

In the generated code, you can control the following style aspects:

• Level of parenthesization, see “Control Parentheses in Generated Code” on page
15-31.

• Order of operands in expressions, see “Preserve operand order in expression”.
• Empty primary condition expressions in if statements, see “Preserve condition

expression in if statement”.
• Whether to generate code for if-elseif-else decision logic as switch-case

statements, see “Convert if-elseif-else patterns to switch-case statements”.
• Whether to include the extern keyword in function declarations, see “Preserve

extern keyword in function declarations”.
• Whether to generate default cases for switch-case statements in the code for

Stateflow charts, see “Suppress generation of default cases for Stateflow switch
statements if unreachable”.

• Whether to replace multiplications by powers of two with signed bitwise shifts, see
“Replace multiplications by powers of two with signed bitwise shifts”. Some coding
standards, such as MISRA, do not allow bitwise operations on signed integers.
Clearing this option increases the likelihood of generating MISRA-C:2004 compliant
code.

• Cast expressions, see “Control Cast Expressions in Generated Code” on page
15-33.

• Indentation style, see “Control Indentation Style in Generated Code” on page
15-31.

 Control Code Style

15-31

Control Parentheses in Generated Code

C code contains some syntactically required parentheses, and can contain additional
parentheses that change semantics by overriding default operator precedence. C code can
also contain optional parentheses that have no functional significance, but only increase
the readability of the code. Optional C parentheses vary between two stylistic extremes:

• Include the minimum parentheses required by C syntax and precedence overrides so
that C precedence rules specify all semantics unless overridden by parentheses.

• Include the maximum parentheses that can exist without duplication so that
C precedence rules become irrelevant. Parentheses alone completely specify all
semantics.

Understanding code with minimum parentheses can require applying nonobvious
precedence rules. Maximum parentheses can hinder code reading by belaboring obvious
precedence rules. Various parenthesization standards exist that specify one or the other
extreme, or define an intermediate style useful to people who read code.

The following example model shows the three levels of parentheses control that you
can set before generating code: rtwdemo_parentheses. For more information on this
parameter, see “Parentheses level”.

Control Indentation Style in Generated Code

For code indentation, you can set the following parameters:

• “Indent style” controls the placement of braces in generated code.
• “Indent size” controls the number of characters per indent level in generated code (2–

8 characters).

You can set Indent style to K&R or Allman style.

K&R

K&R stands for Kernighan and Ritchie. Each function has the opening and closing brace
on its own line at the same level of indentation as the function header. Code within the
function is indented according to the Indent size.

For blocks within a function, opening braces are on the same line as the control
statement. Closing braces are on a new line at the same level of indentation as the
control statement. Code within the block is indented according to the Indent size.

15 Code Appearance

15-32

For example, here is generated code with the Indent style set to K&R with an Indent
size of 2:

void rt_OneStep(void)

{

 static boolean_T OverrunFlag = 0;

 if (OverrunFlag) {

 rtmSetErrorStatus(rtwdemo_counter_M, "Overrun");

 return;

 }

 OverrunFlag = TRUE;

 rtwdemo_counter_step();

 OverrunFlag = FALSE;

}

Allman

Each function has the opening and closing brace on its own line at the same level of
indentation as the function header. Code within the function is indented according to the
Indent size.

For blocks within a function, opening and closing braces for control statements are on
a new line at the same level of indentation as the control statement. This is the key
difference between K&R and Allman styles. Code within the block is indented according
to the Indent size.

For example, here is generated code with the Indent style set to Allman with an
Indent size of 4:

void rt_OneStep(void)

{

 static boolean_T OverrunFlag = 0;

 if (OverrunFlag)

 {

 rtmSetErrorStatus(rtwdemo_counter_M, "Overrun");

 return;

 }

 OverrunFlag = TRUE;

 rtwdemo_counter_step();

 OverrunFlag = FALSE;

}

 Control Code Style

15-33

Control Cast Expressions in Generated Code

You can choose how the code generator specifies data type casts in the generated code.
In the Configuration Parameters dialog box, select Code Generation > Code Style.
From the Casting modes drop-down list, three parameter options control how the code
generator casts data types.

• Nominal instructs the code generator to generate code that has minimal data type
casting. When you do not have special data type information requirements, choose
Nominal .

• Standards Compliant instructs the code generator to cast data types to conform to
MISRA standards when it generates code. The MISRA data type casting eliminates
common MISRA standard violations, including address arithmetic and assignment. It
reduces 10.1, 10.2, 10.3, and 10.4 violations.

For more information, see “MISRA C Guidelines”.
• Explicit instructs the code generator to cast data type values explicitly when it

generates code. You can see how a value is stored, which tells you how much memory
space the code uses for the variable. The data type informs you how much precision is
possible in calculations involving the variable.

Open the example model rtwdemo_rtwecintro.

Enable Nominal Casting Mode and Generate Code

When you choose Nominal casting mode, the code generator does not create data type
casts for variables in the generated code.

15 Code Appearance

15-34

1 On the Code Generation > Code Style pane, from the Casting modes drop-down
list, select Nominal.

2 On the Code Generation > Report pane, select Create code generation report.
3 On the Code Generation pane, select Generate code only.
4 Click Apply.
5 Click Generate Code.
6 In the Code Generation report left pane, click rtwdemo_rtwecintro.c to see the

code.

/* Model step function */

void rtwdemo_rtwecintro_step(void)

{

 boolean_T rtb_equal_to_count;

 /* Sum: 'XRootX/Sum' incorporates:

 * Constant: 'XRootX/INC'

 * UnitDelay: 'XRootX/X'

 */

 rtDWork.X++;

 /* RelationalOperator: 'XRootX/RelOpt' incorporates:

 * Constant: 'XRootX/LIMIT'

 */

 rtb_equal_to_count = (rtDWork.X != 16);

 /* Outputs for Triggered SubSystem: 'XRootX/Amplifier' incorporates:

 * TriggerPort: 'XS1X/Trigger'

 */

 if (rtb_equal_to_count && (rtPrevZCSigState.Amplifier_Trig_ZCE != POS_ZCSIG))

 {

 /* Outport: 'XRootX/Output' incorporates:

 * Gain: 'XS1X/Gain'

 * Inport: 'XRootX/Input'

 */

 rtY.Output = rtU.Input << 1;

 }

 rtPrevZCSigState.Amplifier_Trig_ZCE = (uint8_T)(rtb_equal_to_count ? (int32_T)

 POS_ZCSIG : (int32_T)ZERO_ZCSIG);

 /* End of Outputs for SubSystem: 'XRootX/Amplifier' */

 Control Code Style

15-35

 /* Switch: 'XRootX/Switch' */

 if (!rtb_equal_to_count) {

 /* Update for UnitDelay: 'XRootX/X' incorporates:

 * Constant: 'XRootX/RESET'

 */

 rtDWork.X = 0U;

 }

 /* End of Switch: 'XRootX/Switch' */

}

Enable Standards Compliant Casting Mode and Generate Code

When you choose Standards Compliant casting mode, the code generator creates
MISRA standards compliant data type casts for variables in the generated code.

1 On the Code Style pane, from the Casting modes drop-down list, select
Standards Compliant.

2 On the Code Generation pane, click Apply.
3 Click Generate Code.
4 In the Code Generation report left pane, click rtwdemo_rtwecintro.c to see the

code.

void rtwdemo_rtwecintro_step(void)

{

 boolean_T rtb_equal_to_count;

 /* Sum: '<Root>/Sum' incorporates:

 * Constant: '<Root>/INC'

 * UnitDelay: '<Root>/X'

 */

 rtDWork.X++;

 /* RelationalOperator: '<Root>/RelOpt' incorporates:

 * Constant: '<Root>/LIMIT'

 */

 rtb_equal_to_count = (boolean_T)(int32_T)((int32_T)rtDWork.X != (int32_T)16);

 /* Outputs for Triggered SubSystem: '<Root>/Amplifier' incorporates:

 * TriggerPort: '<S1>/Trigger'

 */

 if (((int32_T)rtb_equal_to_count) && (rtPrevZCSigState.Amplifier_Trig_ZCE !=

 POS_ZCSIG)) {

15 Code Appearance

15-36

 /* Outport: '<Root>/Output' incorporates:

 * Gain: '<S1>/Gain'

 * Inport: '<Root>/Input'

 */

 rtY.Output = (int32_T)(uint32_T)((uint32_T)rtU.Input << (uint32_T)(int8_T)1);

 }

 rtPrevZCSigState.Amplifier_Trig_ZCE = (uint8_T)(int32_T)(rtb_equal_to_count ?

 (int32_T)(uint8_T)POS_ZCSIG : (int32_T)(uint8_T)ZERO_ZCSIG);

 /* End of Outputs for SubSystem: '<Root>/Amplifier' */

 /* Switch: '<Root>/Switch' */

 if (!rtb_equal_to_count) {

 /* Update for UnitDelay: '<Root>/X' incorporates:

 * Constant: '<Root>/RESET'

 */

 rtDWork.X = 0U;

 }

 /* End of Switch: '<Root>/Switch' */

}

Enable Explicit Casting Mode and Generate Code

When you choose Explicit casting mode, the code generator creates explicit data type
casts for variables in the generated code.

1 On the Code Style pane, from the Casting modes drop-down list, select Explicit.
2 On the Code Generation pane, click Apply.
3 Click Generate Code.
4 In the Code Generation report left pane, click rtwdemo_rtwecintro.c to see the

code.

/* Model step function */

void rtwdemo_rtwecintro_step(void)

{

 boolean_T rtb_equal_to_count;

 /* Sum: '<Root>/Sum' incorporates:

 * Constant: '<Root>/INC'

 * UnitDelay: '<Root>/X'

 */

 Control Code Style

15-37

 rtDWork.X = (uint8_T)(1U + (uint32_T)(int32_T)rtDWork.X);

 /* RelationalOperator: '<Root>/RelOpt' incorporates:

 * Constant: '<Root>/LIMIT'

 */

 rtb_equal_to_count = (boolean_T)((int32_T)rtDWork.X != 16);

 /* Outputs for Triggered SubSystem: '<Root>/Amplifier' incorporates:

 * TriggerPort: '<S1>/Trigger'

 */

 if (((int32_T)rtb_equal_to_count) && ((int32_T)((int32_T)

 rtPrevZCSigState.Amplifier_Trig_ZCE != (int32_T)POS_ZCSIG))) {

 /* Outport: '<Root>/Output' incorporates:

 * Gain: '<S1>/Gain'

 * Inport: '<Root>/Input'

 */

 rtY.Output = rtU.Input << 1;

 }

 rtPrevZCSigState.Amplifier_Trig_ZCE = (uint8_T)(rtb_equal_to_count ? (int32_T)

 POS_ZCSIG : (int32_T)ZERO_ZCSIG);

 /* End of Outputs for SubSystem: '<Root>/Amplifier' */

 /* Switch: '<Root>/Switch' */

 if (!(int32_T)rtb_equal_to_count) {

 /* Update for UnitDelay: '<Root>/X' incorporates:

 * Constant: '<Root>/RESET'

 */

 rtDWork.X = 0U;

 }

 /* End of Switch: '<Root>/Switch' */

}

More About
• “Code Generation Pane: Code Style”

15 Code Appearance

15-38

Customize Code Organization and Format

In this section...

“Custom File Processing Components” on page 15-38
“Custom File Processing Configuration” on page 15-39

Custom file processing (CFP) tools allow you to customize the organization and
formatting of your generated code. With these tools, you can:

• Generate a source (.c or .cpp) or header (.h) file. Using a custom file processing
template (CFP template), you can control how code emits to the standard generated
model files (for example, model.c or .cpp, model.h) or generate files that are
independent of model code.

• Organize generated code into sections (such as includes, typedefs, functions, and
more). Your CFP template can emit code (for example, functions), directives (such as
#define or #include statements), or comments into each section.

• Generate custom file banners (comment sections) at the start and end of generated
code files and custom function banners that precede functions in the generated code.

• Generate code to call model functions, such as model_initialize, model_step,
and so on.

• Generate code to read and write model inputs and outputs.
• Generate a main program module.
• Obtain information about the model and the generated files from the model.

Custom File Processing Components

The custom file processing features are based on the following interrelated components:

• Code generation template (CGT) files: a CGT file defines the top-level organization
and formatting of generated code. See “Code Generation Template (CGT) Files” on
page 15-41.

• The code template API: a high-level Target Language Compiler (TLC) API that
provides functions with which you can organize code into named sections and
subsections of generated source and header files. The code template API also provides
utilities that return information about generated files, generate standard model calls,
and perform other functions. See “Code Template API Summary” on page 15-62.

 Customize Code Organization and Format

15-39

• Custom file processing (CFP) templates: a CFP template is a TLC file that manages
the process of custom code generation. A CFP template assembles code to be
generated into buffers. A CFP template also calls the code template API to emit the
buffered code into specified sections of generated source and header files. A CFP
template interacts with a CGT file, which defines the ordering of major sections of the
generated code. See “Custom File Processing (CFP) Templates” on page 15-45.

To use CFP templates, you must understand TLC programming, for more information,
see “Target Language Compiler”.

Custom File Processing Configuration

Customize generated code by specifying code and data templates on the Code
Generation > Templates pane:

Goal Action

Specify a template that defines
the top-level organization and
formatting of generated source
code (.c or .cpp) files

Enter a code generation template (CGT) file for the Source
file (*.c) template parameter.

Specify a template that defines
the top-level organization and
formatting of generated header
(.h) files

Enter a CGT file for the Header file (*.h) template
parameter. This template file can be the same template file
that you specify for Source file (.c) template. If you use the
same template file, source and header files contain identical
banners. The default template is matlabroot
/toolbox/rtw/targets/ecoder/

ert_code_template.cgt.
Specify a template that organizes
generated code into sections (such
as includes, typedefs, functions,
and more)

Enter a custom file processing (CFP) template file for the
“File customization template” parameter. A CFP template can
emit code, directives, or comments into each section. For more
information, see “Custom File Processing (CFP) Templates” on
page 15-45.

Generate a model-specific example
main program module

Select Generate an example main program. For more
information, see “Generate a Standalone Program”.

Note: Place the template files that you specify on the MATLAB path.

15 Code Appearance

15-40

Specify Templates For Code Generation

To use custom file processing features, create CGT files and CFP templates. These files
are based on default templates provided by the code generation software. Once you have
created your templates, you must integrate them into the code generation process.

Select and edit CGT files and CFP templates, and specify their use in the code generation
process in the Code Generation > Templates pane of a model configuration set. The
following figure shows options configured for their defaults.

The options related to custom file processing are:

• The Source file (.c) template field in the Code templates and Data templates
sections. This field specifies the name of a CGT file to use when generating source (.c
or .cpp) files. You must place this file on the MATLAB path.

• The Header file (.h) template field in the Code templates and Data templates
sections. This field specifies the name of a CGT file to use when generating header
(.h) files. You must place this file on the MATLAB path.

By default, the template for both source and header files is matlabroot/toolbox/rtw/
targets/ecoder/ert_code_template.cgt.

• The File customization template edit field in the Custom templates section. This
field specifies the name of a CFP template file to use when generating code files. You
must place this file on the MATLAB path. The default CFP template is matlabroot/
toolbox/rtw/targets/ecoder/example_file_process.tlc.

In each of these fields, click Browse to navigate to and select an existing CFP template
or CGT file. Click Edit to open the specified file into the MATLAB editor where you can
customize it.

 Code Generation Template (CGT) Files

15-41

Code Generation Template (CGT) Files
Code Generation Template (CGT) files define the top-level organization and formatting of
generated source code and header files. CGT files have the following applications:

• Generation of custom banners (comments sections) in code files. See “Generate
Custom File and Function Banners” on page 15-65.

• Generation of custom code using a CFP template requires a CGT file. To use CFP
templates, you must understand the CGT file structure. In many cases, however, you
can use the default CGT file without modifying it.

Default CGT file

The code generation software provides a default CGT file, matlabroot/toolbox/rtw/targets/
ecoder/ert_code_template.cgt. Base your custom CGT files on the default file.

CGT File Structure

A CGT file consists of one required section and four optional sections:

Code Insertion Section

(Required) This section contains tokens that define an ordered partitioning of the
generated code into a number of sections (such as Includes and Defines sections).
Tokens have the form of:

%<SectionName>

For example,

%<Includes>

The code generation software defines a minimal set of required tokens. These tokens
generate C or C++ source or header code. They are built-in tokens (see “Built-In Tokens
and Sections” on page 15-42). You can also define custom tokens and custom sections.

Each token functions as a placeholder for a corresponding section of generated code. The
ordering of the tokens defines the order in which the corresponding sections appear in
the generated code. If you do not include a token, then the corresponding section is not
generated. To generate code into a given section, explicitly call the code template API
from a CFP template, as described in “Custom File Processing (CFP) Templates” on page
15-45.

15 Code Appearance

15-42

The CGT tokens define the high-level organization of generated code. Using the code
template API, you can partition each code section into named subsections, as described in
“Subsections” on page 15-43.

In the code insertion section, you can also insert C or C++ comments between tokens.
Such comments emit directly into the generated code.

File Banner Section

(Optional) This section contains comments and tokens you use in generating a custom file
banner.

Function Banner Section

(Optional) This section contains comments and tokens for use in generating a custom
function banner.

Shared Utility Function Banner Section

(Optional) This section contains comments and tokens for use in generating a custom
shared utility function banner.

File Trailer Section

(Optional) This section contains comments for use in generating a custom trailer banner.

For more information on these sections, see “Generate Custom File and Function
Banners” on page 15-65.

Built-In Tokens and Sections

The following code extract shows the required code insertion section of the default CGT
file with the required built-in tokens.
%%%

%% Code insertion section (required)

%% These are required tokens. You can insert comments and other tokens in

%% between them, but do not change their order or remove them.

%%

%<Includes>

%<Defines>

%<Types>

%<Enums>

%<Definitions>

%<Declarations>

%<Functions>

 Code Generation Template (CGT) Files

15-43

Note the following requirements for customizing a CGT file:

• Do not remove required built-in tokens.
• Built-in tokens must appear in the order shown because each successive section has

dependencies on previous sections.
• Only one token per line.
• Do not repeat tokens.
• You can add custom tokens and comments to the code insertion section as long as you

do not violate the previous requirements.

Note: If you modify a CGT file and then rebuild your model, the code generation process
does not force a top model build. To regenerate the code, see “Force Regeneration of Top
Model Code”.

The following table summarizes the built-in tokens and corresponding section names,
and describes the code sections.

Built-In CGT Tokens and Corresponding Code Sections

Token and Section
Name

Description

Includes #include directives section
Defines #define directives section
Types typedef section.Typedefs can depend on a previously defined

type
Enums Enumerated types section
Definitions Data definitions (for example, double x = 3.0;)
Declarations Data declarations (for example, extern double x;)
Functions C or C++ functions

Subsections

You can define one or more named subsections for any section. Some of the built-in
sections have predefined subsections summarized in table “Subsections Defined for Built-
In Sections”.

15 Code Appearance

15-44

Note: Sections and subsections emit to the source or header file in the order listed in the
CGT file.

Using the custom section feature, you can define additional sections. See “Generate a
Custom Section”.

Subsections Defined for Built-In Sections

Section Subsections Subsection Description

Includes N/A
Defines N/A
Types IntrinsicTypes Intrinsic typedef section. Intrinsic types depend

only on intrinsic C or C++ types.
Types PrimitiveTypedefs Primitive typedef section. Primitive typedefs

depend only on intrinsic C or C++ types
and on typedefs previously defined in the
IntrinsicTypes section.

Types UserTop You can place any type of code in this section,
including code that has dependencies on the
previous sections.

Types Typedefs typedef section. Typedefs can depend on
previously defined types

Enums N/A
Definitions N/A
Declarations N/A
Functions C or C++ functions
Functions CompilerErrors #error directives
Functions CompilerWarnings #warning directives
Functions Documentation Documentation (comment) section
Functions UserBottom You can place any code in this section.

 Custom File Processing (CFP) Templates

15-45

Custom File Processing (CFP) Templates
The files provided to support custom file processing are:

• matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc: A TLC function library that implements
the code template API. codetemplatelib.tlc also provides the comprehensive
documentation of the API in the comments headers preceding each function.

• matlabroot/toolbox/rtw/targets/ecoder/example_file_process.tlc: An example custom
file processing (CFP) template, which you should use as the starting point for creating
your own CFP templates. Guidelines and examples for creating a CFP template are
provided in “Generate Source and Header Files with a Custom File Processing (CFP)
Template” on page 15-50.

• TLC files supporting generation of single-rate and multirate main program modules
(see “Customizing Main Program Module Generation” on page 15-54).

Once you have created a CFP template, you must integrate it into the code generation
process, using the File customization template edit field. See “Specify Templates For
Code Generation” on page 15-40.

Custom File Processing (CFP) Template Structure

A custom file processing (CFP) template imposes a simple structure on the code
generation process. The template, a code generation template (CGT) file, partitions the
code generated for each file into a number of sections. These sections are summarized
in Built-In CGT Tokens and Corresponding Code Sections and Subsections Defined for
Built-In Sections.

Code for each section is assembled in buffers and then emitted, in the order listed, to the
file being generated.

To generate a file section, your CFP template must first assemble the code to be
generated into a buffer. Then, to emit the section, your template calls the TLC function

LibSetSourceFileSection(fileH, section, tmpBuf)

where

• fileH is a file reference to a file being generated.
• section is the code section or subsection to which code is to be emitted. section must

be one of the section or subsection names listed in Subsections Defined for Built-In
Sections.

15 Code Appearance

15-46

Determine the section argument as follows:

• If Subsections Defined for Built-In Sections does not define subsections for a given
section, use the section name as the section argument.

• If Subsections Defined for Built-In Sections defines one or more subsections for
a given section, you can use either the section name or a subsection name as the
section argument.

• If you have defined a custom token denoting a custom section, do not call
LibSetSourceFileSection. Special API calls are provided for custom sections
(see “Generate a Custom Section” on page 15-55).

• tmpBuf is the buffer containing the code to be emitted.

There is no requirement to generate all of the available sections. Your template need only
generate the sections you require in a particular file.

Note that legality or syntax checking is not performed on the custom code within each
section.

See “Generate Source and Header Files with a Custom File Processing (CFP) Template”
on page 15-50, for typical usage examples.

 Change the Organization of a Generated File

15-47

Change the Organization of a Generated File

The files created during code generation are organized according to the general code
generation template. This template has the filename ert_code_template.cgt, and
is specified by default in Code Generation > Templates pane of the Configuration
Parameters dialog box.

15 Code Appearance

15-48

The following fragment shows the rtwdemo_mpf.c file header that is generated using
this default template:
/*

 * File: rtwdemo_mpf.c

 *

 * Code generated for Simulink model 'rtwdemo_mpf'.

 *

 * Model version : 1.88

 * Simulink Coder version : 8.0 (R2011a) 26-Aug-2010

 * TLC version : 7.6 (Sep 3 2010)

 * C/C++ source code generated on : Thu Sep 09 10:10:14 2010

 *

 * Target selection: ert.tlc

 * Embedded hardware selection: Generic->32-bit Embedded Processor

 * Code generation objectives: Unspecified

 * Validation result: Not run

 */

You can change the organization of generated files using code templates and data
templates. Code templates organize the files that contain functions, primarily. Data
templates organize the files that contain identifiers. In this procedure, you organize the
generated files, using the supplied code and data templates:

1 Display the active Templates configuration parameters.
2 In the Code templates section of the Templates pane, type

code_c_template.cgt into the Source file (*.c) templates text box.
3 Type code_h_template.cgt into the Header file (*.h) templates text box.
4 In the Data templates section, type data_c_template.cgt into the Source file

(*.c) templates text box.
5 Type data_h_template.cgt into the Header file (*.h) templates text box, and

click Apply.
6 Click Generate Code. Now the files are organized using the templates you

specified. For example, the rtwdemo_mpf.c file header now is organized like this:
/**

 ** FILE INFORMATION:

 ** Filename: rtwdemo_mpf.c

 ** File Creation Date: 09-Sep-2010

 **

 ** ABSTRACT:

 **

 **

 ** NOTES:

 **

 **

 Change the Organization of a Generated File

15-49

 ** MODEL INFORMATION:

 ** Model Name: rtwdemo_mpf

 ** Model Description: Data packaging examples

 ** Model Version: 1.89

 ** Model Author: The MathWorks Inc. - Mon Mar 01 11:23:00 2004

 **

 ** MODIFICATION HISTORY:

 ** Model at Code Generation: ssulliva - Thu Sep 09 10:19:35 2010

 **

 ** Last Saved Modification: ssulliva - Thu Sep 09 10:19:13 2010

 **

 **

 **/

15 Code Appearance

15-50

Generate Source and Header Files with a Custom File Processing
(CFP) Template

In this section...

“Generate Code with a CFP Template” on page 15-50
“Analysis of the Example CFP Template and Generated Code” on page 15-52
“Generate a Custom Section” on page 15-55
“Custom Tokens” on page 15-57

This example shows you the process of generating a simple source (.c or .cpp) and
header (.h) file using the example CFP template. Then, it examines the template and the
code generated by the template.

The example CFP template, matlabroot/toolbox/rtw/targets/ecoder/
example_file_process.tlc, demonstrates some of the capabilities of the code template API,
including

• Generation of simple source (.c or .cpp) and header (.h) files
• Use of buffers to generate file sections for includes, functions, and so on
• Generation of includes, defines, into the standard generated files (for example,

model.h)
• Generation of a main program module

Generate Code with a CFP Template

This section sets up a CFP template and configures a model to use the template in code
generation. The template generates (in addition to the standard model files) a source file
(timestwo.c or .cpp) and a header file (timestwo.h).

Follow the steps below to become acquainted with the use of CFP templates:

1 Copy the example CFP template, matlabroot/toolbox/rtw/targets/ecoder/
example_file_process.tlc, to a folder outside of the MATLAB folder structure (that is,
not under matlabroot). If the folder is not on the MATLAB path or the TLC path,
then add it to the MATLAB path. It is good practice to locate the CFP template in
the same folder as your system target file, which is on the TLC path.

2 Rename the copied example_file_process.tlc to
test_example_file_process.tlc.

 Generate Source and Header Files with a Custom File Processing (CFP) Template

15-51

3 Open test_example_file_process.tlc into the MATLAB editor.
4 Uncomment the following line:

%% %assign ERTCustomFileTest = TLC_TRUE

It now reads:

 %assign ERTCustomFileTest = TLC_TRUE

If ERTCustomFileTest is not assigned as shown, the CFP template is ignored in
code generation.

5 Save your changes to the file. Keep test_example_file_process.tlc open, so
you can refer to it later.

6 Open the rtwdemo_udt model.
7 Open the Simulink Model Explorer. Select the active configuration set of the model,

and open the Code Generation pane of the active configuration set.
8 Click the Templates tab.
9 Specify File customization template as test_example_file_process.tlc.

This is the file you previously edited and is now the specified CFP template for your
model.

10 Select the Generate code only option.
11 Click Apply.
12 Click Generate Code. During code generation, notice the following message in the

Diagnostic Viewer:

Warning: Overriding example ert_main.c!

This message is displayed because test_example_file_process.tlc generates
the main program module, overriding the default action of the ERT target. This is
explained in greater detail below.

13 The rtwdemo_udt model is configured to generate an HTML code generation report.
After code generation completes, view the report. Notice that the Generated Code
list contains the files timestwo.c, timestwo.h, and ert_main.c. These files were
generated by the CFP template. The next section examines the template to learn
how this was done.

14 Keep the model, the code generation report, and the
test_example_file_process.tlc file open so you can refer to them in the next
section.

15 Code Appearance

15-52

Analysis of the Example CFP Template and Generated Code

This section examines excerpts from test_example_file_process.tlc and
some of the code it generates. Refer to the comments in matlabroot/rtw/c/tlc/mw/
codetemplatelib.tlc while reading the following discussion.

Generating Code Files

Source (.c or .cpp) and header (.h) files are created by calling LibCreateSourceFile,
as in the following excerpts:
%assign cFile = LibCreateSourceFile("Source", "Custom", "timestwo")

...

%assign hFile = LibCreateSourceFile("Header", "Custom", "timestwo")

Subsequent code refers to the files by the file reference returned from
LibCreateSourceFile.

File Sections and Buffers

The code template API lets you partition the code generated to each file into sections,
tagged as Definitions, Includes, Functions, Banner, and so on. You can append
code to each section as many times as required. This technique gives you a great deal of
flexibility in the formatting of your custom code files.

Subsections Defined for Built-In Sections describes the available file sections and their
order in the generated file.

For each section of a generated file, use %openfile and %closefile to store the text
for that section in temporary buffers. Then, to write (append) the buffer contents to a
file section, call LibSetSourceFileSection, passing in the desired section tag and
file reference. For example, the following code uses two buffers (typesBuf and tmpBuf)
to generate two sections (tagged "Includes" and "Functions") of the source file
timestwo.c or .cpp (referenced as cFile):

 %openfile typesBuf

#ifdef MATLAB_MEX_FILE

#include <tmwtypes.h>

#else

#include "rtwtypes.h"

#endif

%closefile typesBuf

 Generate Source and Header Files with a Custom File Processing (CFP) Template

15-53

%<LibSetSourceFileSection(cFile,"Includes",typesBuf)>

 %openfile tmpBuf

 /* Times two function */

 real_T timestwofcn(real_T input) {

 return (input * 2.0);

}

%closefile tmpBuf

%<LibSetSourceFileSection(cFile,"Functions",tmpBuf)>

These two sections generate the entire timestwo.c or .cpp file:

#ifdef MATLAB_MEX_FILE

#include <tmwtypes.h>

#else

#include "rtwtypes.h"

#endif

/* Times two function */

FLOAT64 timestwofcn(FLOAT64 input)

{

 return (input * 2.0);

}

Adding Code to Standard Generated Files

The timestwo.c or .cpp file generated in the previous example was independent
of the standard code files generated from a model (for example, model.c or .cpp,
model.h, and so on). You can use similar techniques to generate custom code within
the model files. The code template API includes functions to obtain the names of the
standard models files and other model-related information. The following excerpt calls
LibGetMdlPubHdrBaseName to obtain the name for the model.h file. It then obtains a
file reference and generates a definition in the Defines section of model.h:
%% Add a #define to the model's public header file model.h

%assign pubName = LibGetMdlPubHdrBaseName()

%assign modelH = LibCreateSourceFile("Header", "Simulink", pubName)

%openfile tmpBuf

 #define ACCELERATION 9.81

15 Code Appearance

15-54

 %closefile tmpBuf

%<LibSetSourceFileSection(modelH,"Defines",tmpBuf)>

Examine the generated rtwdemo_udt.h file to see the generated #define directive.

Customizing Main Program Module Generation

Normally, the ERT target determines whether and how to generate an ert_main.c
or .cpp module based on the settings of the Generate an example main program
and Target operating system options on the Templates pane of the Configuration
Parameters dialog box. You can use a CFP template to override the normal behavior and
generate a main program module customized for your target environment.

To support generation of main program modules, two TLC files are provided:

• bareboard_srmain.tlc: TLC code to generate an example single-rate main
program module for a bareboard target environment. Code is generated by a single
TLC function, FcnSingleTaskingMain.

• bareboard_mrmain.tlc: TLC code to generate a multirate main program module
for a bareboard target environment. Code is generated by a single TLC function,
FcnMultiTaskingMain.

In the example CFP template file matlabroot/toolbox/rtw/targets/ecoder/
example_file_process.tlc, the following code generates either a single- or multitasking
ert_main.c or .cpp module. The logic depends on information obtained from the code
template API calls LibIsSingleRateModel and LibIsSingleTasking:
%% Create a simple main. Files are located in MATLAB/rtw/c/tlc/mw.

 %if LibIsSingleRateModel() || LibIsSingleTasking()

 %include "bareboard_srmain.tlc"

 %<FcnSingleTaskingMain()>

 %else

 %include "bareboard_mrmain.tlc"

 %<FcnMultiTaskingMain()>

 %endif

Note that bareboard_srmain.tlc and bareboard_mrmain.tlc use the code template
API to generate ert_main.c or .cpp.

When generating your own main program module, you disable the default generation of
ert_main.c or .cpp. The TLC variable GenerateSampleERTMain controls generation
of ert_main.c or .cpp. You can directly force this variable to TLC_FALSE. The

 Generate Source and Header Files with a Custom File Processing (CFP) Template

15-55

examples bareboard_mrmain.tlc and bareboard_srmain.tlc use this technique, as
shown in the following excerpt from bareboard_srmain.tlc.

%if GenerateSampleERTMain

 %assign CompiledModel.GenerateSampleERTMain = TLC_FALSE

 %warning Overriding example ert_main.c!

%endif

Alternatively, you can implement a SelectCallback function for your target. A
SelectCallback function is a MATLAB function that is triggered during model loading,
and also when the user selects a target with the System Target File browser. Your
SelectCallback function should deselect and disable the Generate an example
main program option. This prevents the TLC variable GenerateSampleERTMain from
being set to TLC_TRUE.

See the “rtwgensettings Structure” section for information on creating a
SelectCallback function.

The following code illustrates how to deselect and disable the Generate an example
main program option in the context of a SelectCallback function.

slConfigUISetVal(hDlg, hSrc, 'GenerateSampleERTMain', 'off');

slConfigUISetEnabled(hDlg, hSrc, 'GenerateSampleERTMain',0);

Note Creation of a main program for your target environment requires some
customization; for example, in a bareboard environment you need to attach rt_OneStep
to a timer interrupt. It is expected that you will customize either the generated code,
the generating TLC code, or both. See “Guidelines for Modifying the Main Program” and
“Guidelines for Modifying rt_OneStep” for further information.

Generate a Custom Section

You can define custom tokens in a CGT file and direct generated code into an associated
built-in section. This feature gives you additional control over the formatting of
code within each built-in section. For example, you could add subsections to built-in
sections that do not already define subsections. Custom sections must be associated
with one of the built-in sections: Includes, Defines, Types, Enums, Definitions,
Declarations, or Functions. To create custom sections, you must

• Add a custom token to the code insertion section of your CGT file.

15 Code Appearance

15-56

• In your CFP file:

• Assemble code to be generated to the custom section into a buffer.
• Declare an association between the custom section and a built-in section, with the

code template API function LibAddSourceFileCustomSection.
• Emit code to the custom section with the code template API function

LibSetSourceFileCustomSection.

The following code examples illustrate the addition of a custom token, Myincludes, to
a CGT file, and the subsequent association of the custom section Myincludes with the
built-in section Includes in a CFP file.

Note: If you have not already created custom CGT and CFP files for your model, copy the
default template files matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt and
matlabroot/toolbox/rtw/targets/ecoder/example_file_process.tlc to a work folder that is
outside the MATLAB folder structure but on the MATLAB or TLC path, rename them
(for example, add the prefix test_ to each file), and update the Templates pane of the
Configuration Parameters dialog box to reference them.

First, add the token Myincludes to the code insertion section of your CGT file. For
example:

%<Includes>

%<Myincludes>

%<Defines>

%<Types>

%<Enums>

%<Definitions>

%<Declarations>

%<Functions>

Next, in the CFP file, add code to generate include directives into a buffer. For example,
in your copy of the example CFP file, you could insert the following section between the
Includes section and the Create a simple main section:

%% Add a custom section to the model's C file model.c

%openfile tmpBuf

#include "moretables1.h"

#include "moretables2.h"

 Generate Source and Header Files with a Custom File Processing (CFP) Template

15-57

%closefile tmpBuf

%<LibAddSourceFileCustomSection(modelC,"Includes","Myincludes")>

%<LibSetSourceFileCustomSection(modelC,"Myincludes",tmpBuf)>

The LibAddSourceFileCustomSection function call declares an association
between the built-in section Includes and the custom section Myincludes.
Myincludes is a subsection of Includes. The LibSetSourceFileCustomSection
function call directs the code in the tmpBuf buffer to the Myincludes section of the
generated file. LibSetSourceFileCustomSection is syntactically identical to
LibSetSourceFileSection.

In the generated code, the include directives generated to the custom section appear after
other code directed to Includes.

#include "rtwdemo_udt.h"

#include "rtwdemo_udt_private.h"

/* #include "mytables.h" */

#include "moretables1.h"

#include "moretables2.h"

Note: The placement of the custom token in this example CGT file is arbitrary. By
locating %<Myincludes> after %<Includes>, the CGT file specifies only that the
Myincludes code appears after Includes code.

Custom Tokens

Custom tokens are automatically translated to TLC syntax as a part of the build process.
To escape a token, that is to prepare it for normal TLC expansion, use the '!' character.
For example, the token %<!TokenName> is expanded to %<TokenName> by the template
conversion program. You can specify valid TLC code, including TLC function calls: %<!
MyTLCFcn()>.

15 Code Appearance

15-58

Comparison of a Template and Its Generated File

This figure shows part of a user-modified custom file processing (CFP) template and the
resulting generated code. The figure illustrates how you can use a template to:

• Define what code the code generation software should add to the generated file
• Control the location of code in the file
• Optionally insert comments in the generated file

Notice %<Includes>, for example, on the template. The term Includes is a symbol
name. A percent sign and brackets (%< >) must enclose every symbol name. You can
add the desired symbol name (within the %< > delimiter) at a particular location in
the template. This is how you control where the code generator places an item in the
generated file.

 Comparison of a Template and Its Generated File

15-59

Template and Generated File

/*#INCLUDES*/
%<Includes>
/*#DEFINES*/
%<Defines>
#pragma string1
/*DEFINITIONS*/
%<Definitions>
#pragma string2
%<Declarations>
%<Functions>

Portion of
Example Template Corresponding Portion of Generated File

.

.

.

.

.

.

(1)

(2)

(3)
(4)

(5)
(6)
(7)

26 /*#INCLUDES*/
27 #include "rtwdemo_codetemplate.h"
28 #include "rtwdemo_codetemplate_private.h"
29
30 /*#DEFINES*/
31 #pragma string1
32 /*DEFINITIONS*/
33 /* Block states (auto storage) */
34 rtDWork;
35
36 /* External output (fed by signals with auto storage) */
37 rtY;
38
39 /* Real-time model */
40 rtM_;
41 *rtM = &rtM_;
42 #pragma string2
43
44 /* Model step function */
45 void rtwdemo_codetemplate_step(void)
46 {
47
48 /* local block i/o variables */
49
50 rtb_Switch;
51 rtb_RelOpt;
52
53 /* Sum: '' incorporates:
54 * UnitDelay: ''
55 */
56 rtb_Switch = ()(()rtDWork.X + 1U);
57
58 /* RelationalOperator: '' */
59 rtb_RelOpt = (rtb_Switch != 16U);
60
61 /* Outport: '' */
62 rtY.Out = rtb_RelOpt;
63
64 /* Switch: '' */
65 if(rtb_RelOpt) {
66 } else {
67 rtb_Switch = 0U;
68 }
69
70 /* Update for UnitDelay: '' */
71 rtDWork.X = rtb_Switch;
72
73 /* (no update code required) */
74 }
.
.
.

None

None

Mapping Template Specification to Code Generation

15 Code Appearance

15-60

Generates in the file...This part of the template...

Line Description

Explanation

(1) /*#INCLUDES*/

%<Includes>
26–28 An /*#INCLUDES*/

comment, followed
by #include
statements

The code generator adds the C/
C++ comment as a header, and
then interprets the %<Includes>
template symbol to list the
required #include statements
in the file. This code is first in
this section of the file because the
template entries are first.

(2) /*#DEFINES*/

%<Defines>

30 A /*#DEFINES*/
comment, but no
#define statements

Next, the code generator places
the comment as a header for
#define statements, but the file
does not need #define. No code
is added.

(3) #pragma string1 31
(5) #pragma string2 42

#pragma statements While the code generator requires
%<> delimiters for template
symbols, it can also interpret C/
C++ statements in the template
without delimiters. In this case,
the generator adds the specified
statements to the code, following
the order in which the statements
appear in the template.

(4) /*DEFINITIONS*/

%<Definitions>

32–41 /*DEFINITIONS*/

comment, followed by
definitions

The code generator places the
comment and definitions in
the file between the #pragma
statements, according to the
order in the template. It also
inserts comments (lines 33 and
36) that are preset in the model's
Configuration Parameters dialog
box.

(6) %<Declarations> 43 No declarations The file needs no declarations,
so the code generator does not
generate declarations for this
file. The template does not have

 Comparison of a Template and Its Generated File

15-61

Generates in the file...This part of the template...

Line Description

Explanation

a comment to provide a header.
Line 43 is left blank.

(7) %<Functions> 44–74 Functions Finally, the code generator adds
functions from the model, plus
comments that are preset in the
Configuration Parameters dialog
box. But it adds no comments
as a header for the functions,
because the template does
not have one. This code is last
because the template entry is
last.

For a list of template symbols and the rules for using them, see “Template Symbol
Groups” on page 15-74, “Template Symbols” on page 15-77, and “Rules for
Modifying or Creating a Template” on page 15-81. To set comment options, from the
Simulation menu, select Model Configuration Parameters. On the Configuration
Parameters dialog box, select the Code Generation > Comments pane. For details, see
“Configure Code Comments”.

15 Code Appearance

15-62

Code Template API Summary

Code Template API Functions summarizes the code template API. See the source code in
matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc for detailed information on the arguments,
return values, and operation of these calls.

Code Template API Functions

Function Description

LibGetNumSourceFiles Returns the number of created source files
(.c or .cpp and .h).

LibGetSourceFileTag Returns <filename>_h and <filename>_c
for header and source files, respectively,
where filename is the name of the model
file.

LibCreateSourceFile Creates a new C or C++ file and returns its
reference. If the file already exists, simply
returns its reference.

LibGetFileRecordName Returns a model file name (including the
path) without the extension.

LibGetSourceFileFromIdx Returns a model file reference based on its
index. This is useful for a common operation
on all files, such as to set the leading file
banner of all files.

LibSetSourceFileSection Adds to the contents of a specified section
within a specified file (see also “Custom File
Processing (CFP) Template Structure” on
page 15-45).

LibIndentSourceFile Indents a file (from within the TLC
environment).

LibCallModelInitialize Returns code for calling the model's
model_initialize function (valid for ERT
only).

LibCallModelStep Returns code for calling the model's
model_step function (valid for ERT only).

 Code Template API Summary

15-63

Function Description

LibCallModelTerminate Returns code for calling the model's
model_terminate function (valid for ERT
only).

LibCallSetEventForThisBaseStep Returns code for calling the model's set
events function (valid for ERT only).

LibWriteModelData Returns data for the model (valid for ERT
only).

LibSetRTModelErrorStatus Returns the code to set the model error
status.

LibGetRTModelErrorStatus Returns the code to get the model error
status.

LibIsSingleRateModel Returns true if model is single rate and false
otherwise.

LibGetModelName Returns name of the model (without an
extension).

LibGetMdlSrcBaseName Returns the name of model's main source file
(for example, model.c or .cpp).

LibGetMdlPubHdrBaseName Returns the name of model's public header
file (for example, model.h).

LibGetMdlPrvHdrBaseName Returns the name of the model's
private header file (for example,
model_private.h).

LibIsSingleTasking Returns true if the model is configured for
single-tasking execution.

LibWriteModelInput Returns the code to write to a particular root
input (that is, a model inport block). (valid
for ERT only).

LibWriteModelOutput Returns the code to write to a particular root
output (that is, a model outport block). (valid
for ERT only).

LibWriteModelInputs Returns the code to write to root inputs (that
is, all model inport blocks). (valid for ERT
only)

15 Code Appearance

15-64

Function Description

LibWriteModelOutputs Returns the code to write to root outputs
(that is, all model outport blocks). (valid for
ERT only).

LibNumDiscreteSampleTimes Returns the number of discrete sample
times in the model.

LibSetSourceFileCodeTemplate Set the code template to be used for
generating a specified source file.

LibSetSourceFileOutputDirectory Set the folder into which a specified source
file is to be generated.

LibAddSourceFileCustomSection Add a custom section to a source file. The
custom section must be associated with
one of the built-in (required) sections:
Includes, Defines, Types, Enums,
Definitions, Declarations, or
Functions.

LibSetSourceFileCustomSection Adds to the contents of a specified custom
section within a specified file. The custom
section must have been previously created
with LibAddSourceFileCustomSection.

LibGetSourceFileCustomSection Returns the contents of a specified custom
section within a specified file.

LibSetCodeTemplateComplianceLevel This function must be called from your CFP
template before other code template API
functions are called. Pass in 2 as the level
argument.

Note: Some MathWorks TLC files pass in 1
as the level argument. Currently, there is
no difference in handling of level 1 versus
level 2 by MathWorks software.

 Generate Custom File and Function Banners

15-65

Generate Custom File and Function Banners
Using code generation template (CGT) files, you can specify custom file banners and
function banners for the generated code files. File banners are comment sections in
the header and trailer sections of a generated file. Function banners are comment
sections for each function in the generated code. Use these banners to add a company
copyright statement, specify a special version symbol for your configuration management
system, remove time stamps, and for many other purposes. These banners can contain
characters, which propagate to the generated code.

To specify banners, create a custom CGT file with customized banner sections. The build
process creates an executable TLC file from the CGT file. The code generation process
then invokes the TLC file.

You do not need to be familiar with TLC programming to generate custom banners. You
can modify example files that are supplied with the ERT target.

Note Prior releases supported direct use of customized TLC files as banner templates.
You specified these with the Source file (.c) banner template and Header file (.h)
banner template options of the ERT target. You can still use a custom TLC file banner
templates, however, you can now use CGT files instead.

ERT template options on the Code Generation > Templates pane of a configuration
set, in the Code templates section, support banner generation.

The options for function and file banner generation are:

• “Code templates: Source file (*.c) template”: CGT file to use when generating source
(.c or .cpp) files. Place this file on the MATLAB path.

• “Code templates: Header file (*.h) template”: CGT file to use when generating header
(.h) files. You must place this file on the MATLAB path. This file can be the same
template specified in the Code templates: Source file (*.c) template field, in which
case identical banners are generated in source and header files.

By default, the template for both source and header files is matlabroot/toolbox/rtw/
targets/ecoder/ert_code_template.cgt.

• In each of these fields, click Browse to navigate to and select an existing CGT file
for use as a template. Click Edit to open the specified file into the MATLAB editor,
where you can customize it.

15 Code Appearance

15-66

 Generate Custom File and Function Banners

15-67

Create a Custom File and Function Banner Template

To customize a CGT file for custom banner generation, make a local copy of the default
code template and edit it, as follows:

1 Activate the configuration set that you want to work with.
2 Open the Code Generation pane of the active configuration set.
3 Click the Templates tab.
4 By default, the code template specified in the Code templates: Source file (*.c)

template and Code templates: Header file (*.h) template fields is matlabroot/
toolbox/rtw/targets/ecoder/ert_code_template.cgt.

5 If you want to use a different template as your starting point, click Browse to locate
and select a CGT file.

6 Click Edit button to open the CGT file into the MATLAB editor.
7 Save a local copy of the CGT file. Store the copy in a folder that is outside of the

MATLAB folder structure, but on the MATLAB path. If required, add the folder to
the MATLAB path.

8 If you intend to use the CGT file with a custom target, locate the CGT file in a folder
under your target root folder.

9 Rename your local copy of the CGT file. When you rename the CGT file, update
the associated Code templates: Source file (*.c) template or Code templates:
Header file (*.h) template field to match the new file name.

10 Edit and customize the local copy of the CGT file for banner generation, using the
information provided in “Customize a Code Generation Template (CGT) File for File
and Function Banner Generation” on page 15-68.

11 Save your changes to the CGT file.
12 Click Apply to update the configuration set.
13 Save your model.
14 Generate code. Examine the generated source and header files to confirm that they

contain the banners specified by the template or templates.

15 Code Appearance

15-68

Customize a Code Generation Template (CGT) File for File and Function
Banner Generation

This section describes how to edit a CGT file for custom file and function banner
generation. For a description of CGT files, see “Code Generation Template (CGT) Files”
on page 15-41.

Components of the File and Function Banner Sections in the CGT file

In a CGT file, you can modify the following sections: file banner, function banner, shared
utility function banner, and file trailer. Each section is defined by open and close tags.
The tags specific to each section are shown in the following table.

CGT File Section Open Tag Close Tag

File Banner <FileBanner> </FileBanner>

Function Banner <FunctionBanner> </FunctionBanner>

Shared-utility Banner <SharedUtilityBanner> </SharedUtilityBanner>

File Trailer <FileTrailer> </FileTrailer>

You can customize your banners by including tokens and comments between the
open and close tag for each section. Tokens are typically TLC variables, for example
<ModelVersion>, which are replaced with values in the generated code.

Note: Including C comment indicators, '/*' or a '*/', in the contents of your banner might
introduce an error in the generated code.

An open tag includes tag attributes. Enclose the value of the attribute in double quotes.
The attributes available for an open tag are:

• width: specifies the width of the file or function banner comments in the generated
code. The default value is 80.

• style: specifies the boundary for the file or function banner comments in the
generated code.

The open tag syntax is as follows:

<OpenTag style = “style_value” width = “num_width”>

 Generate Custom File and Function Banners

15-69

The built-in style options for the style attribute are:

• classic

/* single line comments */

/*

 * multiple line comments

 * second line

 */

• classic_cpp

// single line comments

//

// multiple line comments

// second line

//

• box

/**/

/* banner contents */

/**/

• box_cpp

//

// banner contents //

//

• open_box

/**

 * banner contents

 **/

• open_box_cpp

//

// banner contents

//

• doxygen

/** single line comments */

/**

 * multiple line comments

 * second line

15 Code Appearance

15-70

 */

• doxygen_cpp

/// single line comments

///

/// multiple line comments

/// second line

///

• doxygen_qt

/*! single line comments */

/*!

 * multiple line comments

 * second line

 */

• doxygen_qt_cpp

//! single line comments

//!

//! multiple line comments

//! second line

//!

File Banner

This section contains comments and tokens for use in generating a custom file banner.
The file banner precedes C or C++ code generated by the model. If you omit the file
banner section from the CGT file, then no file banner emits to the generated code. The
following section is the file banner section provided with the default CGT file, matlabroot/
toolbox/rtw/targets/ecoder/ert_code_template.cgt.
%%%

%% Custom file banner section (optional)

%%

<FileBanner style="classic">

File: %<FileName>

Code generated for Simulink model %<ModelName>.

Model version : %<ModelVersion>

Simulink Coder version : %<RTWFileVersion>

TLC version : %<TLCVersion>

C/C++ source code generated on : %<SourceGeneratedOn>

 Generate Custom File and Function Banners

15-71

%<CodeGenSettings>

</FileBanner>

Summary of Tokens for File Banner Generation

FileName Name of the generated file (for example,
"rtwdemo_udt.c").

FileType Either "source" or "header". Designates whether
generated file is a .c or .cpp file or an .h file.

FileTag Given file names file.c or .cpp and file.h; the file
tags are "file_c" and "file_h", respectively.

ModelName Name of generating model.
ModelVersion Version number of model.
RTWFileVersion Version number of model.rtw file.
RTWFileGeneratedOn Timestamp of model.rtw file.
TLCVersion Version of Target Language Compiler.
SourceGeneratedOn Timestamp of generated file.
CodeGenSettings Code generation settings for model: target language,

target selection, production hardware selection, test
hardware selection, code generation objectives (in priority
order), and Code Generation Advisor validation result.

Function Banner

This section contains comments and tokens for use in generating a custom function
banner. The function banner precedes C or C++ function generated during the build
process. If you omit the function banner section from the CGT file, the default function
banner emits to the generated code. The following section is the default function banner
section provided with the default CGT file, matlabroot/toolbox/rtw/targets/ecoder/
ert_code_template.cgt.
%%%

%% Custom function banner section (optional)

%% Customize function banners by using the following predefined tokens:

%% %<ModelName>, %<FunctionName>, %<FunctionDescription>, %<Arguments>,

%% %<ReturnType>, %<GeneratedFor>, %<BlockDescription>.

%%

<FunctionBanner style="classic">

%<FunctionDescription>

%<BlockDescription>

</FunctionBanner>

15 Code Appearance

15-72

Summary of Tokens for Function Banner Generation

FunctionName Name of function
Arguments List of function arguments
ReturnType Return type of function
ModelName Name of generating model
FunctionDescription Short abstract about the function
GeneratedFor Full block path for the generated function
BlockDescription User input from the Block Description parameter of the

block properties dialog box. BlockDescription contains
an optional token attribute, style. The only valid value
forstyle is content_only, which is case-sensitive and
enclosed in double quotes. Use the content_only style
when you want to include only the block description
content that you entered in the block parameter dialog.
The syntax for the token attribute style is:

%<BlockDescription style = ”content_only”>

Shared Utility Function Banner

The shared utility function banner section contains comments and tokens for use in
generating a custom shared utility function banner. The shared utility function banner
precedes C or C++ shared utility function generated during the build process. If you omit
the shared utility function banner section from the CGT file, the default shared utility
function banner emits to the generated code. The following section is the default shared
utility function banner section provided with the default CGT file, matlabroot/toolbox/
rtw/targets/ecoder/ert_code_template.cgt.
%%%

%% Custom shared utility function banner section (optional)

%% Customize banners for functions generated in shared location by using the

%% following predefined tokens: %<FunctionName>, %<FunctionDescription>,

%% %<Arguments>, %<ReturnType>.

%%

<SharedUtilityBanner style="classic">

%<FunctionDescription>

</SharedUtilityBanner>

Summary of Tokens for Shared Utility Function Banner Generation

FunctionName Name of function

 Generate Custom File and Function Banners

15-73

Arguments List of function arguments
ReturnType Return type of function
FunctionDescription Short abstract about function

File Trailer

The file trailer section contains comments for generating a custom file trailer. The file
trailer follows C or C++ code generated from the model. If you omit the file trailer section
from the CGT file, no file trailer emits to the generated code. The following section is the
default file trailer provided in the default CGT file.
%%%

%% Custom file trailer section (optional)

%%

<FileTrailer style="classic">

File trailer for generated code.

[EOF]

</FileTrailer>

Tokens available for the file banner are available for the file trailer. See Summary of
Tokens for File Banner Generation.

15 Code Appearance

15-74

Template Symbols and Rules

In this section...

“Introduction” on page 15-74
“Template Symbol Groups” on page 15-74
“Template Symbols” on page 15-77
“Rules for Modifying or Creating a Template” on page 15-81

Introduction

“Template Symbol Groups” on page 15-74 and “Template Symbols” on page 15-77
describe custom file processing (CFP) template symbols and rules for using them. The
location of a symbol in one of the supplied template files (code_c_template.cgt,
code_h_template.cgt, data_c_template.cgt, or data_h_template.cgt)
determines where the items associated with that symbol are located in the corresponding
generated file. “Template Symbol Groups” on page 15-74 identifies the symbol
groups, starting with the parent (“Base”) group, followed by the children of each parent.
“Template Symbols” on page 15-77 lists the symbols alphabetically.

Template Symbol Groups

Symbol Group Symbol Names in This Group

Base (Parents) Declarations

Defines

Definitions

Documentation

Enums

Functions

Includes

Types

Declarations ExternalCalibrationLookup1D

 Template Symbols and Rules

15-75

Symbol Group Symbol Names in This Group

ExternalCalibrationLookup2D

ExternalCalibrationScalar

ExternalVariableScalar

Defines LocalDefines

LocalMacros

Definitions FilescopeCalibrationLookup1D

FilescopeCalibrationLookup2D

FilescopeCalibrationScalar

FilescopeVariableScalar

GlobalCalibrationLookup1D

GlobalCalibrationLookup2D

GlobalCalibrationScalar

GlobalVariableScalar

15 Code Appearance

15-76

Symbol Group Symbol Names in This Group

Documentation Abstract

Banner

Created

Creator

Date

Description

FileName

History

LastModifiedDate

LastModifiedBy

ModelName

ModelVersion

ModifiedBy

ModifiedComment

ModifiedHistory

 Notes

ToolVersion

Functions CFunctionCode

Types This parent has no children.

 Template Symbols and Rules

15-77

Template Symbols

Symbol Name* Symbol Group Symbol
Scope

Symbol Description
(What the symbol puts in the
generated file)

Abstract Documentation N/A User-supplied description of
the model or file. Placed in
the generated file based on
the Stateflow note, Simulink
annotation, or DocBlock on the
model.**

Banner Documentation N/A Comments located near top of
the file. Contains information
that includes model and
software versions, and date file
was generated.

CFunctionCode Functions File C/C++ functions. Must be at the
bottom of the template.

Created Documentation N/A Date when model was created.
From Created on field on
Model Properties dialog box.

Creator Documentation N/A User who created model. From
Created by field on Model
Properties dialog box.

Date Documentation N/A Date file was generated. Taken
from computer clock.

Declarations Base Data declaration of a signal
or parameter. For example,
extern real_T globalvar;.

Defines Base File Required #defines of .h files.
Definitions Base File Data definitions of signals or

parameters.
Description Documentation N/A Description of model. From

Model description field on
Model Properties dialog box.**

15 Code Appearance

15-78

Symbol Name* Symbol Group Symbol
Scope

Symbol Description
(What the symbol puts in the
generated file)

Documentation Base N/A Comments about how to
interpret the generated files.

Enums Base File Enumerated data type
definitions.

ExternalCalibrationLookup1D Declarations External ***
ExternalCalibrationLookup2D Declarations External ***
ExternalCalibrationScalar Declarations External ***
ExternalVariableScalar Declarations External ***
FileName Documentation N/A Name of the generated file.
FilescopeCalibrationLookup1DDefinitions File ***
FilescopeCalibrationLookup2DDefinitions File ***
FilescopeCalibrationScalar Definitions File ***
FilescopeVariableScalar Definitions File ***
Functions Base File Generated function code.
GlobalCalibrationLookup1D Definitions Global ***
GlobalCalibrationLookup2D Definitions Global ***
GlobalCalibrationScalar Definitions Global ***
GlobalVariableScalar Definitions Global ***
History Documentation N/A User-supplied revision history

of the generated files. Placed
in the generated file based on
the Stateflow note, Simulink
annotation, or DocBlock on the
model.**

Includes Base File #include preprocessor
directives.

 Template Symbols and Rules

15-79

Symbol Name* Symbol Group Symbol
Scope

Symbol Description
(What the symbol puts in the
generated file)

LastModifiedDate Documentation N/A Date when model was last
saved. From Last saved on
field on Model Properties dialog
box.

LastModifiedBy Documentation N/A User who last saved model.
From Last saved by field on
Model Properties dialog box.

LocalDefines Defines File #define preprocessor directives
from code-generation data
objects.

LocalMacros Defines File C/C++ macros local to the file.
ModelName Documentation N/A Name of the model.
ModelVersion Documentation N/A Version number of the Simulink

model. From Model version
field on Model Properties dialog
box.

ModifiedBy Documentation N/A Name of user who last modified
the model.

ModifiedComment Documentation N/A Comment user enters in the
Modified Comment field on
the Log Change dialog box.
For more information, see “Log
Comments History”.

ModifiedHistory Documentation N/A Text from Model history field
on Model Properties dialog
box.**

Notes Documentation N/A User-supplied miscellaneous
notes about the model or
generated files. Placed in
the generated file based on
the Stateflow note, Simulink
annotation, or DocBlock on the
model.**

15 Code Appearance

15-80

Symbol Name* Symbol Group Symbol
Scope

Symbol Description
(What the symbol puts in the
generated file)

ToolVersion Documentation N/A A list of the versions of the
toolboxes used in generating the
code.

Types Base Data types of generated code.

* Symbol names must be enclosed between %< >. For example, %<Functions>.

** This symbol can be used to add a comment to the generated files. See “Add Global
Comments”. The code generator places the comment in each generated file whose
template has this symbol name. The code generator places the comment at the location
that corresponds to where the symbol name is located in the template file.

*** The description can be deduced from the symbol name. For example,
GlobalCalibrationScalar is a symbol that identifies a scalar. It contains data of
global scope that you can calibrate .

 Template Symbols and Rules

15-81

Rules for Modifying or Creating a Template

The following are the rules for creating a MPF template. “Comparison of a Template and
Its Generated File” on page 15-58 illustrates several of these rules.

1 Place a symbol on a template within the %< > delimiter. For example, the symbol
named Includes should look like this on a template: %<Includes>. Note that
symbol names are case sensitive.

2 Place a symbol on a template where desired. Its location on the template determines
where the item associated with this symbol is located in the generated file. If no item
is associated with it, the symbol is ignored.

3 Place a C/C++ statement outside of the %< > delimiter, and on a different line than
a %< > delimiter, for that statement to appear in the generated file. For example,
#pragma message ("my text") in the template results in #pragma message
("my text") at the corresponding location in the generated file. Note that the
statement must be compatible with your C/C++ compiler.

4 Use the .cgt extension for every template filename. ("cgt" stands for code
generation template.)

5 Note that %% $Revision: 1.1.4.10.4.1 $ appears at the top of the MathWorks
supplied templates. This is for internal MathWorks use only. It does not need to be
placed on a user-defined template and does not show in a generated file.

6 Place a comment on the template between /* */ as in standard ANSI C4. This
results in /*comment*/ on the generated file.

7 Each MPF template must have all of the Base group symbols, in predefined order.
They are listed in “Template Symbol Groups” on page 15-74. Each symbol in the
Base group is a parent. For example, Declarations is a parent symbol.

8 Each symbol in a non-Base group is a child. For example, LocalMacros is a child.
9 Except for Documentation children, children must be placed after their parent,

before the next parent, and before the Functions symbol.
10 Documentation children can be located before or after their parent in any order

anywhere in the template.
11 If a non-Documentation child is missing from the template, the code generator places

the information associated with this child at its parent location in the generated file.
12 If a Documentation child is missing from the template, the code generator omits the

information associated with that child from the generated file.

4. ANSI is a registered trademark of the American National Standards Institute, Inc.

15 Code Appearance

15-82

Code Annotation for Justifying Polyspace Checks
With the Polyspace Code Prover™ product you can apply Polyspace verification to
Embedded Coder generated code. The software detects run-time errors in the generated
code and helps you to locate and fix model faults.

Polyspace might highlight overflows for certain operations that are legitimate because
of the way Embedded Coder implements these operations. Consider the following model
and the corresponding generated code.

32 /* Sum: '<Root>/Sum' incorporates:

33 * Inport: '<Root>/In1'

34 * Inport: '<Root>/In2'

35 */

36 qY_0 = sat_add_U.In1 + sat_add_U.In2;

37 if ((sat_add_U.In1 < 0) && ((sat_add_U.In2 < 0) && (qY_0 >= 0))) {

38 qY_0 = MIN_int32_T;

39 } else {

40 if ((sat_add_U.In1 > 0) && ((sat_add_U.In2 > 0) && (qY_0 <= 0))) {

41 qY_0 = MAX_int32_T;

42 }

43 }

Embedded Coder software recognizes that the largest built-in data type is 32-bit. It is not
possible to saturate the results of the additions and subtractions using MIN_INT32 and
MAX_INT32 and a bigger single-word integer data type. Instead the software detects the
results overflow and the direction of the overflow, and saturates the result.

If you do not provide justification for the addition operator on line 36, a Polyspace
verification generates an orange check that indicates a potential overflow. The
verification does not take into account the saturation function of lines 37 to 43. In
addition, the trace-back functionality of Polyspace Code Prover does not identify the
reason for the orange check.

To justify overflows from operators that are legitimate, on the Configuration
Parameters > Code Generation > Comments pane:

 Code Annotation for Justifying Polyspace Checks

15-83

• Under Overall control, select the Include comments check box.
• Under Auto generate comments, select the Operator annotations check box.

When you generate code, the Embedded Coder software annotates the code with
comments for Polyspace. For example:

32 /* Sum: '<Root>/Sum' incorporates:

33 * Inport: '<Root>/In1'

34 * Inport: '<Root>/In2'

35 */

36 qY_0 = sat_add_U.In1 +/*MW:OvOk*/ sat_add_U.In2;

When you run a verification using Polyspace Code Prover, the Polyspace software uses
the annotations to justify the operator-related orange checks and assigns the Not a
defect classification to the checks.

15 Code Appearance

15-84

Manage Placement of Data Definitions and Declarations

In this section...

“Overview of Data Placement” on page 15-84
“Priority and Usage” on page 15-85
“Ownership Settings” on page 15-90
“Memory Section Settings” on page 15-91
“Data Placement Rules” on page 15-91
“Settings for a Data Object” on page 15-91
“Data Placement Rules and Results” on page 15-99

Overview of Data Placement

This chapter focuses on module packaging features (MPF) settings that are
interdependent. Their combined values, along with Simulink partitioning, determine the
file placement of data definitions and declarations, or data placement. This includes

• The number of files generated.
• Whether or not the generated files contain definitions for a model's global identifiers.

And, if a definition exists, the settings determine the files in which MPF places them.
• Where MPF places global data declarations (extern).

The following six MPF settings are distributed among the main procedures and form an
important interdependency:

• The Data definition field on the Code Placement pane of the Configuration
Parameters dialog box.

• The Data declaration field on the Code Placement pane of the Configuration
Parameters dialog box.

• The Owner field of the data object in the Model Explorer and the checkbox for Use
owner from data object for data definition placement on the Code Placement
pane of the Configuration Parameters dialog box. The term "ownership settings"
refers to these fields together.

• The Definition file field of the data object on the Model Explorer.
• The Header file field of the data object on the Model Explorer.
• The Memory section field of the data object on the Model Explorer.

 Manage Placement of Data Definitions and Declarations

15-85

Priority and Usage

• “Overview” on page 15-85
• “Read-Write Priority” on page 15-86
• “Global Priority” on page 15-89
• “Definition File, Header File, and Ownership Priorities” on page 15-90

Overview

There is a priority order among interdependent MPF settings. From highest to lowest,
the priorities are

• Definition File priority
• Header File priority
• Ownership priority
• Read-Write priority or Global priority

Priority order varies inversely with frequency of use, as illustrated below. For example,
Definition File is highest priority but least used.

Override Global or Read-Write
for selected data object.

Highest priority

Lowest priority

Least used

Most used

Definition File

Header File

Ownership

Read-Write Global

MPF Settings Priority and Usage

15 Code Appearance

15-86

Unless they are overridden, the Read-Write and Global priorities place in the generated
files all of the model's MPF-derived data objects that you selected using Data Object
Wizard. (See “Create Data Objects with Data Object Wizard” for details.) Before
generating the files, you can use the higher priority Definition file, Header file, and
Ownership, as desired, to override Read-Write or Global priorities for single data objects.
Most users will employ Read-Write or Global, without an override. A few users, however,
will want to do an override for certain data objects. We expect that those users whose
applications include multiple modules will want to use the Ownership priority.

The priorities are used only for those data objects that are derived from
Simulink.Signal and Simulink.Parameter, and whose custom storage classes are
specified using the Custom Storage Class Designer. (For details, see “Design Custom
Storage Classes and Memory Sections”.) Otherwise, the build process determines the
data placement.

Read-Write Priority

This is the lowest priority. Consider that a model consists of one or more Simulink
blocks or Stateflow diagrams. There can be subsystems within these. For the purpose of
illustration, think of a model with one top-level block called fuelsys. You double-clicked
the block and now see three subsystems labeled subsys1, subsys2 and subsys3, as
shown in the next figure. Signals a and b are outputs from the top-level block (fuelsys).
Signal a is an input to subsys1 and b is input to subsys2. Signal c is an output from
subsys1. Notice the other inputs and outputs (d and e). Signals a through e have
corresponding data objects.

As explained in “Data Definition and Declaration Management”, MPF provides you
with the means of selecting a data object that you want defined as an identifier in the
generated code. MPF also allows you to specify property values for each data object.

 Manage Placement of Data Definitions and Declarations

15-87

Model

subsys1

subsys2

subsys3

fuelsys

a

b

c

d

e

a b

The Generated Files

We generate code for this model. As shown in the figure below, this results in a .c
source file corresponding to each of the subsystems. (In actual applications, there could
be more than one .c source file for a subsystem. This is based on the file partitioning
previously selected for the model. But for our illustration, we only need to show one
for each subsystem.) Data objects a through e have corresponding identifiers in the
generated files.

A .c source file has one or more functions in it, depending on the internal operations
(functions) of its corresponding subsystem. An identifier in a generated .c file has local
scope when it is used only in one function of that .c file. An identifier has file scope when
more than one function in the same .c file uses it. An identifier has global scope when
more than one of the generated files uses it.

A subsystem's source file contains the definitions for that subsystem's data objects that
have local scope or file scope. (These definitions are not shown in the figure.) But where
are the definitions and declarations for data objects of global scope? These are shown in
the next figure.

15 Code Appearance

15-88

Model

subsys1

subsys2

subsys3

fuelsys

a

b

c

d

e

a b

Generated Files

Results of Read-Write Priority

subsys1.c subsys3.c

subsys2.c fuelsys.c

int c;

extern int a;

int e;

extern int c;

extern int d;

int d;

extern int b;

int a;

int b;

For the Read-Write priority, this source file contains the definitions for the subsystem's
global data objects, if this is the file that first writes to the data object's address. Other
files that read (use) that data object only include a reference to it. This is why this
priority is called Read-Write. Since a read and a write of a file are analogous to input
and output of a model's block, respectively, there is another way of saying this. The
definitions of a block's global data objects are located in the corresponding generated file,
if that data object is an output from that block. The declarations (extern) of a block's
global data objects are located in the corresponding generated file, if that data object is
an input to that block.

Settings for Read-Write Priority

The generated files and what they include, as just described, occur when the Read-Write
priority is used. For this to be the case, the other priorities are turned off. That is,

• The Data definition field on the Code Placement pane is set to Data defined in
source file.

• The Data declaration field on the Code Placement pane is set to Data declared
in source file.

 Manage Placement of Data Definitions and Declarations

15-89

• The Owner field on the Model Explorer is blank, and the checkbox for the Use
owner from data object for data definition placement field on the Code
Placement pane is not checked.

• Definition file and Header file on the Model Explorer are blank.

Global Priority

This has the same priority as Read-Write (the lowest) priority. The settings for this are
the same as for Read-Write Priority, except

• The Data definition field on the Code Placement pane is set to Data defined in
single separate source file.

• The Data declaration field on the Code Placement pane is set to Data declared
in single separate header file.

The generated files that result are shown in the next figure. A subsystem's data objects
of local or file scope are defined in the .c source file where the subsystem's functions are
located (not shown). The data objects of global scope are defined in another .c file (called
global.c in the figure). The declarations for the subsystem's data objects of global scope
are placed in a .h file (called global.h).

For example, data objects of local and file scope for subsys1 are defined in subsys1.c.
Signal c in the model is an output of subsys1 and an input to subsys2. So c is used by
more than one subsystem and thus is a global data object. Because of the global priority,
the definition for c (int c;) is in global.c. The declaration for c (extern int c;) is
in global.h. Since subsys2 uses (reads) c, #include "global.h" is in subsys2.c.

15 Code Appearance

15-90

Model

subsys1

subsys2

subsys3

fuelsys

a

b

c

d

e

a b

Generated Files

Results of Global Priority

subsys1.c subsys3.c

subsys2.c fuelsys.c

#include 'global.h'

int a;

int b;

int c;.

int d;

int e;

global.c global.h

extern int a;

extern int b;

extern int c;

extern int d;

extern int e;

#include 'global.h'

#include 'global.h' #include 'global.h'

Definition File, Header File, and Ownership Priorities

While the Read-Write and Global priorities operate on all MPF-derived data objects that
you want defined in the generated code, the remaining priorities allow you to override
the Read-Write or Global priorities for one or more particular data objects. There is a
high-to-low priority among these remaining priorities — Definition File, Header File, and
Ownership — for a particular data object, as shown in MPF Settings Priority and Usage

Ownership Settings

Ownership settings refers to the on or off setting specified using the Use owner from
data object for data definition placement checkbox on the Code Placement pane
of the Configuration Parameters dialog box, and the Owner field of a data object in the
Model Explorer. These settings do not control what files are generated. These settings

 Manage Placement of Data Definitions and Declarations

15-91

only specify definitions and extern statements. There are four possible configurations,
as shown in “Ownership Settings” on page 15-100.

Memory Section Settings

Memory sections allow you to specify storage directives for a data object. As shown in
“Parameter and Signal Property Values”, the possible values for the Memory section
property of a parameter or signal object are Default, MemConst, MemVolatile or
MemConstVolatile.

If you specify a filename for Definition file, and select Default, MemConst,
MemVolatile or MemConstVolatile for the Memory section property, the code
generation software generates a .c file and an .h file. The .c file contains the definition
for the data object with the pragma statement or qualifier associated with the Memory
section selection. The .h file contains the declaration for the data object. The .h file can
be included, using the preprocessor directive #include, in files that need to reference
the data object.

You can add more memory sections. For more information, see “Design Custom Storage
Classes and Memory Sections” and “Memory Sections”.

Data Placement Rules

For a complete set of data placement rules in convenient tabular form, based on the
priorities discussed in this chapter, see “Data Placement Rules and Results” on page
15-99.

Settings for a Data Object

• “Introduction” on page 15-91
• “Read-Write” on page 15-93
• “Ownership” on page 15-94
• “Header File” on page 15-96
• “Definition File” on page 15-98

Introduction

“Settings and Resulting Generated Files” on page 15-100 provides example settings for
one data object of a model. Eight examples are listed so that you can see the generated

15 Code Appearance

15-92

files that result from a wide variety of settings. Four examples from this table are
discussed below in more detail. These discussions provide information for understanding
settings you might choose. For illustration purposes, the four examples assume that we
are dealing with an overall system that controls engine idle speed.

The next figure shows that the software component of this example system consists of
two modules, IAC (Idle Air Control), and IO (Input-Output).

Engine Idle Speed Control System

IAC (Idle Air Control) Module IO Module

(External to MPF)
Generated File for Chart spd_filt

Depends on MPF Settings

Depends on MPF Settings

Generated File for Chart iac_ctrl

/* Definitions*/

real_T meas_spd = 0.0;

real_T iac_cmd = 0.0;

/* External Data*/

extern real_T meas_spd;

extern real_T iac_cmd;

IO.c

IO.h

The code in the IO module controls the system's IO hardware. Code is generated only for
the IAC module. (Some other means produced the code for the IO module, such as hand-
coding.) So the code in IO is external to MPF, and can illustrate legacy code. To simplify
matters, the IO code contains one source file, called IO.c, and one header file, called
IO.h.

The IAC module consists of two Stateflow charts, spd_filt and iac_ctrl. The
spd_filt chart has two signals (meas_spd) and filt_spd), and one parameter (a).
The iac_ctrl chart also has two signals (filt_spd and iac_cmd) and a parameter
(ref_spd). (The parameters are not visible in the top-level charts.) One file for each

 Manage Placement of Data Definitions and Declarations

15-93

chart is generated. This example system allows us to illustrate referencing from file to
file within the MPF module, and model to external module. It also illustrates the case
where there is no such referencing.

Proceed to the discussion of the desired example settings:

• “Read-Write” on page 15-93
• “Ownership” on page 15-94
• “Header File” on page 15-96
• “Definition File” on page 15-98

Read-Write

These settings and the generated files that result are shown as Example Settings 1 in
“Settings and Resulting Generated Files” on page 15-100. As you can see from the
table, this example illustrates the case in which only one .c source file (for each chart) is
generated.

So, for the IAC model, select the following settings. Accept the Data defined in
source file in the Data definition field and the Data declared in source
file in the Data declaration field on the Code Placement pane of the Configuration
Parameters dialog box. Accept the default unchecked Use owner from data object
for data definition placement field. Accept the default blank settings for the Owner,
Definition file and Header file fields on the Model Explorer. For Memory section,
accept Default. Now the Read-Write priority is active. Generate code. The next figure
shows the results in terms of definition and declaration statements.

15 Code Appearance

15-94

Engine Idle Speed Control System (Read-Write Example)

IAC (Idle Air Control) Module IO Module

(External to MPF)
Generated File for Chart spd_filt

Generated File for Chart iac_ctrl

/* Definitions*/

real_T meas_spd = 0.0;

real_T iac_cmd = 0.0;

/* External Data*/

extern real_T meas_spd;

extern real_T iac_cmd;

IO.c

IO.h

spd_filt.c

iac_ctrl.c

/* Definitions*/

const real_T a = 0.9;

real_T filt_spd = 0.0;

real_T meas_spd = 0.0;

/* Definitions*/

const real_T ref_spd = 0.0;

real_T iac_cmd = 0.0;

/*Declarations*/

extern real_T filt_spd;

The code generator generated a spd_filt.c for the spd_filt chart and iac_ctrl.c
for the iac_ctrl chart. As you can see, MPF placed definitions of data objects for the
spd_filt chart in spd_filt.c. It placed definitions of data objects for the iac_ctrl
chart in iac_ctrl.c.

However, notice real_T filt_spd. This data object is defined in spd_filt.c and
declared in iac_ctrl.c. That is, since the Read-Write priority is active, filt_spd is
defined in the file that first writes to its address. And, it is declared in the file that reads
(uses) it. Further, real_T meas_spd is defined in both spd_filt.c and the external
IO.c. And, real_T iac_cmd is defined in both iac_ctrl.c and IO.c.

Ownership

See tables “Ownership Settings” on page 15-100 and “Settings and Resulting
Generated Files” on page 15-100. In the “Read-Write” on page 15-93, there are
several instances where the same data object is defined in more than one .c source file,
and there is no declaration (extern) statement. This would result in compiler errors

 Manage Placement of Data Definitions and Declarations

15-95

during link time. But in this example, we configure MPF Ownership rules so that linking
can take place. Notice the Example Settings 2 row in “Settings and Resulting Generated
Files” on page 15-100. Except for the ownership settings, assume these are the settings
you made for the model in the IAC module. Since this example has no Definition file or
Header file specified, now Ownership takes priority. (If you specified a Definition file
or Header file, MPF ignores the ownership settings.)

On the Code Placement pane of the Configuration Parameters dialog box, check the box
for the Use owner from data object for data definition placement field. Open the
Model Explorer (by issuing the MATLAB command daexplr) and, for all data objects
except meas_spd and iac_cmd, type IAC in the Owner field (case sensitive). Then, only
for the meas_spd and iac_cmd data objects, type IO as their Owner (case sensitive).
Generate code.

15 Code Appearance

15-96

The results are shown in the next figure. Notice the extern real_T meas_spd
statement in spd_filt.c, and extern real_T iac_cmd in iac_ctrl.c. MPF placed
these declaration statements in the files where these data objects are used. This allows
the generated source files (spd_filt.c and iac_ctrl.c) to be compiled and linked
with IO.c.

Engine Idle Speed Control System (Ownership Example)

IAC (Idle Air Control) Module IO Module

(External to MPF)
Generated File for Chart spd_filt

Generated File for Chart iac_ctrl

/* Definitions*/

real_T meas_spd = 0.0;

real_T iac_cmd = 0.0;

/* External Data*/

extern real_T meas_spd;

extern real_T iac_cmd;

IO.c

IO.h

spd_filt.c

iac_ctrl.c

/* Definitions*/

const real_T a = 0.9;

real_T filt_spd = 0.0;

/*Declarations*/

extern real_T meas_spd;

/* Definitions*/

const real_T ref_spd = 0.0;

/*Declarations*/

extern real_T filt_spd;

extern real_T iac_cmd;

Header File

These settings and the generated files that result are shown as Example Settings 3
in “Settings and Resulting Generated Files” on page 15-100. This example has no
Definition file specified. If you specified a Definition file, MPF ignores the Header
file setting. The focus of this example is to show how the Header file settings result in
the linking of the two chart source files to the external IO files, shown in the next figure.
(Also, ownership settings will be used to link the two chart files with each other.)

As you can see in the figure, the meas_spd and iac_cmd identifiers are defined in IO.c
and declared in IO.h. Both of these identifiers are external to the generated .c files.

 Manage Placement of Data Definitions and Declarations

15-97

You open the Model Explorer and select both the meas_spd and iac_cmd data objects.
For each of these data objects, in the Header file field, specify IO.h, since this is where
these two objects are declared. This setting allows the spd_filt.c source file to compile
and link with the external IO.c file.

Now we configure the ownership settings. In the Model Explorer, select the filt_spd
data object and set its Owner field to IAC. Then, on the Code Placement pane of the
Configuration Parameters dialog box, check the box for the Use owner from data
object for data definition placement field. Now the spd_filt source file links to the
iac_ctrl source file. Generate code. See the figure below.

Engine Idle Speed Control System (Header File Example)

IAC (Idle Air Control) Module IO Module

(External to MPF)
Generated File for Chart spd_filt

Generated File for Chart iac_ctrl

/* Definitions*/

real_T meas_spd = 0.0;

real_T iac_cmd = 0.0;

/* External Data*/

extern real_T meas_spd;

extern real_T iac_cmd;

IO.c

IO.h

spd_filt.c

iac_ctrl.c

/* Includes*/

#include <IO.h>

/* Definitions*/

const real_T a = 0.9;

real_T filt_spd = 0.0;

/* Includes*/

#include <IO.h>

/* Definitions*/

const real_T ref_spd = 0.0;

/* Declarations*/

extern real_T filt_spd;

Since you specified the IO.h filename for the Header file field for the meas_spd and
iac_ctrl objects, the code generator assumed that their declarations are in IO.h.
So the code generator placed #include IO.h in each source file: spd_filt.c and

15 Code Appearance

15-98

iac_ctrl.c. So these two files will link with the external IO files. Also, due to the
ownership settings that were specified, the code generator places the real_T filt_spd
= 0.0; definition in spd_filt.c and declares the filt_spd identifier in iac_ctrl.c
with extern real_T iac_cmd;. Consequently, the two source files will link together.

Definition File

These settings and the generated files that result are shown as Example Settings 4 in
“Settings and Resulting Generated Files” on page 15-100. Notice that a definition
filename is specified. The settings in the table only apply to the data object called a. You
have decided that you do not want this object defined in spd_filt.c, the generated
source file for the spd_filt chart. (There are many possible organizational reasons
one might want an object declared in another file. It is not important for this example to
specify the reason.)

For this example, assume the settings for all data objects are the same as those indicated
in “Header File” on page 15-96, except for the data object a. The description below
identifies only the differences that result from this.

Open the Model Explorer, and select data object a. In the Definition file field specify a
filename. Choose filter_constants.c. Generate code. The results are shown in the
next figure.

 Manage Placement of Data Definitions and Declarations

15-99

Engine Idle Speed Control System (Definition File Example)

IAC (Idle Air Control) Module IO Module

(External to MPF)Generated File for Chart spd_filt

Generated File for Chart iac_ctrl

/* Definitions*/

real_T meas_spd = 0.0;

real_T iac_cmd = 0.0;

/* External Data*/

extern real_T meas_spd;

extern real_T iac_cmd;

IO.c

IO.h

spd_filt.c

iac_ctrl.c

/* Includes*/

#include "IO.h"

#include "filter_constants.h"

/* Definitions*/

real_T filt_spd = 0.0;

/* Includes*/

#include <IO.h>

/* Definitions*/

constr real_T ref_spd = 0.0;

/* Declarations*/

extern real_T filt_spd;

extern real_T iac_cmd;

filter constants.c

global.h

/* Definitions */

const real_T a = 0.9;

/* Declarations */

extern real_T a;

The code generator generates the same files as in the “Header File” on page 15-96,
and adds a new file, filter_constants.c. Data object a now is defined in
filter_constants.c, rather than in the source file spd_filt.c, as it is in the
example. This data object is declared with an extern statement in global.h

Data Placement Rules and Results

• “Ownership Settings” on page 15-100

15 Code Appearance

15-100

• “Settings and Resulting Generated Files” on page 15-100
• “Data Placement Rules” on page 15-102

Ownership Settings

Row
Number

Enable Data Ownership
Checkbox

Owner Setting Result*

1 Off** Blank** Embedded Coder determines whether
the current model defines data.

2 Off** A name is specified. Embedded Coder determines whether
the current model defines data.

3 On Blank** Embedded Coder determines whether
the current model defines data.

4 On A name is specified. The model specified in the Owner
setting defines data.

* See also “Ownership Settings” on page 15-90.
** Default.

Settings and Resulting Generated Files

 Data Defined
In...

Data
Declared In...

Owner-
ship*

Defined
File**

Header
File

Generated Files

Example
Settings 1
(Rd-Write
Example)

Source file Source file Blank Blank Blank .c/.cpp source file

Example
Settings 2
(Owner- ship
Example)

Source file Source file Name of
module
specified

Blank Blank .c/.cpp source file

Example
Settings 3
(Header File
Example)

Source file Source file Blank Blank Desired
include
filename
specified.

.c/.cpp source file

.h definition file

Example
Settings 4

Source file Source file Blank Desired
definition

Desired
include

.c/.cpp source file

 Manage Placement of Data Definitions and Declarations

15-101

 Data Defined
In...

Data
Declared In...

Owner-
ship*

Defined
File**

Header
File

Generated Files

(Def. File
Example)

filename
specified.

filename
specified.

.c/.cpp definition
file*
.h definition file*

Example
Settings 5

Single
separate
source file

Source file Blank Blank Blank .c/.cpp source file
global .c/.cpp

Example
Settings 6

Single
separate
source file

Single
separate
header file

Blank Blank Blank .c/.cpp source file
global .c/.cpp

global.h

Example
Settings 7

Single
separate
source file

Single
separate
header file

Name of
module
specified

Blank Blank .c/.cpp source file
global.c/.cpp

global.h

Example
Settings 8

Single
separate
source file

Single
separate
header file

Blank Blank Desired
include
filename
specified.

.c/.cpp source file
global.c/.cpp

global.h

.h definition file

* "Blank" in ownership setting means that the check box for the Use owner from data
object for data definition placement field on the Code Placement pane is Off and
the Owner field on the Model Explorer is blank. "Name of module specified" can be a
variety of ownership settings as defined in “Ownership Settings” on page 15-100.

** The code generator generates a definition .c/.cpp file for every data object for
which you specified a definition filename (unless you selected #DEFINE for the Memory
section field). For example, if you specify the same definition filename for all data
objects, only one definition .c/.cpp file is generated. The code generator places
declarations in model.h by default, unless you specify Data declared in single
separate header file for the Data declaration option on the Code Generation
> Code Placement pane of the Configuration Parameter dialog box. If you select
that data placement option, the code generator places declarations in global.h. If
you specify a definition filename for each data object, the code generator generates one
definition .c/.cpp file for each data object and places declarations in model.h by
default, unless you specify Data declared in single separate header file for
Data declaration. If you select that data placement option, the code generator places
declarations in global.h.

15 Code Appearance

15-102

Note: If you generate C++ rather than C code, the .c files listed in the following table
will be .cpp files.

Data Placement Rules

 Global Settings: Override Settings for Specific
Data Object:

Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File

Owner Header
File

Where
Data Def.
Is

Where
Data Dec.
Is

Dec.
Inclusion

mpt or Simulink Noncustom Storage Classes:
auto N/A N/A N/A N/A N/A Note 12 model.h Note 1
Exported--

Global

N/A N/A N/A N/A N/A model.c model.h Note 1

Imported--

Extern,

Imported--

Extern--

Pointer

N/A N/A N/A N/A N/A None.
External

model_-

private.h

Note 2

Simulink--

Global

N/A N/A N/A N/A N/A Note 13 model.h Note 1

mpt or Simulink Custom Storage Class: Imported Data:
Imported--

FromFile

D/C D/C D/C N/A null None model_-

private.h

Note 3

Imported--

FromFile

D/C D/C D/C N/A hdr.h None model_-

private.h

Note 4

Simulink Custom Storage Class: #define Data:
Define D/C D/C N/A N/A N/A N/A #define,

model.h

Note 5

mpt Custom Storage Class: #define Data:
Define D/C D/C N/A N/A null N/A #define,

model.h

Note 5

 Manage Placement of Data Definitions and Declarations

15-103

 Global Settings: Override Settings for Specific
Data Object:

Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File

Owner Header
File

Where
Data Def.
Is

Where
Data Dec.
Is

Dec.
Inclusion

Define D/C D/C N/A N/A hdr.h N/A #define,
model.h

Note 6

mpt or Simulink Custom Storage Class: GetSet:
GetSet D/C D/C N/A N/A hdr.h N/A External

hdr.h

Note 4

mpt or Simulink Custom Storage Class: Bitfield, Struct:
Bitfield,
Struct

D/C D/C N/A N/A N/A model.c model.h Note 7

mpt Custom Storage Class: Global, Const, ConstVolatile, Volatile:
Global, Const,
Const--

Volatile,
Volatile

auto auto null null or
locally
owned

null model.c model.h Note 1

Global, Const,
Const--

Volatile,
Volatile

src auto null null or
locally
owned

null src.c model.h Note 1

Global, Const,
Const--

Volatile,
Volatile

sep auto null null or
locally
owned

null gbl.c model.h Note 1

Global,

Const,

Const--

Volatile,

Volatile

auto src null null or
locally
owned

null model.c src.c Note 8

15 Code Appearance

15-104

 Global Settings: Override Settings for Specific
Data Object:

Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File

Owner Header
File

Where
Data Def.
Is

Where
Data Dec.
Is

Dec.
Inclusion

Global, Const,
Const--

Volatile,
Volatile

src src null null or
locally
owned

null src.c src.c Note 8

Global, Const,
Const--

Volatile,
Volatile

sep src null null or
locally
owned

null gbl.c src.c Note 8

Global, Const,
Const--

Volatile,
Volatile

auto sep null null or
locally
owned

null model.c gbl.h Note 9

Global, Const,
Const--

Volatile,
Volatile

src sep null null or
locally
owned

null src.c gbl.h Note 9

Global, Const,
Const--

Volatile,
Volatile

sep sep null null or
locally
owned

null gbl.c gbl.h Note 9

Global, Const,
Const--

Volatile,
Volatile

D/C D/C data.c D/C null data.c See Note
10.

Note 10

Global, Const,
Const--

Volatile,
Volatile

D/C D/C data.c D/C hdr.h data.c hdr.h Note 11

 Manage Placement of Data Definitions and Declarations

15-105

 Global Settings: Override Settings for Specific
Data Object:

Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File

Owner Header
File

Where
Data Def.
Is

Where
Data Dec.
Is

Dec.
Inclusion

Global, Const,
Const--

Volatile,
Volatile

auto D/C null null hdr.h model.c hdr.h Note 11

Global, Const,
Const--

Volatile,
Volatile

src D/C null null hdr.h src.c hdr.h Note 11

Global, Const,
Const--

Volatile,
Volatile

sep D/C null null hdr.h gbl.c hdr.h Note 11

Global, Const,
Const--

Volatile,
Volatile

D/C auto null External
owner

null External
user--
supplied
file

model.h Note 1

Global, Const,
Const--

Volatile,
Volatile

D/C src null External
owner

null External
user--
supplied
file

src.c Note 8

Global, Const,
Const--

Volatile,
Volatile

D/C sep null External
owner

null External
user--
supplied
file

gbl.h Note 9

Global, Const,
Const--

Volatile,
Volatile

D/C D/C null External
owner

header.h External
user--
supplied
file

hdr.h Note 11

15 Code Appearance

15-106

 Global Settings: Override Settings for Specific
Data Object:

Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File

Owner Header
File

Where
Data Def.
Is

Where
Data Dec.
Is

Dec.
Inclusion

Global, Const,
Const--

Volatile,
Volatile

D/C D/C null External
owner

header.h External
user--
supplied
file

hdr.h Note 11

mpt Custom Storage Class: Exported Data:
ExportTo-File auto auto null null null model.c model.h Note 1
ExportTo-File src auto null null null src.c model.h Note 1
ExportTo-File sep auto null null null gbl.c model.h Note 1
ExportTo-File auto src null null null model.c src.c Note 8
ExportTo-File src src null null null src.c src.c Note 8
ExportTo-File sep src null null null gbl.c src.c Note 8
ExportTo-File auto sep null null null model.c gbl.h Note 9
ExportTo-File src sep null null null src.c gbl.h Note 9
ExportTo-File sep sep null null null gbl.c gbl.h Note 9
ExportTo-File D/C D/C data.cnull null data.c See Note

10.
Note 10

ExportTo-File D/C D/C data.cnull hdr.h model.c hdr.h Note 11
ExportTo-File auto D/C null null hdr.h src.c hdr.h Note 11
ExportTo-File sep D/C null null hdr.h gbl.c hdr.h Note 11
Simulink Custom Storage Class: Default, Const, ConstVolatile, Volatile:
Default,
Const, Const--
Volatile,
Volatile

auto auto N/A N/A N/A model.c model.h Note 1

 Manage Placement of Data Definitions and Declarations

15-107

 Global Settings: Override Settings for Specific
Data Object:

Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File

Owner Header
File

Where
Data Def.
Is

Where
Data Dec.
Is

Dec.
Inclusion

Default,
Const, Const--
Volatile,
Volatile

src auto N/A N/A N/A src.c model.h Note 1

Default,
Const, Const--
Volatile,
Volatile

sep auto N/A N/A N/A gbl.c model.h Note 1

Default,
Const, Const--
Volatile,
Volatile

auto src N/A N/A N/A model.c src.c Note 8

Default,
Const, Const--
Volatile,
Volatile

src src N/A N/A N/A src.c src.c Note 8

Default,
Const, Const--
Volatile,
Volatile

sep src N/A N/A N/A gbl.c src.c Note 8

Default,
Const, Const--
Volatile,
Volatile

auto sep N/A N/A N/A model.c gbl.h Note 9

Default,
Const, Const--
Volatile,
Volatile

src sep N/A N/A N/A src.c gbl.h Note 9

15 Code Appearance

15-108

 Global Settings: Override Settings for Specific
Data Object:

Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File

Owner Header
File

Where
Data Def.
Is

Where
Data Dec.
Is

Dec.
Inclusion

Default,
Const, Const--
Volatile,
Volatile

sep sep N/A N/A N/A gbl.c gbl.h Note 9

Simulink Custom Storage Class: Exported Data:
ExportTo-File auto auto N/A N/A null model.c model.h Note 1
ExportTo-File src auto N/A N/A null src.c model.h Note 1
ExportTo-File sep auto N/A N/A null gbl.c model.h Note 1
ExportTo-File auto src N/A N/A null model.c src.c Note 8
ExportTo-File src src N/A N/A null src.c src.c Note 8
ExportTo-File sep src N/A N/A null gbl.c src.c Note 8
ExportTo-File auto sep N/A N/A null model.c gbl.h Note 9
ExportTo-File src sep N/A N/A null src.c gbl.h Note 9
ExportTo-File sep sep N/A N/A null gbl.c gbl.h Note 9
ExportTo-File auto D/C N/A N/A hdr.h model.c hdr.h Note 11
ExportTo-File src D/C N/A N/A hdr.h src.c hdr.h Note 11
ExportTo-File sep D/C N/A N/A hdr.h gbl.c hdr.h Note 11

Notes

In the previous table:

• A Declaration Inclusion Approach is a file in which the header file that contains the
data declarations is included.

• D/C stands for don't care.
• Dec stands for declaration.
• Def stands for definition.
• gbl stands for global.

 Manage Placement of Data Definitions and Declarations

15-109

• hdr stands for header.
• N/A stands for not applicable.
• null stands for field is blank.
• sep stands for separate.

Note 1: model.h is included directly in all source files.

Note 2: model_private.h is included directly in all source files.

Note 3: extern is included in model_private.h, which is in source.c.

Note 4: header.h is included in model_private.h, which is in source.c.

Note 5: model.h is included directly in all source files that use #define.

Note 6: header.h is included in model.h, which is in source files that use #define.

Note 7: model.h is included in all source.c files.

Note 8: extern is inlined in source files where data is used.

Note 9: global.h is included in model.h, which is in all source files.

Note 10: When you specify a definition filename for a data object, a header file is not
generated for that data object. The code generator declares the data object according to
the data placement priorities.

Note 11: header.h is included in model.h, which is in all source files.

Note 12: Signal: Either not defined because it is expression folded, or local data, or
defined in a structure in model.c, all depending on model's code generation settings.
Parameter: Either inlined in the code, or defined in model_data.c.

Note 13: Signal: In a structure that is defined in model.c. Parameter: In a structure
that is defined in model_data.c.

15 Code Appearance

15-110

Specify Delimiter for #Includes

Understanding the purpose of this procedure requires understanding the Header file
property of a data object, described in “Parameter and Signal Property Values”, and
applied in “Create mpt Data Objects with Data Object Wizard”. For a particular data
object, you can specify as the Header file property value a .h filename where that
data object will be declared. Then, in the IncludeFile section of the generated file, this
.h file is indicated in a #include preprocessor directive.

Further, when specifying the filename as the Header file property value, you may
or may not place it within the double-quote or angle-bracket delimiter. That is, you can
specify it as filename.h, "filename.h", or <filename.h>. The code generator finds
every data object for which you specified a filename as its Header file property value
without a delimiter. By default, it assigns to each of these the double-quote delimiter.

This procedure allows you to specify the angle-bracket delimiter for these instead of the
default double-quote delimiter. See the figure below.

1 In the #include file delimiter field on the Code Placement pane of the
Configuration Parameters dialog box, select #include <header.h> instead of the
default #include "header.h".

2 Click Apply.

 Enhance Readability of Code for Flow Charts

15-111

Enhance Readability of Code for Flow Charts

In this section...

“Appearance of Generated Code for Flow Charts” on page 15-111
“Convert If-Elseif-Else Code to Switch-Case Statements” on page 15-116
“Example of Converting Code to Switch-Case Statements” on page 15-118

Appearance of Generated Code for Flow Charts

When you use Embedded Coder software to generate code for models that include
Stateflow objects, the code from a flow chart resembles the samples that follow.

The following characteristics apply:

• By default, the generated code uses if-elseif-else statements to represent
switch patterns. To convert the code to use switch-case statements, see “Convert
If-Elseif-Else Code to Switch-Case Statements” on page 15-116.

• By default, variables that appear in the flow chart do not retain their names in the
generated code. Modified identifiers guarantee that no naming conflicts occur.

• Traceability comments for the transitions appear between each set of /* and */
markers. To learn more about traceability, see “Trace Stateflow Objects in Generated
Code”.

15 Code Appearance

15-112

 Enhance Readability of Code for Flow Charts

15-113

if (modelname_U.In1 == 1.0) {

 /* Transition: '<S1>:11' */

 /* Transition: '<S1>:12' */

 modelname_Y.Out1 = 10.0;

 /* Transition: '<S1>:15' */

 /* Transition: '<S1>:16' */

} else {

 /* Transition: '<S1>:10' */

 if (modelname_U.In1 == 2.0) {

 /* Transition: '<S1>:13' */

 /* Transition: '<S1>:14' */

 modelname_Y.Out1 = 20.0;

 /* Transition: '<S1>:16' */

 } else {

 /* Transition: '<S1>:17' */

 modelname_Y.Out1 = 30.0;

 }

}

Sample Code for a Decision Logic Pattern

15 Code Appearance

15-114

for (sf_i = 0; sf_i < 10; sf_i++) {

 /* Transition: '<S1>:40' */

 /* Transition: '<S1>:41' */

 modelname_B.y = modelname_B.y +

 modelname_U.In1;

 /* Transition: '<S1>:39' */

}

Sample Code for an Iterative Loop Pattern

 Enhance Readability of Code for Flow Charts

15-115

if (modelname_U.In1 == 1.0) {

 /* Transition: '<S1>:149' */

 /* Transition: '<S1>:150' */

 modelname_Y.Out1 = 1.0;

 /* Transition: '<S1>:151' */

 /* Transition: '<S1>:152' */

 /* Transition: '<S1>:158' */

 /* Transition: '<S1>:159' */

} else {

 /* Transition: '<S1>:156' */

15 Code Appearance

15-116

 if (modelname_U.In1 == 2.0) {

 /* Transition: '<S1>:153' */

 /* Transition: '<S1>:154' */

 modelname_Y.Out1 = 2.0;

 /* Transition: '<S1>:155' */

 /* Transition: '<S1>:158' */

 /* Transition: '<S1>:159' */

 } else {

 /* Transition: '<S1>:161' */

 modelname_Y.Out1 = 3.0;

 }

}

Sample Code for a Switch Pattern

Convert If-Elseif-Else Code to Switch-Case Statements

When you generate code for embedded real-time targets, you can choose to convert
if-elseif-else code to switch-case statements. This conversion can enhance
readability of the code. For example, when a flow chart contains a long list of conditions,
the switch-case structure:

• Reduces the use of parentheses and braces
• Minimizes repetition in the generated code

How to Convert If-Elseif-Else Code to Switch-Case Statements

The following procedure describes how to convert generated code for the flow chart from
if-elseif-else to switch-case statements.

Step Task Reference

1 Verify that your flow chart follows the
rules for conversion.

“Verify the Contents of the Flow Chart”
on page 15-120

2 Enable the conversion. “Enable the Conversion” on page
15-121

3 Generate code for your model. “Generate Code for Your Model” on
page 15-122

4 Troubleshoot the generated code. “Troubleshoot the Generated Code” on
page 15-122

 Enhance Readability of Code for Flow Charts

15-117

Step Task Reference

• If you see switch-case
statements for your flow chart, you
can stop.

• If you see if-elseif-else
statements for your flow chart,
update the chart and repeat the
previous step.

Rules of Conversion

For the conversion to occur, the following rules must hold. LHS and RHS refer to the left-
hand side and right-hand side of a condition, respectively.

Construct Rules to Follow

Flow chart Must have two or more unique conditions, in addition to a default.

For more information, see “How the Conversion Handles Duplicate
Conditions” on page 15-117.
Must test equality only.Each

condition Must use the same variable or expression for the LHS.

Note: You can reverse the LHS and RHS.
Must be a single variable or expression.
Cannot be a constant.
Must have an integer or enumerated data type.

Each LHS

Cannot have any side effects on simulation.

For example, the LHS can read from but not write to global variables.
Must be a constant.Each RHS
Must have an integer or enumerated data type.

How the Conversion Handles Duplicate Conditions

If a flow chart has duplicate conditions, the conversion preserves only the first condition.
The code discards all other instances of duplicate conditions.

15 Code Appearance

15-118

After removal of duplicates, two or more unique conditions must exist. If not, no
conversion occurs and the code contains all duplicate conditions.

Example of Generated Code Code After Conversion

if (x == 1) {

 block1

} else if (x == 2) {

 block2

} else if (x == 1) { // duplicate

 block3

} else if (x == 3) {

 block4

} else if (x == 1) { // duplicate

 block5

} else {

 block6

}

switch (x) {

 case 1:

 block1; break;

 case 2:

 block2; break;

 case 3:

 block4; break;

 default:

 block6; break;

}

if (x == 1) {

 block1

} else if (x == 1) { // duplicate

 block2

} else {

 block3

}

No change, because only one
unique condition exists

Example of Converting Code to Switch-Case Statements

Suppose that you have the following model with a single chart.

The chart contains a flow chart and four MATLAB functions:

 Enhance Readability of Code for Flow Charts

15-119

The MATLAB functions in the chart contain the code in the following table. In each case,
the Function Inline Option is Auto. For more information about function inlining, see
“Specify Graphical Function Properties”.

MATLAB Function Code

stop function stop

%#codegen

coder.extrinsic('disp');

disp('Not moving.')

15 Code Appearance

15-120

MATLAB Function Code
traffic_speed = 0;

slowdown function slowdown

%#codegen

coder.extrinsic('disp')

disp('Slowing down.')

traffic_speed = 1;

accelerate function accelerate

%#codegen

coder.extrinsic('disp');

disp('Moving along.')

traffic_speed = 2;

light function color = light(x)

%#codegen

if (x < 20)

 color = TrafficLights.GREEN;

elseif (x >= 20 && x < 25)

 color = TrafficLights.YELLOW;

else

 color = TrafficLights.RED;

end

The output color of the function light uses the enumerated type TrafficLights. The
enumerated type definition in TrafficLights.m is:

classdef TrafficLights < Simulink.IntEnumType

 enumeration

 RED(0)

 YELLOW(5)

 GREEN(10)

 end

end

For more information, see “Define Enumerated Data in a Chart”.

Verify the Contents of the Flow Chart

Check that the flow chart in your chart follows all the rules in “Rules of Conversion” on
page 15-117.

 Enhance Readability of Code for Flow Charts

15-121

Construct How the Construct Follows the Rules

Flow chart Two unique conditions exist, in addition to the default:

• [light(intersection) == RED]

• [light(intersection) == YELLOW]

Each condition Each condition:

• Tests equality
• Uses the same function call light(intersection) for the LHS

Each LHS Each LHS:

• Contains a single expression
• Is the output of a function call and therefore not a constant
• Is of enumerated type TrafficLights, which you define

in TrafficLights.m on the MATLAB path (see “Define
Enumerated Data in a Chart”)

• Uses a function call that has no side effects
Each RHS Each RHS:

• Is an enumerated value and therefore a constant
• Is of enumerated type TrafficLights

Enable the Conversion

1 Open the Model Configuration Parameters dialog box.
2 In the Code Generation pane, select ert.tlc for the System target file.

This step specifies an ERT-based target for your model.
3 In the Code Generation > Code Style pane, select the Convert if-elseif-else

patterns to switch-case statements check box.

Tip This conversion works on a per-model basis. If you select this check box, the
conversion applies to:

• Flow charts in all charts of a model
• MATLAB functions in all charts of a model

15 Code Appearance

15-122

• All MATLAB Function blocks in that model

Generate Code for Your Model

In the Code Generation pane of the Model Configuration Parameters dialog box, click
Build in the lower right corner.

Troubleshoot the Generated Code

The generated code for the flow chart appears something like this:

if (sf_color == RED) {

 /* Transition: '<S1>:11' */

 /* Transition: '<S1>:12' */

 /* MATLAB Function 'stop': '<S1>:23' */

 /* '<S1>:23:6' */

 rtb_traffic_speed = 0;

 /* Transition: '<S1>:15' */

 /* Transition: '<S1>:16' */

} else {

 /* Transition: '<S1>:10' */

 /* MATLAB Function 'light': '<S1>:19' */

 if (ifelse_using_enums_U.In1 < 20.0) {

 /* '<S1>:19:3' */

 /* '<S1>:19:4' */

 sf_color = GREEN;

 } else if ((ifelse_using_enums_U.In1 >= 20.0) &&

 (ifelse_using_enums_U.In1 < 25.0)) {

 /* '<S1>:19:5' */

 /* '<S1>:19:6' */

 sf_color = YELLOW;

 } else {

 /* '<S1>:19:8' */

 sf_color = RED;

 }

 if (sf_color == YELLOW) {

 /* Transition: '<S1>:13' */

 /* Transition: '<S1>:14' */

 /* MATLAB Function 'slowdown': '<S1>:24' */

 /* '<S1>:24:6' */

 rtb_traffic_speed = 1;

 Enhance Readability of Code for Flow Charts

15-123

 /* Transition: '<S1>:16' */

 } else {

 /* Transition: '<S1>:17' */

 /* MATLAB Function 'accelerate': '<S1>:25' */

 /* '<S1>:25:6' */

 rtb_traffic_speed = 2;

 }

}

Because the MATLAB function light appears inlined, inequality comparisons appear in
these lines of code:

if (ifelse_using_enums_U.In1 < 20.0) {

....

} else if ((ifelse_using_enums_U.In1 >= 20.0) &&

 (ifelse_using_enums_U.In1 < 25.0)) {

....

Because inequalities appear in the body of the if-elseif-else code for the flow chart,
the conversion to switch-case statements does not occur. To prevent this behavior, do
one of the following:

• Specify that the function light does not appear inlined. See “Change the Inlining
Property for the Function” on page 15-123.

• Modify the flow chart. See “Modify the Flow Chart to Ensure Switch-Case
Statements” on page 15-125.

Change the Inlining Property for the Function

If you do not want to modify your flow chart, change the inlining property for the
function light:

1 Right-click the function box for light and select Properties.

The properties dialog box appears.
2 For Function Inline Option, select Function.
3 Click OK to close the dialog box.

Note: You do not have to change the inlining property for the other three MATLAB
functions in the chart. Because the flow chart does not call those functions during
evaluation of conditions, the inlining property for those functions can remain Auto.

15 Code Appearance

15-124

When you regenerate code for your model, the code for the flow chart now appears
something like this:

switch (ifelse_using_enums_light(ifelse_using_enums_U.In1)) {

 case RED:

 /* Transition: '<S1>:11' */

 /* Transition: '<S1>:12' */

 /* MATLAB Function 'stop': '<S1>:23' */

 /* '<S1>:23:6' */

 ifelse_using_enums_Y.Out1 = 0.0;

 /* Transition: '<S1>:15' */

 /* Transition: '<S1>:16' */

 break;

 case YELLOW:

 /* Transition: '<S1>:10' */

 /* Transition: '<S1>:13' */

 /* Transition: '<S1>:14' */

 /* MATLAB Function 'slowdown': '<S1>:24' */

 /* '<S1>:24:6' */

 ifelse_using_enums_Y.Out1 = 1.0;

 /* Transition: '<S1>:16' */

 break;

 default:

 /* Transition: '<S1>:17' */

 /* MATLAB Function 'accelerate': '<S1>:25' */

 /* '<S1>:25:6' */

 ifelse_using_enums_Y.Out1 = 2.0;

 break;

}

Because the MATLAB function light no longer appears inlined, the conversion to
switch-case statements occurs. The switch-case statements provide the following
benefits to enhance readability:

• The code reduces the use of parentheses and braces.
• The LHS expression ifelse_using_enums_light(ifelse_using_enums_U.In1)

appears only once, minimizing repetition in the code.

 Enhance Readability of Code for Flow Charts

15-125

Modify the Flow Chart to Ensure Switch-Case Statements

If you do not want to change the inlining property for the function light, modify your
flow chart:

1 Add chart local data color_out with the enumerated type TrafficLights.
2 Replace each instance of light(intersection) with color_out.
3 Add the action {color_out = light(intersection)} to the default transition of

the flow chart.

The chart should now look something like this:

15 Code Appearance

15-126

When you regenerate code for your model, the code for the flow chart uses switch-case
statements.

16

Source Code Generation

• “Generating Code Using Embedded Coder®” on page 16-2
• “Generate Code Modules” on page 16-10
• “Generate Reentrant Code from Top-Level Models” on page 16-16

16 Source Code Generation

16-2

Generating Code Using Embedded Coder®

This example shows how to select a target for a Simulink® model, configure options,
generate C code for embedded systems, and view generated files.

1. Open the model.

model='rtwdemo_rtwecintro';

open_system(model)

2. Open the Configuration Parameters dialog box from the model editor by clicking
Simulation > Model Configuration Parameters.

Alternately, type the following commands at the MATLAB® command prompt.

cs = getActiveConfigSet(model);

 Generating Code Using Embedded Coder®

16-3

openDialog(cs);

3. Select the Code Generation node.

4. In the Target Selection pane, click Browse to select a target.

You can generate code for a particular target environment or purpose. Some built-
in targeting options are provided using system target files, which control the code
generation process for a target.

16 Source Code Generation

16-4

 Generating Code Using Embedded Coder®

16-5

5. Select the Embedded Real-Time (ERT) target and click Apply.

The ERT target includes a utility to specify and prioritize code generation settings based
on your application objectives.

6. In the Code Generation Advisor pane, click Set Objectives.

16 Source Code Generation

16-6

You can set and prioritize objectives for the generated code. For example, while code
traceability might be a very important criterion for your application, you might not want
to prioritize it at the cost of code execution efficiency.

7. In the Set Objectives pane, select Execution efficiency and Traceability. Click
OK.

You can select and prioritize a combination of objectives before generating code.

8. In the Code Generation pane, click Build to generate code.

 Generating Code Using Embedded Coder®

16-7

9. View the code generation report that appears.

The report includes rtwdemo_rtwecintro.c, associated utility and header files, and
traceability and validation reports.

The figure below contains a portion of rtwdemo_rtwecintro.c

16 Source Code Generation

16-8

 Generating Code Using Embedded Coder®

16-9

10. Close the model.

bdclose(model)

rtwdemoclean;

16 Source Code Generation

16-10

Generate Code Modules

In this section...

“Introduction” on page 16-10
“Generated Code Modules” on page 16-10
“User-Written Code Modules” on page 16-13
“Customize Generated Code Modules” on page 16-13

Introduction

This section summarizes the code modules and header files that make up a Embedded
Coder program and describes where to find the code modules and header files.

The easiest way to locate and examine the generated code files is to use the HTML code
generation report. The code generation report provides a table of hyperlinks that you
click to view the generated code in the MATLAB Help browser. For more information, see
“Traceability in Code Generation Report”.

Generated Code Modules

The Embedded Coder software creates a build folder in your working folder to store
generated source code. The build folder also contains object files, a makefile, and other
files created during the code generation process. The default name of the build folder is
model_ert_rtw.

Embedded Coder File Packaging summarizes the structure of source code generated by
the Embedded Coder software.

 Generate Code Modules

16-11

Embedded Coder File Packaging

File Description

model.c or .cpp Contains entry points for code implementing the model
algorithm (for example, model_step, model_initialize, and
model_terminate).

model_private.h Contains local macros and local data that are required by the
model and subsystems. This file is included in the model.c file as a
#include statement. You do not need to include model_private.h
when interfacing handwritten code to the generated code of a model.

model.h Declares model data structures and a public interface to the model
entry points and data structures. Also provides an interface to the
real-time model data structure (model_M) with accessor macros.
model.h is included in the subsystem .c or .cpp files of the model.

If you are interfacing your handwritten code to generated code for
one or more models, include model.h for each of those models.

model_data.c or .cpp
(conditional)

model_data.c or .cpp is conditionally generated. It contains
the declarations for the parameters data structure, the constant
block I/O data structure, and any zero representations for the
model structure data types. If these data structures and zero
representations are not used in the model, model_data.c or .cpp
is not generated. These structures and zero representations are
declared extern in model.h.

model_types.h Provides forward declarations for the real-time model data structure
and the parameters data structure. Function declarations of
reusable functions might need these declarations. Also provides type
definitions for user-defined types used by the model.

rtwtypes.h Defines data types, structures, and macros required by Embedded
Coder generated code. Most other generated code modules also
require these definitions. For more information, see “rtwtypes.h and
Shared Utility Code”.

multiword_types.h Contains type definitions for wide data types and their chunks. File
is generated when multiword data types are used or when you select
one or more of the following in the Configuration Parameters dialog
box on the Code Generation > Interface pane:

• MAT-file logging

16 Source Code Generation

16-12

File Description

• External mode from the Interface list
model_reference_types.hContains type definitions for timing bridges. File is generated for a

model reference target or a model containing model reference blocks.
builtin_typeid_types.h Defines an enumerated type corresponding to built-in data types.

File is generated when you select one or more of the following in the
Configuration Parameters dialog box on the Code Generation >
Interface pane:

• MAT-file logging
• C API from the Interface list

zero_crossing_types.h Contains zero-crossing definitions for models with triggered
subsystems where the trigger is rising, falling, or either. File
is generated only if required by the model.

ert_main.c or .cpp
(optional)

If the Generate an example main program option is on, this
file is generated. (This option is on by default.) See “Generate an
example main program”.

rtmodel.h

(optional)
If the Generate an example main program option is off, this file
is generated. (See “Generate an example main program”.)

rtmodel.h contains #include directives required by the
rt_main.c or rt_cppclass_main.cpp static main program
module. Because the static main program module is not created at
code generation time, it includes rtmodel.h to access model-specific
data structures and entry points.

For more information, see “Static Main Program Module”.
model_capi.c or .cpp
model_capi.h

(optional)

Provides data structures that enable a running program to access
model signals, states, and parameters without external mode. To
learn how to generate and use the model_capi.c or .cpp and .h
files, see “Data Interchange Using the C API” in the Simulink Coder
documentation.

You can customize the generated set of files in several ways:

• File packaging formats: Specify the number of source files generated for your
model. In the Configuration Parameter dialog box, on the Code Generation >

 Generate Code Modules

16-13

Code Placement pane, specify the File packaging format parameter. For more
information, see “Customize Generated Code Modules” on page 16-13.

• Nonvirtual subsystem code generation: Instruct the code generation software to
generate separate functions, within separate code files, for nonvirtual subsystems.
You can control the names of the functions and of the code files. For further
information, see “Code Generation of Subsystems”.

• Custom storage classes: Use custom storage classes to partition generated data
structures into different files based on file names that you specify. For further
information, see “Introduction to Custom Storage Classes”.

• Module Packaging Features (MPF): Direct the generated code into a required set of .c
or .cpp and .h files, and control the internal organization of the generated files. For
details, see “Data, Function, and File Definition”.

User-Written Code Modules

Code that you write to interface with generated model code usually includes a customized
main module (based on a main program provided by the code generation software), and
may also include interrupt handlers, device driver blocks and other S-functions, and
other supervisory or supporting code.

Establish a working folder for your own code modules. Put your working folder on the
MATLAB path. Minimally, you must also modify the ERT template makefile and system
target file so that the build process can find your source and object files. If you want to
generate code for a particular microprocessor or development board and deploy the code
on target hardware with a cross-development system, make more extensive modifications
to the ERT target files.

For information on how to customize the ERT target for your production requirements,
see “Target Development”.

Customize Generated Code Modules

Embedded Coder software provides a configuration parameter to specify how the
generated source code is packaged into files. The configuration parameter “File
packaging format” drop-down list options are located in the Configuration Parameter
dialog box, on the Code Generation > Code Placement pane, in the Code Packaging
section. The options are: Modular, Compact (with separate data file), and
Compact. Generated Files According to File Packaging Format shows the files generated
for each file packaging format and the files that have been removed.

16 Source Code Generation

16-14

Generated Files According to File Packaging Format

File Packaging Format Generated Files Removed Files

Modular (default) model.c

subsystem files (optional)

model.h

model_types.h

model_private.h

model_data.c

(conditional)

None

Compact (with

separate data file)

model.c

model.h

model_data.c

(conditional)

model_private.h

model_types.h (conditional,
see below)

Compact model.c

model.h

model_data.c

model_private.h

model_types.h (conditional,
see below)

The code generation process places the content of the removed files as follows:

Removed File Generated Content In File

model_private.h model.c and model.h
model_types.h model.h

model_data.c model.c

You can specify a different file packaging format for each referenced model.

If you specify Shared code placement as Shared location on the Code Generation
> Interface pane of the Configuration Parameter dialog box, the code generation
process generates separate files for utility code in a shared location, regardless of the file

 Generate Code Modules

16-15

packaging format. If you specify the Shared code placement as Auto, the generated
code for utilities is dependent on the file packaging format as follows:

• Modular: Some shared utility files are in the build directory
• Compact (with separate data file): Utility code is generated in model.c
• Compact: Utility code is generated in model.c

File packaging formats Compact and Compact (with separate data file)
generate model_types.h for models containing:

• A Model Variants block or a Variant Subsystem block. The model_types.h file
includes preprocessor directives defining the variant objects associated with a variant
block.

• Custom storage classes specifying a separate header file. The model_types.h file
includes the #include call to the external header file.

File packaging formats Compact and Compact (with separate data file) are not
compatible with the following:

• A model containing a subsystem, which is configured to generate separate source files
• A model containing a noninlined S-function
• A model for which Shared code placement is set to Auto, which uses data objects

for which Data scope is set to Exported

16 Source Code Generation

16-16

Generate Reentrant Code from Top-Level Models

To generate reentrant multi-instance code from a model, select Reusable function
code interface packaging. When you select the Reusable function code interface for an
ERT-based model:

• By default, the generated model.c source file does not contain an allocation function
that dynamically allocates model data for each instance of the model. Use the Use
dynamic memory allocation for model initialization option to control whether
an allocation function is generated.

• The generated code passes the real-time model data structure in, by reference, as an
argument to model_step and the other model entry point functions.

• The real-time model data structure is exported with the model.h header file.
• By default, root-level input and output arguments are passed to the reusable model

entry-point functions as individual arguments. Use the Pass root-level I/O as
parameter to control whether root-level input and output arguments are included
in the real-time model data structure that is passed to the functions, passed as
individual arguments, or passed as references to an input structure and an output
structure.

To configure an ERT-based model to generate reusable, reentrant code:

1 In the Code Generation > Interface pane of the Configuration Parameters dialog
box, set Code interface packaging to the value Reusable function. This action
enables the parameters Multi-instance code error diagnostic, Pass root-level I/
O as, and Use dynamic memory allocation for model initialization.

2 Examine the setting of Multi-instance code error diagnostic. Leave the
parameter at its default value Error unless you have a specific need to alter the
severity level for diagnostics displayed when a model violates requirements for
generating multi-instance code.

3 Configure Pass root-level I/O as to control how root-level model input and output
are passed to model_step and the other generated model entry-point functions.

When you set Code interface packaging to Reusable function, model data
(such as block I/O, DWork, and parameters) is packaged into the real-time model
data structure, and the model structure is passed to the model entry-point functions.
If you set Pass root-level I/O as to Part of model data structure, the
root-level model input and output also are packaged into the real-time model data
structure.

 Generate Reentrant Code from Top-Level Models

16-17

4 If you want the generated model code to contain a function that dynamically
allocates memory for model instance data, select the option Use dynamic memory
allocation for model initialization. If you do not select this option, the generated
code statically allocates memory for model data structures.

5 Generate model code.
6 Examine the model entry-point function interfaces in the generated files and the

HTML code generation report. For more information about generating and calling
model entry-point functions, see “Entry-Point Functions and Scheduling”.

For an example of a model configured to generate reusable, reentrant code, open the
example model rtwdemo_reusable. Click the button View Interface Configuration and
examine the Code interface parameters on the Code Generation > Interface pane.

17

Report Generation

• “Reports for Code Generation” on page 17-2
• “HTML Code Generation Report Extensions” on page 17-3
• “HTML Code Generation Report Location” on page 17-5
• “HTML Code Generation Report for Referenced Models” on page 17-6
• “Search Code Generation Report” on page 17-7
• “Generate a Code Generation Report” on page 17-8
• “Generate Code Generation Report After Build Process” on page 17-9
• “Open Code Generation Report” on page 17-11
• “Generate Code Generation Report Programmatically” on page 17-13
• “View Code Generation Report in Model Explorer” on page 17-14
• “Package and Share the Code Generation Report” on page 17-16
• “Traceability in Code Generation Report” on page 17-18
• “View Code Metrics and Definitions in the Generated Code” on page 17-20
• “Web View of Model in Code Generation Report” on page 17-21
• “Analyze the Generated Code Interface” on page 17-25
• “Static Code Metrics” on page 17-38
• “Generate Static Code Metrics Report for Simulink Model” on page 17-41
• “Generate a Static Code Metrics Report for MATLAB Code” on page 17-47
• “Analyze Code Replacements in the Generated Code” on page 17-52
• “Document Generated Code with Simulink Report Generator” on page 17-54

17 Report Generation

17-2

Reports for Code Generation

Simulink Coder software provides an HTML code generation report so that you can view
and analyze the generated code. When your model is built, the code generation process
produces an HTML file that is displayed in an HTML browser or in the Model Explorer.
The code generation report includes:

• The Summary section lists version, date, and code generation objectives information.
The Configuration settings at the time of code generation link opens a
noneditable view of the Configuration Parameters dialog box. The dialog box shows
the Simulink model settings at the time of code generation, including TLC options.

• The Subsystem Report section contains information on nonvirtual subsystems in
the model.

• In the Generated Files section on the Contents pane, you can click the names of
source code files generated from your model to view their contents in a MATLAB Web
browser window. In the displayed source code, global variables are hypertext that
links to their definitions.

• A Find box at the top of the window. For more information, see “Search Code
Generation Report” on page 17-7.

For an example, see “Generate a Code Generation Report” on page 17-8 and “View
Code Generation Report in Model Explorer” on page 17-14.

The contents of HTML reports varies depending on different target types. You can
generate individual HTML reports for a subsystem or referenced model. For more
information, see “HTML Code Generation Report for Referenced Models” on page
17-6 and “Generate Code for Referenced Models”.

If you have a Simulink Report Generator license, you can document your code generation
project in multiple formats, including HTML, PDF, RTF, Microsoft Word, and XML. For
an example of how to create a Microsoft Word report, see “Document Generated Code
with Simulink Report Generator” on page 17-54.

 HTML Code Generation Report Extensions

17-3

HTML Code Generation Report Extensions

The Embedded Coder code generation report is an enhanced version of the HTML code
generation report. The Simulink Coder build process generates the HTML report. With
the Embedded Coder software, you can configure your model to include the following
sections in the report:

• The Code Interface Report section provides information about the generated code
interface, including model entry point functions and input/output data. For more
information, see “Analyze the Generated Code Interface” on page 17-25.

• The Traceability Report section allows you to account for Eliminated / Virtual
Blocks that are untraceable versus the listed Traceable Simulink Blocks /
Stateflow Objects / MATLAB Scripts. This provides a complete mapping between
model elements and code. For more information, see “Customize Traceability
Reports”.

• The Static Code Metrics Report section provides statistics of the generated
code. Metrics are estimated from static analysis of the generated code. For more
information, see “Static Code Metrics” on page 17-38.

• The Code Replacements Report section allows you to account for code replacement
library (CRL) functions that were used during code generation, providing a mapping
between each replacement instance and the Simulink block that triggered the
replacement. For more information, see “Analyze Code Replacements in the
Generated Code” on page 17-52.

• The model Web view displays an interactive model diagram within the code
generation report and supports traceability between the source code and the model.
Therefore, you can share your model and generated code outside of the MATLAB
environment. For more information, see “Generate HTML Code Generation Report
with Model Web View” on page 17-21.

On the Contents pane, in the Generated Files section, you can click the names of
source code files generated from your model to view their contents in a MATLAB Web
browser window. In the displayed source code:

• If you enable code-to-model traceability, hyperlinks within the displayed source code
navigate to the blocks or subsystems from which the code is generated. For more
information, see “Traceability in Code Generation Report” on page 17-18 and
“Trace Code to Model Objects Using Hyperlinks”.

17 Report Generation

17-4

• If you enable model-to-code traceability, you can navigate to the generated code for
a block in the model. For more information, see “Trace Model Objects to Generated
Code”.

• If you set the Code coverage tool parameter on the Code Generation >
Verification pane, you can view the code coverage data and annotations. For more
information, see “Configure SIL and PIL Code Coverage”.

• If you select the Static code metrics check box on the Code Generation > Report
pane, you can view code metrics information and navigate to code definitions and
declarations in the generated code. For more information, see “View Code Metrics and
Definitions in the Generated Code”.

 HTML Code Generation Report Location

17-5

HTML Code Generation Report Location

The default location for the code generation report files is in the html subfolder of the
build folder, model_target_rtw/html/. target is the name of the System target
file specified on the Code Generation pane. The default name for the top-level HTML
report file is model_codegen_rpt.html or subsystem_codegen_rpt.html. For more
information on the location of the build folder, see “Control the Location for Generated
Files”.

17 Report Generation

17-6

HTML Code Generation Report for Referenced Models

To generate a code generation report for a top model and code generation reports for each
referenced model, you need to specify the Create code generation report on the Code
Generation > Report pane for the top model and each referenced model. You can open
the code generation report of a referenced model in one of two ways:

• From the top-model code generation report, you can access the referenced model code
generation report by clicking a link under Referenced Models in the left navigation
pane. Clicking a link opens the code generation report for the referenced model in
the browser. To navigate back to the top model code generation report, use the Back
button at the top of the left navigation pane.

• From the referenced model diagram window, select Code > C/C++ Code > Code
Generation Report > Open Model Report.

To generate a code generation report for a referenced model individually, follow the
instructions in “Generate a Code Generation Report” on page 17-8 and “Open Code
Generation Report” on page 17-11 for the referenced model.

 Search Code Generation Report

17-7

Search Code Generation Report

When the code generation report is displayed in the MATLAB Web browser window, you
can search the report using the Find box at the top of the window. The search is not case
sensitive.

Pressing Ctrl-F sets focus to the Find box. Type text into the Find box and hit Enter to
start the search. The search highlights the found terms in the displayed page and scrolls
to the first instance found. Press Enter to scroll through the subsequent search hits. If
no terms are found, the background of the search box is highlighted red.

17 Report Generation

17-8

Generate a Code Generation Report

To generate a code generation report when the model is built:

1 In the Simulink Editor, select Code > C/C++ Code > Code Generation Report
> Options. The Configuration Parameters dialog box opens with the Code
Generation > Report pane visible.

2 Select the Create code generation report parameter.
3 If you want the code generation report to automatically open after generating code,

select the Open report automatically parameter (which is enabled by selecting
Create code generation report).

4 Generate code.

The build process writes the code generation report files to the html subfolder of the
build folder (see “HTML Code Generation Report Location” on page 17-5). Next, the build
process automatically opens a MATLAB Web browser window and displays the code
generation report.

To open an HTML code generation report at any time after a build, see “Open Code
Generation Report” on page 17-11 and “Generate Code Generation Report After Build
Process” on page 17-9.

 Generate Code Generation Report After Build Process

17-9

Generate Code Generation Report After Build Process

After generating code, if you did not configure your model to create a code generation
report, you can generate a code generation report without rebuilding your model.

1 In the model diagram window, select Code > C/C++ Code > Code Generation
Report > Open Model Report.

2 If your current working folder contains the code generation files the following dialog
opens.

Click Generate Report.
3 If the code generation files are not in your current working directory, the following

dialog opens.

Enter the full path of the build folder for your model, ../model_target_rtw and
click Open Report.

17 Report Generation

17-10

The software generates a report, model_codgen_rpt.html, from the code generation
files in the build folder you specified.

Note: An alternative method for generating the report after the build process is complete
is to configure your model to generate a report and build your model. In this case, the
software generates the report without regenerating the code.

 Open Code Generation Report

17-11

Open Code Generation Report

You can refer to existing code generation reports at any time. If you generated a
code generation report, you can open the report by selecting Code > C/C++ Code >
Code Generation Report > Open Model Report. If you are opening a report for a
subsystem, select Open Subsystem Report. A Simulink Coder license is required to
view the code generation report. An Embedded Coder license is required to view a code
generation report enhanced with Embedded Coder features.

If your current working folder does not contain the code generation files and the code
generation report, the following dialog box opens:

Enter the full path of the build folder for your model, ../model_target_rtw and click
Open Report.

Alternatively, you can open the code generation report (model_codegen_rpt.html or
subsystem_codegen_rpt.html) manually into a MATLAB Web browser window, or
in another Web browser. For the location of the generated report files, see “HTML Code
Generation Report Location” on page 17-5.

Limitation

After building your model or generating the code generation report, if you modify
legacy or custom code, you must rebuild your model or regenerate the report for the
code generation report to include the updated legacy source files. For example, if you
modify your legacy code, and then use the Code > C/C++ Code > Code Generation

17 Report Generation

17-12

Report > Open Model Report menu to open an existing report, the software does not
check if the legacy source file is out of date compared to the generated code. Therefore,
the code generation report is not regenerated and the report includes the out-of-date
legacy code. This issue also occurs if you open a code generation report using the
coder.report.open function.

To regenerate the code generation report, do one of the following:

• Rebuild your model.
• Generate the report using the coder.report.generate function.

 Generate Code Generation Report Programmatically

17-13

Generate Code Generation Report Programmatically

At the MATLAB command line, you can generate, open, and close an HTML Code
Generation Report with the following functions:

• coder.report.generate generates the code generation report for the specified
model.

• coder.report.open opens an existing code generation report.
• coder.report.close closes the code generation report.

17 Report Generation

17-14

View Code Generation Report in Model Explorer

After generating an HTML code generation report, you can view the report in the right
pane of the Model Explorer. You can also browse the generated files directly in the Model
Explorer.

When you generate code, or open a model that has generated code for its current target
configuration in your working folder, the Hierarchy (left) pane of Model Explorer
contains a node named Code for model. Under that node are other nodes, typically
called This Model and Shared Code. Clicking This Model displays in the Contents
(middle) pane a list of generated source code files in the build folder of that model. The
next figure shows code for the rtwdemo_counter model.

In this example, the file S:/rtwdemo_counter_grt_rtw/rtwdemo_counter.c is
being displayed. To view a file in the Contents pane, click it once.

The views in the Document (right) pane are read only. The code listings there contain
hyperlinks to functions and macros in the generated code. Clicking the file hyperlink
opens that source file in a text editing window where you can modify its contents.

If an open model contains Model blocks, and if generated code for these models exists in
the current slprj folder, nodes for the referenced models appear in the Hierarchy pane

 View Code Generation Report in Model Explorer

17-15

one level below the node for the top model. Such referenced models do not need to be open
for you to browse and read their generated source files.

If the Simulink Coder software generates shared utility code for a model, a node named
Shared Code appears directly under the This Model node. It collects source files that
exist in the ./slprj/target/_sharedutils subfolder.

Note You cannot use the Search tool built into Model Explorer toolbar to search
generated code displayed in the Code Viewer. On PCs, typing Ctrl+F when focused on
the Document pane opens a Find dialog box that you can use to search for strings in the
currently displayed file. You can also search for text in the HTML report window, and
you can open the files in the editor.

17 Report Generation

17-16

Package and Share the Code Generation Report

In this section...

“Package the Code Generation Report” on page 17-16
“View the Code Generation Report” on page 17-17

Package the Code Generation Report

To share the code generation report, you can package the code generation report files and
supporting files into a zip file for transfer. The default location for the code generation
report files is in two folders:

• /slprj

• html subfolder of the build folder, model_target_rtw, for example
rtwdemo_counter_grt_rtw/html

To create a zip file from the MATLAB command window:

1 In the Current Folder browser, select the two folders:

• /slprj

• Build folder: model_target_rtw
2 Right-click to open the context menu.
3 In the context menu, select Create Zip File. A file appears in the Current Folder

browser.
4 Name the zip file.

Alternatively, you can use the MATLAB zip command to zip the code generation report
files:

zip('myzip',{'slprj','rtwdemo_counter_grt_rtw'})

Note: If you need to relocate the static and generated code files for a model to another
development environment, such as a system or an integrated development environment
(IDE) that does not include MATLAB and Simulink products, use the Simulink Coder
pack-and-go utility. For more information, see “Relocate Code to Another Development
Environment”.

 Package and Share the Code Generation Report

17-17

View the Code Generation Report

To view the code generation report after transfer, unzip the file and save the two folders
at the same folder level in the hierarchy. Navigate to the model_target_rtw/html/
folder and open the top-level HTML report file named model_codgen_rpt.html or
subsystem_codegen_rpt.html in a Web browser.

17 Report Generation

17-18

Traceability in Code Generation Report

This example shows how to create an HTML code generation report which includes links
to trace between the source code and the Simulink model window.

1 With your ERT-based model open, open the Configuration Parameters dialog box or
Model Explorer and navigate to the Code Generation > Report pane.

2 Select Create code generation report if it is not already selected. By default,
Open report automatically and Code-to-model are selected. Model-to-code is
not selected.

3 Select the Model-to-code parameter.
4 If your model contains referenced models and you want to enable traceability for

the referenced model’s code generation report, repeat steps 2–3 for each referenced
model.

5 Generate code for your model by clicking Build on the Code Generation pane
of the Configuration Parameters dialog box. The build process opens the code
generation report in a MATLAB Web browser.

6 In the left navigation pane, select a source code file. In the source code in the right
pane, there are hyperlinks to blocks in the model.

7 Click a hyperlink in the code. The model diagram window displays and highlights
the corresponding block in the model.

8 To highlight the generated code for a block in your Simulink model, right-click the
block and select C/C++ Code > Navigate to C/C++ Code. This selection highlights
the generated code for the block in the HTML code generation report.

9 If you have a referenced model in your model, in the left navigation pane, below
Reference Models, click the link to a referenced model. The code generation report
for the referenced model is now displayed in the window.

10 In the left navigation pane, click the Back button to go back to the previous code
generation report.

Related Examples
• “Trace Model Objects to Generated Code”
• “Trace Code to Model Objects Using Hyperlinks”
• “Trace Stateflow Objects in Generated Code”

 Traceability in Code Generation Report

17-19

More About
• “What Is Code Tracing?”
• “Traceability Limitations”

17 Report Generation

17-20

View Code Metrics and Definitions in the Generated Code

When you view code in the code generation report, to get access to code metrics and
definitions, you can use the following tools:

• On the Code Generation > Report pane, if you select the Static code metrics
check box you can hover your cursor over global variables and functions in the code
window to see code metrics information.

• In the code window, if you click linked variables or functions, the code inspect window
is displayed. The window provides links to definitions for the variables or functions.
On the Code Generation > Report pane, if you selected the Static code metrics
check box, you can also see code metrics information for the variable or function.

 Web View of Model in Code Generation Report

17-21

Web View of Model in Code Generation Report

In this section...

“About Model Web View” on page 17-21
“Generate HTML Code Generation Report with Model Web View” on page 17-21
“Model Web View Limitations” on page 17-24

About Model Web View

To review and analyze the generated code, it is helpful to navigate between the code
and model. You can include a Web view of the model within the HTML code generation
report. You can then share your model and generated code outside of the MATLAB
environment. When you generate the report, the Web view includes the block diagram
attributes displayed in the Simulink Editor, such as, block sorted execution order, signal
properties, and port data types.

A Simulink Report Generator license is required to include a Web view of the model in
the code generation report.

Browser Requirements for Web View

Web view requires a Web browser that supports Scalable Vector Graphics (SVG). Web
view uses SVG to render and navigate models.

You can use the following Web browsers:

• Mozilla Firefox Version 1.5 or later, which has native support for SVG. To download
the Firefox browser, go to www.mozilla.com/.

• The Microsoft Internet Explorer® Web browser with the Adobe® SVG Viewer plug-in.
To download the Adobe SVG Viewer plug-in, go to www.adobe.com/svg/.

• Apple Safari Web browser

Generate HTML Code Generation Report with Model Web View

This example shows how to create an HTML code generation report which includes a
Web view of the model diagram.

1 Open the rtwdemo_mdlreftop model.

http://www.mozilla.com/
http://www.adobe.com/svg/

17 Report Generation

17-22

2 Open the Configuration Parameters dialog box or Model Explorer and navigate to
the Code Generation pane.

3 Specify ert.tlc for the System target file parameter.
4 Open the Code Generation > Report pane.
5 Select the following parameters:

• Create code generation report
• Open report automatically
• Code-to-model
• Model-to-code
• Generate model Web view

Note: These settings specify only the top model, not referenced models.
6 Open the Configuration Parameters for the referenced model, rtwdemo_mdlrefbot

and perform steps 3–5.
7 Save the models, rtwdemo_mdlreftop and rtwdemo_mdlrefbot.
8 From the top model diagram, press Ctrl+B. After building the model and generating

code, the code generation report for the top model opens in a MATLAB Web browser.
9 In the left navigation pane, select a source code file. The corresponding source code is

displayed in the right pane and includes hyperlinks.

 Web View of Model in Code Generation Report

17-23

10 Click a link in the code. The model Web view displays and highlights the
corresponding block in the model.

11 To highlight the generated code for a referenced model block in your model, click
CounterB. The corresponding code is highlighted in the source code pane.

Note: You cannot open the referenced model diagram in the Web view by double-
clicking the referenced model block in the top model.

12 To open the code generation report for a referenced model, in the left navigation
pane, below Referenced Models, click the link, rtwdemo_mdlrefbot. The

17 Report Generation

17-24

source files for the referenced model are displayed along with the Web view of the
referenced model.

13 To go back to the code generation report for the top model, at the top of the left
navigation pane, click the Back button until the top model’s report is displayed.

For more information about exploring a model in a Web view, see “Navigate the Web
View” in the Simulink Report Generator documentation.

For more information about navigating between the generated code and the model
diagram, see :

• “Trace Model Objects to Generated Code”
• “Trace Code to Model Objects Using Hyperlinks”

Model Web View Limitations

The HTML code generation report includes the following limitations when using the
model Web view:

• Code is not generated for virtual blocks. In the model Web view of the code generation
report, when tracing between the model and the code, when you click a virtual block,
it is highlighted yellow.

• In the model Web view, you cannot open a referenced model diagram by double-
clicking the referenced model block in the top model. Instead, open the code
generation report for the referenced model by clicking a link under Referenced
Models in the left navigation pane.

• Stateflow truth tables, events, and links to library charts are not supported in the
model Web view.

• Searching in the code generation report does not find or highlight text in the model
Web view.

• If you navigate from the actual model diagram (not the model Web view in the
report), to the source code in the HTML code generation report, the model Web view
is disabled and not visible. To enable the model Web view, open the report again, see
“Open Code Generation Report”.

• For a subsystem build, the traceability hyperlinks of the root level inport and outport
blocks are disabled.

• “Traceability Limitations” that apply to tracing between the code and the actual
model diagram.

 Analyze the Generated Code Interface

17-25

Analyze the Generated Code Interface

In this section...

“Code Interface Report Overview” on page 17-25
“Generating a Code Interface Report” on page 17-26
“Navigating Code Interface Report Subsections” on page 17-28
“Interpreting the Entry Point Functions Subsection” on page 17-29
“Interpreting the Inports and Outports Subsections” on page 17-32
“Interpreting the Interface Parameters Subsection” on page 17-34
“Interpreting the Data Stores Subsection” on page 17-35
“Code Interface Report Limitations” on page 17-36

Code Interface Report Overview

When you select the Create code generation report option for an ERT-based model,
a Code Interface Report section is automatically included in the generated HTML
report. The Code Interface Report section provides documentation of the generated
code interface, including model entry point functions and interface data, for consumers of
the generated code. The information in the report can help facilitate code review and code
integration.

The code interface report includes the following subsections:

• Entry Point Functions — interface information about each model entry
point function, including model_initialize, model_step, and (if applicable)
model_terminate.

• Inports and Outports — interface information about each model inport and outport.
• Interface Parameters — interface information about tunable parameters that are

associated with the model.
• Data Stores — interface information about global data stores and data stores with

non-auto storage that are associated with the model.

For limitations that apply to code interface reports, see “Code Interface Report
Limitations” on page 17-36.

17 Report Generation

17-26

For illustration purposes, this section uses the following models:

• rtwdemo_basicsc (with the ExportedGlobal Storage Class button selected in the
model window) for examples of report subsections

• rtwdemo_mrmtbb for examples of timing information
• rtwdemo_fcnprotoctrl for examples of function argument and return value

information

Generating a Code Interface Report

To generate a code interface report for your model:

1 Open your model, go to the Code Generation pane of the Configuration Parameters
dialog box, and select ert.tlc or an ERT-based System target file, if one is not
already selected.

2 Go to the Code Generation > Report pane of the Configuration Parameters dialog
box and select the option Create code generation report, if it is not already
selected. The rtwdemo_basicsc, rtwdemo_mrmtbb, and rtwdemo_fcnprotoctrl
models used in this section select multiple Report pane options by default. But
selecting only Create code generation report, generates a Code Interface
Report section in the HTML report.

Alternatively, you can programmatically select the option by issuing the following
MATLAB command:

set_param(bdroot, 'GenerateReport', 'on')

If the Report pane option Code-to-model is selected, the generated report contains
hyperlinks to the model. Leave this value selected unless you plan to use the report
outside the MATLAB environment.

3 Build the model. If you selected the Report pane option Open report
automatically, the code generation report opens automatically after the build
process is complete. (Otherwise, you can open it manually from within the model
build folder.)

4 To display the code interface report for your model, go to the Contents pane of
the HTML report and click the Code Interface Report link. For example, here
is the generated code interface report for the model rtwdemo_basicsc (with the
ExportedGlobal Storage Class button selected in the model window).

 Analyze the Generated Code Interface

17-27

17 Report Generation

17-28

For help navigating the content of the code interface report subsections, see “Navigating
Code Interface Report Subsections” on page 17-28. For help interpreting the content
of the code interface report subsections, see the sections beginning with “Interpreting the
Entry Point Functions Subsection” on page 17-29.

Navigating Code Interface Report Subsections

To help you navigate code interface descriptions, the code interface report provides
collapse/expand tokens and hyperlinks, as follows:

• For a large subsection, the report provides [-] and [+] symbols that allow you to
collapse or expand that section. In the example in the previous section, the symbols
are provided for the Inports and Interface Parameters sections.

• Several forms of hyperlink navigation are provided in the code interface report. For
example:

• The Table of Contents located at the top of the code interface report provides
links to each subsection.

• You can click each function name to go to its definition in model.c.
• You can click each function's header file name to go to the header file source

listing.
• If you selected the Report pane option Code-to-model for your model, to go to

the corresponding location in the model display, you can click hyperlinks for any of
the following:

• Function argument
• Function return value
• Inport
• Outport
• Interface parameter (if the parameter source is a block)
• Data store (if the data store source is a Data Store Memory block)

For backward and forward navigation within the HTML code generation report, use the
Back and Forward buttons above the Contents section in the upper-left corner of the
report.

 Analyze the Generated Code Interface

17-29

Interpreting the Entry Point Functions Subsection

The Entry Point Functions subsection of the code interface report provides the
following interface information about each model entry point function, including
model_initialize, model_step, and (if applicable) model_terminate.

Field Description

Function: Lists the function name. You can click the function name to go to
its definition in model.c.

Prototype Displays the function prototype, including the function return
value, name, and arguments.

Description Provides a text description of the function's purpose in the
application.

Timing Describes the timing characteristics of the function, such as how
many times the function is called, or if it is called periodically,
and at what time interval. For a multirate timing example, see
the following rtwdemo_mrmtbb report excerpt.

Arguments If the function has arguments, displays the number, name,
data type, and Simulink description for each argument. If you
selected the Report pane option Code-to-model for your
model, you can click the hyperlink in the description to go to the
block corresponding to the argument in the model display. For
argument examples, see the rtwdemo_fcnprotoctrl report
excerpt below.

Return value If the function has a return value, this field displays the return
value data type and Simulink description. If you selected the
Report pane option Code-to-model for your model, you can click
the hyperlink in the description to go to the block corresponding
to the return value in the model display. For a return value
example, see the following rtwdemo_fcnprotoctrl report
excerpt.

Header file Lists the name of the header file for the function. You can click
the header file name to go to the header file source listing.

For example, here is the Entry Point Functions subsection for the model
rtwdemo_basicsc.

17 Report Generation

17-30

To illustrate how timing information might be listed for a multirate model, here are the
Entry Point Functions and Inports subsections for the model rtwdemo_mrmtbb.
This multirate, discrete-time, multitasking model contains Inport blocks 1 and 2,
which specify 1-second and 2-second sample times, respectively. The sample times are
constrained to the specified times by the Periodic sample time constraint option on
the Solver pane of the Configuration Parameters dialog box.

 Analyze the Generated Code Interface

17-31

17 Report Generation

17-32

To illustrate how function arguments and return values are displayed in the report,
here is the Entry Point Functions description of the model step function for the model
rtwdemo_fcnprotoctrl.

Interpreting the Inports and Outports Subsections

The Inports and Outports subsections of the code interface report provide the following
interface information about each inport and outport in the model.

Field Description

Block Name Displays the Simulink block name of the inport or outport. If you
selected the Report pane option Code-to-model for your model,
you can click on each inport or outport Block Name value to go
to its location in the model display.

Code Identifier Lists the identifier associated with the inport or outport data in
the generated code, as follows:

• If the data is defined in the generated code, the field displays
the identifier string.

 Analyze the Generated Code Interface

17-33

Field Description

• If the data is declared but not defined in the generated code —
for example, if the data is resolved with an imported storage
class — the field displays the identifier string prefixed with
the label 'Imported data:'.

• If the data is neither defined nor declared in the generated
code — for example, if Reusable function code interface
packaging is selected for the model — the field displays the
string 'Defined externally'.

Data Type Lists the data type of the inport or outport.
Scaling For fixed-point entries, lists the data type and fraction length

using Simulink fixed-point data type notation.

Note: You must have a Fixed-Point Designer license to see fixed-
point scaling information in the report. For more information on
how scaling is represented in the table, see “Fixed-Point Data
Type and Scaling Notation”.

Dimension Lists the dimensions of the inport or outport (for example, 1 or
[4, 5]).

For example, here are the Inports and Outports subsections for the model
rtwdemo_basicsc.

17 Report Generation

17-34

Interpreting the Interface Parameters Subsection

The Interface Parameters subsection of the code interface report provides the following
interface information about tunable parameters that are associated with the model.

Field Description

Parameter Source Lists the source of the parameter value, as follows:

• If the source of the parameter value is a block, the field
displays the block name, such as <Root>/Gain2 or <S1>/
Lookup1. If you selected the Report pane option Code-to-
model for your model, you can click the Parameter Source
value to go to the parameter's location in the model display.

• If the source of the parameter value is a workspace variable,
the field displays the name of the workspace variable.

Code Identifier Lists the identifier associated with the tunable parameter data in
the generated code, as follows:

• If the data is defined in the generated code, the field displays
the identifier string.

• If the data is declared but not defined in the generated code —
for example, if the data is resolved with an imported storage
class — the field displays the identifier string prefixed with
the label 'Imported data:'.

• If the data is neither defined nor declared in the generated
code — for example, if Reusable function code interface
packaging is selected for the model — the field displays the
string 'Defined externally'.

Data Type Lists the data type of the tunable parameter.
Scaling For fixed-point entries, lists the data type and fraction length

using Simulink fixed-point data type notation.

Note: You must have a Fixed-Point Designer license to see fixed-
point scaling information in the report. For more information on
how scaling is represented in the table, see “Fixed-Point Data
Type and Scaling Notation”.

 Analyze the Generated Code Interface

17-35

Field Description

Dimension Lists the dimensions of the tunable parameter (for example, 1 or
[4, 5, 6]).

For example, here is the Interface Parameters subsection for the model
rtwdemo_basicsc (with the ExportedGlobal Storage Class button selected in the
model window).

Interpreting the Data Stores Subsection

The Data Stores subsection of the code interface report provides the following interface
information about global data stores and data stores with non-auto storage that are
associated with the model.

Field Description

Data Store Source Lists the source of the data store memory, as follows:

• If the data store is defined using a Data Store Memory block,
the field displays the block name, such as <Root>/DS1. If
you selected the Report pane option Code-to-model for your
model, you can click on the Data Store Source value to go to
the data store's location in the model display.

• If the data store is defined using a Simulink.Signal object,
the field displays the name of the Simulink.Signal object.

Code Identifier Lists the identifier associated with the data store data in the
generated code, as follows:

• If the data is defined in the generated code, the field displays
the identifier string.

17 Report Generation

17-36

Field Description

• If the data is declared but not defined in the generated code —
for example, if the data is resolved with an imported storage
class — the field displays the identifier string prefixed with
the label 'Imported data:'.

• If the data is neither defined nor declared in the generated
code — for example, if Reusable function code interface
packaging is selected for the model — the field displays the
string 'Defined externally'.

Data Type Lists the data type of the data store.
Scaling For fixed-point entries, lists the data type and fraction length

using Simulink fixed-point data type notation.

Note: You must have a Fixed-Point Designer license to see fixed-
point scaling information in the report. For more information on
how scaling is represented in the table, see “Fixed-Point Data
Type and Scaling Notation”.

Dimension Lists the dimensions of the data store (for example, 1 or [1, 2]).

For example, here is the Data Stores subsection for the model rtwdemo_basicsc (with
the ExportedGlobal Storage Class button selected in the model window).

Code Interface Report Limitations

The following limitations apply to the code interface section of the HTML code generation
reports.

• The code interface report does not support the GRT interface with an ERT target or C
++ class code interface packaging. For these configurations, the code interface report
is not generated and does not appear in the HTML code generation report Contents
pane.

• The code interface report supports data resolved with most custom storage classes
(CSCs), except when the CSC properties are set in any of the following ways:

 Analyze the Generated Code Interface

17-37

• The CSC property Type is set to FlatStructure. For example, the BitField
and Struct CSCs in the Simulink package have Type set to FlatStructure.

• The CSC property Type is set to Other. For example, the GetSet CSC in the
Simulink package has Type set to Other.

• The CSC property Data access is set to Pointer, indicating that imported
symbols are declared as pointer variables rather than simple variables. This
property is accessible only when the CSC property Data scope is set to Imported
or Instance-specific.

In these cases, the report displays empty Data Type and Dimension fields.
• For outports, the code interface report cannot describe the associated memory (data

type and dimensions) if the memory is optimized. In these cases, the report displays
empty Data Type and Dimension fields.

• The code interface report does not support data type replacement using the Code
Generation > Data Type Replacement pane of the Configuration Parameters
dialog box. The data types listed in the report will link to built-in data types rather
than their specified replacement data types.

17 Report Generation

17-38

Static Code Metrics
In this section...

“About Static Code Metrics” on page 17-38
“Static Code Metrics Analysis” on page 17-38

About Static Code Metrics

The code generator performs static analysis of the generated C code and provides these
metrics in the Static Code Metrics Report section of the HTML Code Generation
Report.

You can use the information in the report to:

• Find the number of files and lines of code in each file.
• Estimate the number of lines of code and stack usage per function.
• Compare the difference in terms of how many files, functions, variables, and lines of

code are generated every time you change the model or MATLAB algorithm.
• Determine a target platform and allocation of RAM to the stack, based on the size of

global variables plus the estimated stack size.
• Determine possible performance slow points, such as the largest global variables or

the most costly call path in terms of stack usage.
• View the cyclomatic complexity of a function, which counts the number of linearly

independent paths through a function.
• View the function call tree. Determine the longest call path to estimate the worst case

execution timing.
• View how target functions, provided by the selected code replacement library, are

used in the generated code.

For examples, see

• “Generate Static Code Metrics Report for Simulink Model” on page 17-41
• “Generate a Static Code Metrics Report for MATLAB Code” on page 17-47

Static Code Metrics Analysis

Static analysis of the generated code is performed only on the source code without
executing the program. The results of the static code metrics analysis are included in

 Static Code Metrics

17-39

the Static Code Metrics section of the HTML Code Generation Report. The static code
metrics report does not support the C++ target language. The report is not available if
you generate a MEX function from MATLAB code.

Static analysis of the generated source code files:

• Uses the specified C data types. For Simulink models, you specify these data
types in the Hardware Implementation > Production hardware pane of the
Configuration Parameters dialog box. For code generation from MATLAB code, you
specify them in the Hardware tab of the MATLAB Coder project settings dialog box
or using a code generation configuration object. Actual object code metrics might differ
due to target-specific compiler and platform settings.

• Includes custom code only if you specify it. For Simulink models, you specify custom
code on the Code Generation > Custom Code pane in the model configuration. For
code generation from MATLAB code, you specify it on the Custom Code tab of the
MATLAB Coder project settings dialog box or using a code generation configuration
object. An error report is generated if the generated code includes platform-specific
files not contained in the standard C run-time library.

• For Simulink models, includes the generated code from referenced models.
• Uses 1-byte alignment for all members of a structure for estimating global and local

data structure sizes. The size of a structure is calculated by summing the sizes of all
of its fields. This estimation represents the smallest possible size for a structure.

• Calculates the self stack size of a function as the size of local data within a function,
excluding input arguments. The accumulated stack size of a function is the self stack
size plus the maximum of the accumulated stack sizes of its called functions. For
example, if the accumulated stacks sizes for the called functions are represented as
accum_size1...accum_sizeN, then the accumulated stack size for a function is
accumulated_stack_size = self_stack_size + max(accum_size1,...,accum_sizeN)

• When estimating the stack size of a function, static analysis stops at the first instance
of a recursive call. The Function Information table indicates when recursion occurs
in a function call path. Code generation generates only recursive code for Stateflow
event broadcasting and for graphical functions if it is written as a recursive function.

• Calculates the cyclomatic complexity of a function as the number of decisions plus
one:

CC = Number of decisions + 1

The following constructs add a decision:

• If statement

17 Report Generation

17-40

• Else-If statement
• Switch statement (1 decision for each case branch)
• Loop statements: While, For, Do-while

Note: Boolean operators in the above constructs do not add extra decisions.
• Does not include ert_main.c, because you have the option to provide your own

main.c.

 Generate Static Code Metrics Report for Simulink Model

17-41

Generate Static Code Metrics Report for Simulink Model

The Static Code Metrics Report is a section included in the HTML Code Generation
Report. For more information on the static analysis of the generated code, see “Static
Code Metrics Analysis” on page 17-38.

1 Before generating the HTML Code Generation Report, open the Configuration
Parameters dialog box for your model. On the Code Generation > Report pane,
select the “Static code metrics” check box.

If your model includes referenced models, select the Static code metrics check box
in each referenced model’s configuration set. Otherwise, you cannot view a separate
static code metrics report for a referenced model.

2 Press Ctrl+B to build your model and generate the HTML code generation report.
For more information, see “Traceability in Code Generation Report”.

3 If the HTML Code Generation Report is not already open, open the report. On the
left navigation pane, in the Contents section, select Static Code Metrics Report.

4 Hover your cursor over column titles and some column values to see a description of
the corresponding data.

17 Report Generation

17-42

5 To see the generated files and how many lines of code are generated per file, look at
the File Information section.

6 If your model includes referenced models, the File information section includes a
Referenced Model column. In this column, click the referenced model name to open
its static code metrics report. If the static code metrics report is not available for
a referenced model, specify the Static code metrics parameter in the referenced
model’s configuration set and rebuild your model.

7 To view the global variables in the generated code, their size, and the number of
accesses, see the Global Variables section.

 Generate Static Code Metrics Report for Simulink Model

17-43

The Reads/Writes column displays the total number of read and write accesses
to the global variable. The Reads/Writes in a Function column displays the
maximum number of read and write accesses to the global variable within a function.
You use this information is to estimate the benefit of turning on optimizations, which
reduce the number of global references. For more information, see “Optimize Global
Variable Usage”.

Click [+] to expand structures.

17 Report Generation

17-44

8 To navigate from the report to the source code, click a global variable or function
name. These names are hyperlinks to their definitions.

9 To view the function call tree of the generated code, in the Function Information
section, click Call Tree at the top of the table.

 Generate Static Code Metrics Report for Simulink Model

17-45

ert_main.c is not included in the code metrics analysis, therefore it is not shown in
the call tree format. The Complexity column includes the cyclomatic complexity of
each function.

10 To view the functions in a table format, click Table.

17 Report Generation

17-46

The second column, Called By, lists functions that call the function listed in the first
column, using the following criteria:

• If a function is called by multiple functions, all functions are listed.
• If a function has no called function, this column is empty.

For example, Fueling_Mode is called by Fail and fuel_rate_control_step.
The number of call sites is included in parentheses. Fail calls Fueling_Mode twice.

 Generate a Static Code Metrics Report for MATLAB Code

17-47

Generate a Static Code Metrics Report for MATLAB Code

Generate a Static Code Metrics Report Using the MATLAB Coder App

This example shows how to generate a static code metrics report for a static C library
that is generated from MATLAB code using the MATLAB Coder app.

By default, if you have an Embedded Coder license, when you use MATLAB Coder to
generate standalone C code, the code generation report includes a static code metrics
report. The static code metrics report is not available for generated MEX functions.

Create the Example Files

1 In a local, writable folder, create a MATLAB file, moving_average.m, that contains:

function [avg,z] = moving_average(x,z)

 %#codegen

 z(2:end) = z(1:end-1); % Update buffer

 z(1) = x; % Add new value

 avg = mean(z); % Compute moving average

end

2 In the same local, writable folder, create a test file, moving_average_test.m, that
contains:

function moving_average_test()

 z = zeros(10,1);

 for i = 1:10

 [avg, z] = moving_average(i,z);

 end

 disp(avg)

end

Set Up the MATLAB Coder Project

1 To open the MATLAB Coder app and set up a project, at the command line, enter:

coder -new moving_average.prj

The app adds moving_average to the list of entry-point functions.
2 Click Next to go to the Define Input Types step.

17 Report Generation

17-48

Define Input Types

1 To automatically define the input types, select or enter the test file
moving_average_test.m. Click Autodefine Input Types.

The app determines that x is double(1x1) and z is double(10x1).
2 Click Next to go to the Check for Run-Times Issues step.

The Check for Run-Time Issues step generates a MEX file from your entry-point
functions, runs the MEX function, and reports issues. This step is optional. However,
it is a best practice to perform this step. You can detect and fix run-time errors that
are harder to diagnose in the generated C code.

Check for Run-Time Issues

1 To open the Check for Run-Time Issues dialog box, click the Check for Issues

arrow .

The app populates the test file field with moving_average_test.m, the test file
that you used to define input types.

2 Click Check for Issues.

The app does not detect issues.
3 Click Next to go to the Generate Code step.

Configure the Build Settings

1 On the Generate Code page, to open the Generate dialog box, click the Generate

arrow .
2 Set Build type to Static library.

The default output file name is moving_average.
3 Click More settings.
4 On the Debugging tab, verify that the Static code metrics check box is selected.
5 Click Close.

Generate C Code

1 To generate the library, click Generate.

 Generate a Static Code Metrics Report for MATLAB Code

17-49

MATLAB Coder generates a C static library and supporting files in the default
folder, codegen/lib/moving_average.

2 Click Next to go to the Finish Workflow step.

View the Static Code Metrics Report

1 To open the code generation report, under Generated Output, click Code
Generation Report.

2 In the code generation report, click Static Code Metrics Report.
3 To see the generated files and the number of lines of code per file, click File

Information.

4 To see the global variables in the generated code, go to the Global Variables
section.

17 Report Generation

17-50

To navigate from the report to the source code, click a global variable name.
5 To view the function call tree of the generated code, in the Function Information

section, click Call Tree.

To navigate from the report to the function code, click a function name.
6 To view the functions in a table format, click Table.

The second column, Called By, lists functions that call the function listed in the first
column. If multiple functions call the function, all functions are listed. If no functions
call the function, this column is empty.

Enable a Static Code Metrics Report at the Command Line

To enable a static code metrics report at the command line:

 Generate a Static Code Metrics Report for MATLAB Code

17-51

1 Create a code generation configuration object for standalone code generation. For
example, to generate a static library, use:

cfg = coder.config('lib', 'ecoder', true);

2 Generate code, passing the configuration object as a parameter and specifying the -
report option. For example:

codegen -config cfg -report foo

Alternatively, you can:

1 Create a code generation configuration object for standalone code generation. For
example, to generate a static library:

cfg = coder.config('lib', 'ecoder', true);

2 Set the configuration object GenerateReport and GenerateCodeMetricsReport
parameters to true.

cfg.GenerateReport = true;

cfg.GenerateCodeMetricsReport = true;

3 Generate code, passing the configuration object as a parameter. For example:

codegen -config cfg foo

17 Report Generation

17-52

Analyze Code Replacements in the Generated Code

When you select the Code Generation > Report check box Summarize which blocks
triggered code replacements for an ERT-based model, a Code Replacements Report
section is automatically included in the generated HTML report. The Code Replacements
Report section documents the code replacement library (CRL) functions that were
used for code replacements during code generation, providing a mapping between each
replacement instance and the Simulink block that triggered the replacement. To enable
display of the Simulink block information, select the Code Generation > Comments
check box Include comments. On the same pane, select either the Simulink block /
Stateflow object comments check box or the Simulink block descriptions check box
if present, or both.

You can use the report to:

• Determine which replacement functions were used in the generated code.
• Trace each replacement instance back to the block that triggered the replacement.

The figure below shows a Code Replacements Report generated for the CRL model
rtwdemo_crladdsub. Each replacement function used is listed with a link to the block
that triggered the replacement.

 Analyze Code Replacements in the Generated Code

17-53

If you click a block path in the report, the block that triggered the replacement is
highlighted in the model diagram. If the replacement was triggered by a Stateflow chart
or a MATLAB function, a window opens to display the chart or function.

For more information, see Trace Code Replacements Generated Using Your Code
Replacement Library.

17 Report Generation

17-54

Document Generated Code with Simulink Report Generator

In this section...

“Generate Code for the Model” on page 17-55
“Open the Report Generator” on page 17-55
“Set Report Name, Location, and Format” on page 17-57
“Include Models and Subsystems in a Report” on page 17-58
“Customize the Report” on page 17-59
“Generate the Report” on page 17-60

The Simulink Report Generator software creates documentation from your model in
multiple formats, including HTML, PDF, RTF, Microsoft Word, and XML. This example
shows one way to document a code generation project in Microsoft Word. The generated
report includes:

• System snapshots (model and subsystem diagrams)
• Block execution order list
• Simulink Coder and model version information for generated code
• List of generated files
• Optimization configuration parameter settings
• Simulink Coder target selection and build process configuration parameter settings
• Subsystem map
• File name, path, and generated code listings for the source code

To adjust Simulink Report Generator settings to include custom code and then generate
a report for a model, complete the following tasks:

1 “Generate Code for the Model” on page 17-55
2 “Open the Report Generator” on page 17-55
3 “Set Report Name, Location, and Format” on page 17-57
4 “Include Models and Subsystems in a Report” on page 17-58
5 “Customize the Report” on page 17-59
6 “Generate the Report” on page 17-60

 Document Generated Code with Simulink Report Generator

17-55

A Simulink Report Generator license is required for the following report formats: PDF,
RTF, Microsoft Word, and XML. For more information on generating reports in these
formats, see the Simulink Report Generator documentation.

Generate Code for the Model

Before you use the Report Generator to document your project, generate code for the
model.

1 In the MATLAB Current Folder browser, navigate to a folder where you have write
access.

2 Create a working folder from the MATLAB command line by typing:

mkdir report_ex

3 Make report_ex your working folder:

cd report_ex

4 Open the slexAircraftExample model by entering the model name on the
MATLAB command line.

5 In the model window, choose File > Save As, navigate to the working folder,
report_ex, and save a copy of the slexAircraftExample model as myModel.

6 Open the Configuration Parameters dialog box by selecting Model Configuration
Parameters from the Simulation menu.

7 Select the Solver pane. In the Solver options section, specify the Type parameter
as Fixed-step.

8 Select the Code Generation pane. Select Generate code only.
9 Click Apply.
10 Click Generate code. The build process generates code for the model.

Open the Report Generator

After you generate the code, open the Report Generator.

1 In the model diagram window, select Tools > Report Generator.
2 In the Report Explorer window, in the options pane (center), click the folder rtw

(\toolbox\rtw). Click the setup file that it contains, codegen.rpt.

17 Report Generation

17-56

3
Double-click codegen.rpt or select it and click the Open report button . The
Report Explorer displays the structure of the setup file in the outline pane (left).

 Document Generated Code with Simulink Report Generator

17-57

Set Report Name, Location, and Format

Before generating a report, you can specify report output options, such as the folder,
file name, and format. For example, to generate a Microsoft Word report named
MyCGModelReport.rtf:

1 In the properties pane, under Report Options, review the options listed.

17 Report Generation

17-58

2 Leave the Directory field set to Present working directory.
3 For Filename, select Custom: and replace index with the name

MyModelCGReport.
4 For File format, specify Rich Text Format and replace Standard Print with

Numbered Chapters & Sections.

Include Models and Subsystems in a Report

Specify the models and subsystems that you want to include in the generated report by
setting options in the Model Loop component.

1 In the outline pane (left), select Model Loop. Report Generator displays Model Loop
component options in the properties pane.

2 If not already selected, select Current block diagram for the Model name
option.

3 In the outline pane, click Report - codegen.rpt*.

 Document Generated Code with Simulink Report Generator

17-59

Customize the Report

After specifying the models and subsystems to include in the report, you can customize
the sections included in the report.

1 In the outline pane (left), expand the node Chapter - Generated Code. By default,
the report includes two sections, each containing one of two report components.

2 Expand the node Section 1 — Code Generation Summary.
3 Select Code Generation Summary. Options for the component are displayed in the

properties pane.
4 Click Help to review the report customizations that you can make with the Code

Generation Summary component. For this example, do not customize the component.
5 In the Report Explorer window, expand the node Section 1 — Generated Code

Listing.
6 Select Import Generated Code. Options for the component are displayed in the

properties pane.
7 Click Help to review the report customizations that you can make with the Import

Generated Code component.

17 Report Generation

17-60

Generate the Report

After you adjust the report options, from the Report Explorer window, generate the
report by clicking File > Report. A Message List dialog box opens, which displays
messages that you can monitor as the report is generated. Model snapshots also appear
during report generation. The Message List dialog box might be hidden behind other
dialog boxes.

When the report is complete, open the report, MyModelCGReport.rtf in the folder
report_ex (in this example).

For alternative ways of generating reports with the Simulink Report Generator, see
“Generate Reports”.

18

Code Replacement for Simulink
Models

• “What Is Code Replacement?” on page 18-2
• “Code You Can Replace From Simulink Models” on page 18-4
• “Code Replacement Libraries” on page 18-23
• “Code Replacement Terminology” on page 18-25
• “Code Replacement Limitations” on page 18-28
• “Replace Code Generated from Simulink Models” on page 18-29
• “Choose a Code Replacement Library” on page 18-32

18 Code Replacement for Simulink Models

18-2

What Is Code Replacement?

Code replacement is a technique to change the code that the code generator produces for
functions and operators to meet application code requirements. For example, you can
replace generated code to meet requirements such as:

• Optimization for a specific run-time environment, including, but not limited to,
specific target hardware.

• Integration with existing application code.
• Compliance with a standard, such as AUTOSAR.
• Modification of code behavior, such as enabling or disabling nonfinite or inline

support.
• Application- or project-specific code requirements, such as:

• Elimination of math.h.
• Elimination of system header files.
• Elimination of calls to memcpy or memset.
• Use of BLAS.
• Use of a specific BLAS.

To apply this technique, configure the code generator to apply a code replacement
library (CRL) during code generation. By default, the code generator does not apply a
code replacement library. You can choose from the following libraries that MathWorks
provides:

• GNU C99 extensions—GNU®5 gcc math library, which provides C99 extensions as
defined by compiler option -std=gnu99.

• Intel IPP for x86-64 (Windows)—Generates calls to the Intel® Performance Primitives
(IPP) library for the x86-64 Windows platform.

• Intel IPP/SSE with GNU99 extensions for x86-64 (Windows)—GNU libraries for Intel
Performance Primitives (IPP) and Streaming SIMD Extensions (SSE), with GNU C99
extensions.

• Intel IPP for x86/Pentium (Windows)—Generates calls to the Intel Performance
Primitives (IPP) library for the x86/Pentium Windows platform.

5. GNU is a registered trademark of the Free Software Foundation.

 What Is Code Replacement?

18-3

• Intel IPP/SSE with GNU99 extensions for x86/Pentium (Windows)—Generates calls
to the GNU libraries for Intel Performance Primitives (IPP) and Streaming SIMD
Extensions (SSE), with GNU C99 extensions, for the x86/Pentium Windows platform.

• Intel IPP for x86-64 (Linux)—Generates calls to the Intel Performance Primitives
(IPP) library for the x86-64 Linux® platform.

• Intel IPP/SSE with GNU99 extensions for x86-64 (Linux)—Generates calls to
the GNU libraries for Intel Performance Primitives (IPP) and Streaming SIMD
Extensions (SSE), with GNU C99 extensions, for the x86-64 Linux platform.

Libraries that include GNU99 extensions are intended for use with the GCC compiler. If
use one of those libraries with another compiler, generated code might not compile.

Depending on the product licenses that you have, other libraries might be available . If
you have an Embedded Coder license, you can view and choose from other libraries and
you can create custom code replacement libraries.

Related Examples
• “Replace Code Generated from Simulink Models”
• “Choose a Code Replacement Library”

More About
• “Code You Can Replace From Simulink Models”
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Limitations”

18 Code Replacement for Simulink Models

18-4

Code You Can Replace From Simulink Models

In this section...

“About Code You Can Replace” on page 18-4
“Math Functions – Simulink Support” on page 18-4
“Math Functions – Stateflow Support” on page 18-10
“Memory Functions” on page 18-15
“Nonfinite Functions” on page 18-16
“Mutex and Semaphore Functions” on page 18-17
“Lookup Table Functions” on page 18-18
“Operators” on page 18-18

About Code You Can Replace

Code that the code generator replaces depends on the code replacement library (CRL)
that you use. By default, the code generator does not apply a code replacement library.
Your choice of libraries is dependent on product licensing and whether you have access to
custom libraries.

For information on how to explore functions and operators that a code replacement
library supports, see “Choose a Code Replacement Library” license and want to develop a
custom code replacement library, see Code Replacement Customization.

Math Functions – Simulink Support

When generating C/C++ code from a Simulink model, depending on code replacement
libraries available in your development environment, you can configure the code
generator to replace instances of the following math functions with application-specific
implementations.

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

abs1 Integer
Floating point
Fixed point

Scalar
Vector
Matrix

Real

acos Floating point Scalar Real

 Code You Can Replace From Simulink Models

18-5

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

Complex input/complex output
Real input/complex output

acosd2 Floating point Scalar
Vector
Matrix

Real
Complex

acosh Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

acot2 Floating point Scalar
Vector
Matrix

Real
Complex

acotd2 Floating point Scalar
Vector
Matrix

Real
Complex

acoth2 Floating point Scalar
Vector
Matrix

Real
Complex

acsc2 Floating point Scalar
Vector
Matrix

Real
Complex

acscd2 Floating point Scalar
Vector
Matrix

Real
Complex

acsch2 Floating point Scalar
Vector
Matrix

Real
Complex

asec2 Floating point Scalar
Vector
Matrix

Real
Complex

asecd2 Floating point Scalar
Vector
Matrix

Real
Complex

18 Code Replacement for Simulink Models

18-6

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

asech2 Floating point Scalar
Vector
Matrix

Real
Complex

asin Floating point Scalar Real
Complex input/complex output
Real input/complex output

asind2 Floating point Scalar
Vector
Matrix

Real
Complex

asinh Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

atan Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

atan2 Floating point Scalar
Vector
Matrix

Real

atan2d2 Floating point Scalar
Vector
Matrix

Real

atand2 Floating point Scalar
Vector
Matrix

Real
Complex

atanh Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

ceil • Floating-point
• Scalar

• Floating-point
• Scalar

• Floating-point
• Scalar

cos3 Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

 Code You Can Replace From Simulink Models

18-7

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

cosd2 Floating point Scalar
Vector
Matrix

Real
Complex

cosh Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

cot2 Floating point Scalar
Vector
Matrix

Real
Complex

cotd2 Floating point Scalar
Vector
Matrix

Real
Complex

coth2 Floating point Scalar
Vector
Matrix

Real
Complex

csc2 Floating point Scalar
Vector
Matrix

Real
Complex

cscd2 Floating point Scalar
Vector
Matrix

Real
Complex

csch2 Floating point Scalar
Vector
Matrix

Real
Complex

exactrSqrt Integer
Floating point

Scalar Real

exp Floating point Scalar
Vector
Matrix

Real

fix Floating point Scalar Real
floor • Floating-point

• Scalar
• Floating-point
• Scalar

• Floating-point
• Scalar

18 Code Replacement for Simulink Models

18-8

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

fmod4 Floating point Scalar Real

frexp Floating point Scalar Real
hypot Floating point Scalar

Vector
Matrix

Real

ldexp Floating point Scalar Real
ln Floating point Scalar Real
log Floating point Scalar

Vector
Matrix

Real

log10 Floating point Scalar
Vector
Matrix

Real

log22 Floating point Scalar
Vector
Matrix

Real
Complex

max Integer
Floating point
Fixed point

Scalar Real

min Integer
Floating point
Fixed point

Scalar Real

mod Integer
Floating point

Scalar
Vector
Matrix

Real

pow Floating point Scalar
Vector
Matrix

Real

rem Floating point Scalar
Vector
Matrix

Real

round Floating point Scalar Real

 Code You Can Replace From Simulink Models

18-9

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

rSqrt Integer
Floating point

Scalar
Vector
Matrix

Real

saturate Integer
Floating point
Fixed point

Scalar
Vector
Matrix

Real

sec2 Floating point Scalar
Vector
Matrix

Real
Complex

secd2 Floating point Scalar
Vector
Matrix

Real
Complex

sech2 Floating point Scalar
Vector
Matrix

Real
Complex

sign Integer
Floating point
Fixed point

Scalar
Vector
Matrix

Real

signPow Floating point Scalar
Vector
Matrix

Real

sin3 Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

sincos3 Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

sind2 Floating point Scalar
Vector
Matrix

Real
Complex

sinh Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

18 Code Replacement for Simulink Models

18-10

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

sqrt Integer
Floating point
Fixed point

Scalar
Vector
Matrix

Real

tan Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

tand2 Floating point Scalar
Vector
Matrix

Real
Complex

tanh Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

1 Wrap on integer overflow only. Clear block parameter Saturate on integer overflow.

2Only when used with the MATLAB Function block.

3 Supports the CORDIC approximation method.

4 Stateflow support only.

Math Functions – Stateflow Support

When generating C/C++ code from Stateflow charts, depending on code replacement
libraries available in your development environment, you can configure the code
generator to replace instances of the following math functions with application-specific
implementations.

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

abs1 Integer
Floating point

Scalar Real

acos2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output

 Code You Can Replace From Simulink Models

18-11

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

Real input/complex output

acosd3 Floating point Scalar
Vector
Matrix

Real
Complex

acot3 Floating point Scalar
Vector
Matrix

Real
Complex

acotd3 Floating point Scalar
Vector
Matrix

Real
Complex

acoth3,5 Floating point Scalar
Vector
Matrix

Real
Complex

acsc3 Floating point Scalar
Vector
Matrix

Real
Complex

acscd3 Floating point Scalar
Vector
Matrix

Real
Complex

acsch3 Floating point Scalar
Vector
Matrix

Real
Complex

asec3 Floating point Scalar
Vector
Matrix

Real
Complex

asecd3 Floating point Scalar
Vector
Matrix

Real
Complex

asech3 Floating point Scalar
Vector
Matrix

Real
Complex

18 Code Replacement for Simulink Models

18-12

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

asin2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

asind3 Floating point Scalar
Vector
Matrix

Real
Complex

atan2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

atan22 Floating point Scalar
Vector
Matrix

Real

atan2d3 Floating point Scalar
Vector
Matrix

Real

atand3 Floating point Scalar
Vector
Matrix

Real
Complex

ceil • Floating-point
• Scalar

• Floating-point
• Scalar

• Floating-point
• Scalar

cos3 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

cosd3 Floating point Scalar
Vector
Matrix

Real
Complex

 Code You Can Replace From Simulink Models

18-13

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

cosh2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

cot3 Floating point Scalar
Vector
Matrix

Real
Complex

cotd3 Floating point Scalar
Vector
Matrix

Real
Complex

coth3 Floating point Scalar
Vector
Matrix

Real
Complex

csc3 Floating point Scalar
Vector
Matrix

Real
Complex

cscd3 Floating point Scalar
Vector
Matrix

Real
Complex

csch3 Floating point Scalar
Vector
Matrix

Real
Complex

exp Floating point Scalar Real
floor • Floating-point

• Scalar
• Floating-point
• Scalar

• Floating-point
• Scalar

fmod Floating point Scalar Real

hypot3 Floating point Scalar
Vector
Matrix

Real

ldexp Floating point Scalar Real

18 Code Replacement for Simulink Models

18-14

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

log2 Floating point Scalar
Vector
Matrix

Real
Complex

log102 Floating point Scalar
Vector
Matrix

Real
Complex

log23 Floating point Scalar
Vector
Matrix

Real
Complex

max Integer
Floating point

Scalar Real

min Integer
Floating point

Scalar Real

pow Floating point Scalar Real

sec3 Floating point Scalar
Vector
Matrix

Real
Complex

secd3 Floating point Scalar
Vector
Matrix

Real
Complex

sech3 Floating point Scalar
Vector
Matrix

Real
Complex

sin2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

sind3 Floating point Scalar
Vector
Matrix

Real
Complex

 Code You Can Replace From Simulink Models

18-15

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

sinh2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

sqrt Floating point Scalar Real

tan2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

tand3 Floating point Scalar
Vector
Matrix

Real
Complex

tanh2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

1 Wrap on integer overflow only.

2For models involving vectors or matrices, the code generator replaces only functions coded in the
MATLAB action language.

3The code generator replaces only functions coded in the MATLAB action language.

Memory Functions

Depending on code replacement libraries available in your development environment,
you can configure the code generator to replace instances of the following memory
functions with application-specific implementations.

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

memcmp Void pointer (void*) Scalar Real

18 Code Replacement for Simulink Models

18-16

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

Vector
Matrix

Complex

memcpy Void pointer (void*) Scalar
Vector
Matrix

Real
Complex

memset Void pointer (void*) Scalar
Vector
Matrix

Real
Complex

memset2zero Void pointer (void*) Scalar
Vector
Matrix

Real
Complex

Some target processors provide optimized functions to set memory to zero. Use the code
replacement library programming interface to replace the memset2zero function with
more efficient target-specific functions.

Nonfinite Functions

Depending on code replacement libraries available in your development environment,
you can configure the code generator to replace instances of the following nonfinite
functions with application-specific implementations.

Function Data Type Support Scalar, Vector,
Matrix Support

Real, Complex Support

getInf Floating point Scalar Real
getMinusInf Floating point Scalar Real
getNaN Floating point Scalar Real
rtIsInf Floating point Scalar Real

Complex
rtIsNaN Floating point Scalar Real

Complex

 Code You Can Replace From Simulink Models

18-17

Mutex and Semaphore Functions

Mutex and semaphore functions control access to resources shared by multiple processes
in multicore target environments. MathWorks provides code replacement libraries that
support mutex and semaphore replacement for Rate Transition and Task Transition
blocks on Windows, Linux, Mac, and VxWorks platforms.

Generated mutex and semaphore code typically consists of:

• In model initialization code, an initialization function call to create a mutex or
semaphore to control entry to a critical section of code.

• In model step code:

• Before code for a data transfer between tasks enters the critical section, mutex
lock or semaphore wait function calls to reserve a critical section of code.

• After code for a data transfer between tasks finishes executing the critical section,
mutex unlock or semaphore post function calls to release the critical section of
code.

• In model termination code, an optional destroy function call to explicitly delete the
mutex or semaphore.

Depending on code replacement libraries available in your development environment,
you can configure the code generator to replace instances of the following mutex and
semaphore functions with application-specific implementations.

In the following table, key is a string that identifies the function.

Function Key

Mutex Destroy RTW_MUTEX_DESTROY

Mutex Init RTW_MUTEX_INIT

Mutex Lock RTW_MUTEX_LOCK

Mutex Unlock RTW_MUTEX_UNLOCK

Semaphore Destroy RTW_SEM_DESTROY

Semaphore Init RTW_SEM_INIT

Semaphore Post RTW_SEM_POST

Semaphore Wait RTW_SEM_WAIT

18 Code Replacement for Simulink Models

18-18

Lookup Table Functions

Depending on available code replacement libraries, you can configure the code generator
to replace instances of the following lookup table functions with application-specific
implementations. Support for these functions includes:

• Integer, floating-point, and fixed-point data types
• Scalar, vector, and matrix data formats
• Real and complex data

interp1D interp5D interpND lookup5D

interp2D interp5D lookup1D lookupND

interp3D interp5D lookup2D lookupND_Direct

interp4D interp5D lookup3D prelookup

interp5D interp5D lookup4D

Operators

When generating C/C++ code from a Simulink model, depending on code replacement
libraries available in your development environment, you can configure the code
generator to replace instances of the following operators with application-specific
implementations.

In the following table:

• Key is a string that identifies the operator.
• Mixed data type support indicates that you can specify different data types for

different inputs.

Operator Key Data Type Support Scalar, Vector,
Matrix Support

Real,
Complex
Support

Addition (+) RTW_OP_ADD Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Subtraction (-) RTW_OP_MINUS Integer Scalar Real

 Code You Can Replace From Simulink Models

18-19

Operator Key Data Type Support Scalar, Vector,
Matrix Support

Real,
Complex
Support

Floating point
Fixed-point
Mixed

Vector
Matrix

Complex

Multiplication
(*)1

RTW_OP_MUL Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Division (/) RTW_OP_DIV Integer
Floating point
Fixed-point
Mixed

Scalar Real
Complex

Data type
conversion (cast)

RTW_OP_CAST Integer
Floating point2

Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Shift left (<<) RTW_OP_SL Integer
Fixed-point
Mixed

Scalar
Vector
Matrix

Real

Shift right
arithmetic (>>)3

RTW_OP_SRA Integer
Fixed-point
Mixed

Scalar
Vector
Matrix

Real

Shift right
logical (>>)

RTW_OP_SRL Integer
Fixed-point
Mixed

Scalar
Vector
Matrix

Real

Element-
wise matrix
multiplication
(.*)4

RTW_OP_ELEM_MUL Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Matrix right
division (/)

RTW_OP_RDIV Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

18 Code Replacement for Simulink Models

18-20

Operator Key Data Type Support Scalar, Vector,
Matrix Support

Real,
Complex
Support

Matrix left
division (\)

RTW_OP_LDIV Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Matrix inversion
(inv)

RTW_OP_INV Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Complex
conjugation

RTW_OP_CONJUGATE Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Transposition
(.')

RTW_OP_TRANS Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Hermitian
(complex
conjugate)
transposition (')

RTW_OP_HERMITIAN Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Multiplication
with
transposition1

RTW_OP_TRMUL Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Multiplication
with Hermitian
transposition1

RTW_OP_HMMUL Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Greater than (>) RTW_OP_GREATER_

THAN

Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

 Code You Can Replace From Simulink Models

18-21

Operator Key Data Type Support Scalar, Vector,
Matrix Support

Real,
Complex
Support

Greater than or
equal(>=)

RTW_OP_GREATER_

THAN_OR_EQUAL

Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Less than (<) RTW_OP_LESS_THAN Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Less than or
equal (<=)

RTW_OP_LESS_THAN_

OR_EQUAL

Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Equal (==) RTW_OP_EQUAL Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Not equal (!=) RTW_OP_NOT_EQUAL Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

1 Can map to Basic Linear Algebra Subroutine (BLAS) multiplication functions.

2 Scaled floating point is not supported.

3 Code replacement libraries that provide arithmetic shift right implementations should
also provide logical shift right implementations, because some arithmetic shift rights
are converted to logical shift rights during code generation.

4 Use the multiplication (*) operator (RTW_OP_MUL) for scalar multiplication.

Related Examples
• “Choose a Code Replacement Library”

18 Code Replacement for Simulink Models

18-22

More About
• “What Is Code Replacement?”
• “Code Replacement Limitations”
• “Code Replacement Terminology”
• “Code Replacement Libraries”

 Code Replacement Libraries

18-23

Code Replacement Libraries

A code replacement library consists of one or more code replacement tables that specify
application-specific implementations of functions and operators. For example, a library
for a specific embedded processor specifies function and operator replacements that
optimize generated code for that processor.

A code replacement table contains one or more code replacement entries, with each entry
representing a potential replacement for a function or operator. Each entry maps a
conceptual representation of a function or operator to an implementation representation
and priority.

Table Entry
Component

Description

Conceptual
representation

Identifies the table entry and contains match criteria for the code
generator. Consists of:

• Function name or a key. The function name identifies most
functions. For operators and some functions, a string called
a key identifies a function or operator. For example, function
name 'cos' and operator key 'RTW_OP_ADD'.

• Conceptual arguments that observe code generator naming
('y1', 'u1', 'u2', ...), with corresponding I/O types (output or
input) and data types.

• Other attributes, such as an algorithm, fixed-point saturation,
and rounding modes, which identify matching criteria for the
function or operator.

18 Code Replacement for Simulink Models

18-24

Table Entry
Component

Description

Implementation
representation

Specifies replacement code. Consists of:

• Function name. For example, 'cos_dbl' or 'u8_add_u8_u8')
• Implementation arguments, with corresponding I/O types

(output or input) and data types.
• Parameters that provide additional implementation details,

such as header and source file names and paths of build
resources.

Priority Defines the entry priority relative to other entries in the table. The
value can range from 0 to 100, with 0 being the highest priority. If
multiple entries have the same priority, the code generator uses the
first match with that priority.

When the code generator looks for a match in a code replacement library, it creates and
populates a call site object with the function or operator conceptual representation. If
a match exists, the code generator uses the matched code replacement entry populated
with the implementation representation and uses it to generate code.

The code generator searches the tables in a code replacement library for a match in the
order that the tables appear in the library. If the code generator finds multiple matches
within a table, the priority determines the match. The code generator uses a higher-
priority entry over a similar entry with a lower priority.

Related Examples
• “Replace Code Generated from Simulink Models”
• “Choose a Code Replacement Library”

More About
• “What Is Code Replacement?”
• “Code You Can Replace From Simulink Models”
• “Code Replacement Terminology”

 Code Replacement Terminology

18-25

Code Replacement Terminology

Term Definition

Cache hit A code replacement entry for a function or operator,
defined in the specified code replacement library,
for which the code generator finds a match.

Cache miss A conceptual representation of a function or
operator for which the code generator does not find
a match.

Call site object Conceptual representation of a function or operator
that the code generator uses when it encounters
a call site for a function or operator. The code
generator uses the object to query the code
replacement library for a conceptual representation
match. If a match exists, the code generator returns
a code replacement object, fully populated with
the conceptual representation, implementation
representation, and priority, and uses that object to
generate replacement code.

Code replacement library One or more code replacement tables that specify
application-specific implementations of functions
and operators. When configured to use a code
replacement library, the code generator uses
criteria defined in the library to search for matches.
If a match is found, the code generator replaces
code that it generates by default with application-
specific code defined in the library.

Code replacement table One or more code replacement table entries.
Provides a way to group related or shared entries
for use in different libraries.

Code replacement entry Represents a potential replacement for a function
or operator. Maps a conceptual representation
of a function or operator to an implementation
representation and priority.

Conceptual argument Represents an input or output argument for a
function or operator being replaced. Conceptual
arguments observe naming conventions ('y1',

18 Code Replacement for Simulink Models

18-26

Term Definition

'u1', 'u2', ...) and data types familiar to the code
generator.

Conceptual representation Represents match criteria that the code generator
uses to qualify functions and operators for
replacement. Consists of:

• Function or operator name or key
• Conceptual arguments with type, dimension,

and complexity specification for inputs and
output

•
Attributes, such as an algorithm and fixed-point
saturation and rounding modes

Implementation argument Represents an input or output argument for a C
or C++ replacement function. Implementation
arguments observe C/C++ name and data type
specifications.

Implementation representation Specifies C or C++ replacement function prototype.
Consists of:

• Function name (for example, 'cos_dbl' or
'u8_add_u8_u8')

• Implementation arguments specifying type,
type qualifiers, and complexity for the function
inputs and output

• Parameters that provide build information, such
as header and source file names and paths of
build resources and compile and link flags

Key A string that identifies a function or operator
that is being replaced. A function name or key
appears in the conceptual representation of a code
replacement entry. The key RTW_OP_ADD identifies
the addition operator.

 Code Replacement Terminology

18-27

Term Definition

Priority Defines the match priority for a code replacement
entry relative to other entries, which have the
same name and conceptual argument list, within
a code replacement library. The priority can
range from 0 to 100, with 0 being the highest
priority. The default is 100. If a library provides
two implementations for a function or operator, the
implementation with the higher priority shadows
the one with the lower priority.

More About
• “What Is Code Replacement?”
• “Code Replacement Libraries”

18 Code Replacement for Simulink Models

18-28

Code Replacement Limitations

Code replacement verification — It is possible that code replacement behaves differently
than you expect. For example, data types that you observe in code generator input might
not match what the code generator uses as intermediate data types during an operation.
Verify code replacements by examining generated code.

Related Examples
• “Replace Code Generated from Simulink Models”

More About
• “Code You Can Replace From Simulink Models”
• “Code Replacement Libraries”

 Replace Code Generated from Simulink Models

18-29

Replace Code Generated from Simulink Models

This example shows how to replace generated code, using a code replacement library.
Code replacement is a technique you can use to change the code that the code generator
produces for functions and operators to meet application code requirements.

Prepare for Code Replacement

1 Make sure that MATLAB, Simulink, Simulink Coder, and a C compiler are installed
on your system. Some code replacement libraries available in your development
environment can also require Embedded Coder.

To install MathWorks products, see the MATLAB installation documentation. If
you have installed MATLAB and want to see which other MathWorks products are
installed, in the Command Window, enter ver .

2 Identify an existing or create a Simulink model for which you want the code
generator to replace code.

Choose a Code Replacement Library

If you are not sure which library to use, explore the available libraries.

Configure Code Generator To Use Code Replacement Library

1 Configure the code generator to apply a code replacement library during code
generation for the model. Do one of the following:

• In the Configuration Parameters dialog box, on the Code Generation >
Interface pane, select a library from the Code replacement library menu.

• Set the CodeReplacementLibrary parameter at the command line or
programmatically.

2 Configure the code generator to produce code only (not build an executable) so you
can verify your code replacements before building an executable. Do one of the
following:

• In the Configuration Parameters dialog box, on the Code Generation pane,
select Generate code only.

• Set the GenCodeOnly parameter at the command line or programmatically.

18 Code Replacement for Simulink Models

18-30

Include Code Replacement Information In Code Generation Report

If you have an Embedded Coder license, you can configure the code generator to include
a code replacement section in the code generation report. The additional information can
help you verify code replacements.

1 Configure the code generator to generate a report. In the Configuration Parameters
dialog box, on the Code Generation > Report pane, select Create code
generation report. Consider having the report open automatically. Select Open
report automatically.

2 Include the code replacement section in the report. On the Code Generation >
Report pane, select Summarize which blocks triggered code replacements.

Generate Replacement Code

Generate C/C++ code from the model and, if you configured the code generator
accordingly, a code generation report. For example, on the Code Generation > General
pane, click Generate Code.

The code generator produces the code and displays the report.

Verify Code Replacements

Verify code replacements by examining the generated code. It is possible that code
replacement behaves differently than you expect. For example, data types that you
observe in the code generator input might not match what the code generator uses as
intermediate data types during an operation.

Related Examples
• “Choose a Code Replacement Library”
• “Code Generation Configuration”
• “Verify Code Replacements”

More About
• “Code replacement library”
• “Generate code only”
• “Create code generation report”
• “Open report automatically”

 Replace Code Generated from Simulink Models

18-31

• “Summarize which blocks triggered code replacements”
• “What Is Code Replacement?”
• “Code You Can Replace From Simulink Models”
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Limitations”

External Web Sites
• Supported Compilers

http://www.mathworks.com/support/compilers/current_release/

18 Code Replacement for Simulink Models

18-32

Choose a Code Replacement Library

In this section...

“About Choosing a Code Replacement Library” on page 18-32
“Explore Available Code Replacement Libraries” on page 18-32
“Explore Code Replacement Library Contents” on page 18-32

About Choosing a Code Replacement Library

By default, the code generator does not use a code replacement library.

If you are considering using a code replacement library:

1 Explore available libraries. Identify one that best meets your application needs.

• Consider the lists of application code replacement requirements and libraries that
MathWorks provides in “What Is Code Replacement?”.

• See “Explore Available Code Replacement Libraries”.
2 Explore the contents of the library. See “Explore Code Replacement Library

Contents”.

If you do not find a suitable library and you have an Embedded Coder license, you can
create a custom code replacement library.

Explore Available Code Replacement Libraries

You can select the code replacement library to use for code generation on the Code
Generation > Interface pane in the Configuration Parameters dialog box. To view
a description of a library, select and hover your cursor over the library name. A tooltip
describes the library and lists the tables that it contains. The tooltip lists the tables in
the order that the code generator searches for a function or operator match.

Explore Code Replacement Library Contents

Use the Code Replacement Viewer to explore the content of a code replacement library.

1 At the command prompt, type crviewer.

 Choose a Code Replacement Library

18-33

>> crviewer

The viewer opens. To view the content of a specific library, specify the name of the
library as an argument in single quotes. For example:
>> crviewer('GNU C99 extensions')

2 In the left pane, select the name of a library. The viewer displays information about
the library in the right pane.

3 In the left pane, expand the library, explore the list of tables it contains, and select a
table from the list. In the middle pane, the viewer displays the function and operator
entries that are in that table, along with abbreviated information for each entry.

4 In the middle pane, select a function or operator. The viewer displays information
from the table entry in the right pane.

If you select an operator entry that specifies net slope fixed-point parameters
(instantiated from entry class RTW.TflCOperationEntryGenerator or
RTW.TflCOperationEntryGenerator_NetSlope), the viewer displays an
additional tab that shows fixed-point settings.

See Code Replacement Viewer for details on what the viewer displays.

Related Examples
• “Replace Code Generated from Simulink Models”

More About
• “What Is Code Replacement?”
• “Code You Can Replace From Simulink Models”
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Limitations”

Deployment

19

Desktops

19 Desktops

19-2

Shared Object Libraries

In this section...

“About Host-Based Shared Libraries” on page 19-2
“Generate Shared Library Version of Model Code” on page 19-3
“Create Application Code to Use Shared Library” on page 19-3
“Host-Based Shared Library Limitations” on page 19-7

About Host-Based Shared Libraries

The Embedded Coder product provides an ERT target, ert_shrlib.tlc, for generating
a host-based shared library from your Simulink model. Selecting this target allows you
to generate a shared library version of your model code for your host platform, either
a Windows dynamic link library (.dll) file or a UNIX shared object (.so) file. This
feature can be used to package your source code for easy distribution and shared use. The
generated .dll or .so file is shareable among different applications and upgradeable
without having to recompile the applications that use it.

Code generation for the ert_shrlib.tlc target exports

• Variables and signals of type ExportedGlobal as data
• Real-time model structure (model_M) as data
• Functions essential to executing your model code

To view a list of symbols contained in a generated shared library file, you can

• On Windows, use the Dependency Walker utility, downloadable from http://
www.dependencywalker.com

• On UNIX, use nm -D model.so

To generate and use a host-based shared library, you

1 Generate a shared library version of your model code
2 Create application code to load and use your shared library file

http://www.dependencywalker.com
http://www.dependencywalker.com

 Shared Object Libraries

19-3

Generate Shared Library Version of Model Code

This section summarizes the steps to generate a shared library version of your model
code.

1 To configure your model code for shared use by applications, open your model
and select the ert_shrlib.tlc target on the Code Generation pane of the
Configuration Parameters dialog box. Click OK.

Selecting the ert_shrlib.tlc target causes the build process to generate a shared
library version of your model code into your current working folder. The selection
does not change the code that is generated for your model.

2 Build the model.
3 After the build completes, you can examine the generated code in the model

subfolder, and the .dll file or .so file that has been generated into your current
folder.

Create Application Code to Use Shared Library

To illustrate how application code can load an ERT shared library file and access its
functions and data, MathWorks provides the model rtwdemo_shrlib. Clicking the blue
button in the model runs a script that:

1 Builds a shared library file from the model (for example,
rtwdemo_shrlib_win32.dll on 32-bit Windows)

2 Compiles and links an example application, rtwdemo_shrlib_app, that will load
and use the shared library file

3 Executes the example application

19 Desktops

19-4

Note: Change directory to a writable working folder before running the
rtwdemo_shrlib script.

The model uses the following example application files, which are located in
matlabroot/toolbox/rtw/rtwdemos/shrlib_demo.

File Description

rtwdemo_shrlib_app.h Example application header file
rtwdemo_shrlib_app.c Example application that loads and uses the

shared library file generated for the model
run_rtwdemo_shrlib_app.m Script to compile, link, and execute the example

application

You can view each of these files by clicking white buttons in the model window.
Additionally, running the script places the relevant source and generated code files in
your current folder. The files can be used as templates for writing application code for
your own ERT shared library files.

The following sections present key excerpts of the example application files.

Example Application Header File

The example application header file rtwdemo_shrlib_app.h contains type declarations
for the model's external input and output.
#ifndef _APP_MAIN_HEADER_

#define _APP_MAIN_HEADER_

typedef struct {

 int32_T Input;

} ExternalInputs_rtwdemo_shrlib;

typedef struct {

 int32_T Output;

} ExternalOutputs_rtwdemo_shrlib;

#endif /*_APP_MAIN_HEADER_*/

Example Application C Code

The example application rtwdemo_shrlib_app.c includes the following code for
dynamically loading the shared library file. Notice that, depending on platform, the code
invokes Windows or UNIX library commands.

 Shared Object Libraries

19-5

#if (defined(_WIN32)||defined(_WIN64)) /* WINDOWS */

#include <windows.h>

#define GETSYMBOLADDR GetProcAddress

#define LOADLIB LoadLibrary

#define CLOSELIB FreeLibrary

#else /* UNIX */

#include <dlfcn.h>

#define GETSYMBOLADDR dlsym

#define LOADLIB dlopen

#define CLOSELIB dlclose

#endif

int main()

{

 void* handleLib;

...

#if defined(_WIN64)

 handleLib = LOADLIB("./rtwdemo_shrlib_win64.dll");

#else

#if defined(_WIN32)

 handleLib = LOADLIB("./rtwdemo_shrlib_win32.dll");

#else /* UNIX */

 handleLib = LOADLIB("./rtwdemo_shrlib.so", RTLD_LAZY);

#endif

#endif

...

 return(CLOSELIB(handleLib));

}

The following code excerpt shows how the C application accesses the model's exported
data and functions. Notice the hooks for adding user-defined initialization, step, and
termination code.
 int32_T i;

 ...

 void (*mdl_initialize)(boolean_T);

 void (*mdl_step)(void);

 void (*mdl_terminate)(void);

 ExternalInputs_rtwdemo_shrlib (*mdl_Uptr);

 ExternalOutputs_rtwdemo_shrlib (*mdl_Yptr);

 uint8_T (*sum_outptr);

...

#if (defined(LCCDLL)||defined(BORLANDCDLL))

 /* Exported symbols contain leading underscores when DLL is linked with

 LCC or BORLANDC */

 mdl_initialize =(void(*)(boolean_T))GETSYMBOLADDR(handleLib ,

 "_rtwdemo_shrlib_initialize");

 mdl_step =(void(*)(void))GETSYMBOLADDR(handleLib ,

 "_rtwdemo_shrlib_step");

 mdl_terminate =(void(*)(void))GETSYMBOLADDR(handleLib ,

 "_rtwdemo_shrlib_terminate");

19 Desktops

19-6

 mdl_Uptr =(ExternalInputs_rtwdemo_shrlib*)GETSYMBOLADDR(handleLib ,

 "_rtwdemo_shrlib_U");

 mdl_Yptr =(ExternalOutputs_rtwdemo_shrlib*)GETSYMBOLADDR(handleLib ,

 "_rtwdemo_shrlib_Y");

 sum_outptr =(uint8_T*)GETSYMBOLADDR(handleLib , "_sum_out");

#else

 mdl_initialize =(void(*)(boolean_T))GETSYMBOLADDR(handleLib ,

 "rtwdemo_shrlib_initialize");

 mdl_step =(void(*)(void))GETSYMBOLADDR(handleLib ,

 "rtwdemo_shrlib_step");

 mdl_terminate =(void(*)(void))GETSYMBOLADDR(handleLib ,

 "rtwdemo_shrlib_terminate");

 mdl_Uptr =(ExternalInputs_rtwdemo_shrlib*)GETSYMBOLADDR(handleLib ,

 "rtwdemo_shrlib_U");

 mdl_Yptr =(ExternalOutputs_rtwdemo_shrlib*)GETSYMBOLADDR(handleLib ,

 "rtwdemo_shrlib_Y");

 sum_outptr =(uint8_T*)GETSYMBOLADDR(handleLib , "sum_out");

#endif

 if ((mdl_initialize && mdl_step && mdl_terminate && mdl_Uptr && mdl_Yptr &&

 sum_outptr)) {

 /* === user application initialization function === */

 mdl_initialize(1);

 /* insert other user defined application initialization code here */

 /* === user application step function === */

 for(i=0;i<=12;i++){

 mdl_Uptr->Input = i;

 mdl_step();

 printf("Counter out(sum_out): %d\tAmplifier in(Input): %d\tout(Output): %d\n",

 *sum_outptr, i, mdl_Yptr->Output);

 /* insert other user defined application step function code here */

 }

 /* === user application terminate function === */

 mdl_terminate();

 /* insert other user defined application termination code here */

 }

 else {

 printf("Cannot locate the specified reference(s) in the shared library.\n");

 return(-1);

 }

Example Application Script

The application script run_rtwdemo_shrlib_app loads and rebuilds the model, and
then compiles, links, and executes the model's shared library target file. You can view the
script source file by opening rtwdemo_shrlib and clicking a white button to view source
code. The script constructs platform-dependent command strings for compilation, linking,
and execution that may apply to your development environment. To run the script, click
the blue button.

 Shared Object Libraries

19-7

Note: To run the run_rtwdemo_shrlib_app script without first opening the
rtwdemo_shrlib model, change directory to a writable working folder and issue the
following MATLAB command:

addpath(fullfile(matlabroot,'toolbox','rtw','rtwdemos','shrlib_demo'))

Host-Based Shared Library Limitations

The following limitations apply to using ERT host-based shared libraries:

• Code generation for the ert_shrlib.tlc target exports only the following as data:

• Variables and signals of type ExportedGlobal
• Real-time model structure (model_M)

• Code generation for the ert_shrlib.tlc target supports the C language only (not C
++). When you select the ert_shrlib.tlc target, language selection is greyed out on
the Code Generation pane of the Configuration Parameters dialog box.

• On Windows systems, the ert_shrlib target by default does not generate or retain
the .lib file for implicit linking (explicit linking is preferred for portability).

You can change the default behavior and retain the .lib file by modifying the
corresponding template makefile (TMF). If you do this, the generated model.h file
needs a small modification to be used together with the generated ert_main.c
for implicit linking. For example, if you are using Visual C++, you need to declare
__declspec(dllimport) in front of data to be imported implicitly from the shared
library file.

• To reconstruct a model simulation using a generated host-based shared library, the
application author must maintain the timing between system and shared library
function calls in the original application. The timing needs to be consistent so that you
can check the simulation and integration results.

20

Real-Time and Embedded Systems

• “Standalone Programs (No Operating System)” on page 20-2
• “Operating System Integration” on page 20-21
• “Processor Support Packages” on page 20-22

20 Real-Time and Embedded Systems

20-2

Standalone Programs (No Operating System)

In this section...

“About Standalone Program Execution” on page 20-2
“Generate a Standalone Program” on page 20-2
“Standalone Program Components” on page 20-3
“Main Program” on page 20-3
“rt_OneStep and Scheduling Considerations” on page 20-4
“Static Main Program Module” on page 20-10
“Rate Grouping Compliance and Compatibility Issues” on page 20-17

About Standalone Program Execution

By default, the Embedded Coder software generates standalone programs that do not
require an external real-time executive or operating system. A standalone program
requires minimal modification to be adapted to the target hardware. The standalone
program architecture supports execution of models with either single or multiple sample
rates.

Generate a Standalone Program

To generate a standalone program:

1 In the Custom templates section of the Code Generation > Templates pane
of the Configuration Parameters dialog box, select the Generate an example
main program option (which is on by default). This enables the Target operating
system menu.

2 From the Target operating system menu, select BareBoardExample (the default
selection).

3 Generate the code.

Different code is generated for multirate models depending on the following factors:

• Whether the model executes in single-tasking or multitasking mode.
• Whether or not reusable code is being generated.

 Standalone Programs (No Operating System)

20-3

These factors affect the scheduling algorithms used in generated code, and in some cases
affect the API for the model entry point functions. The following sections discuss these
variants.

Standalone Program Components

The core of a standalone program is the main loop. On each iteration, the main loop
executes a background or null task and checks for a termination condition.

The main loop is periodically interrupted by a timer. The function rt_OneStep is either
installed as a timer interrupt service routine (ISR), or called from a timer ISR at each
clock step.

The execution driver, rt_OneStep, sequences calls to the model_step functions. The
operation of rt_OneStep differs depending on whether the generating model is single-
rate or multirate. In a single-rate model, rt_OneStep simply calls the model_step
function. In a multirate model, rt_OneStep prioritizes and schedules execution of blocks
according to the rates at which they run.

Main Program

• “Overview of Operation” on page 20-3
• “Guidelines for Modifying the Main Program” on page 20-4

Overview of Operation

The following pseudocode shows the execution of a main program.

main()

{

 Initialization (including installation of rt_OneStep as an

 interrupt service routine for a real-time clock)

 Initialize and start timer hardware

 Enable interupts

 While(not Error) and (time < final time)

 Background task

 EndWhile

 Disable interrupts (Disable rt_OneStep from executing)

 Complete any background tasks

 Shutdown

}

20 Real-Time and Embedded Systems

20-4

The pseudocode is a design for a harness program to drive your model. The main
program only partially implements this design. You must modify it according to your
specifications.

Guidelines for Modifying the Main Program

This section describes the minimal modifications you should make in your production
version of the main program module to implement your harness program.

1 Call model_initialize.
2 Initialize target-specific data structures and hardware, such as ADCs or DACs.
3 Install rt_OneStep as a timer ISR.
4 Initialize timer hardware.
5 Enable timer interrupts and start the timer.

Note rtModel is not in a valid state until model_initialize has been called.
Servicing of timer interrupts should not begin until model_initialize has been
called.

6 Optionally, insert background task calls in the main loop.
7 On termination of the main loop (if applicable):

• Disable timer interrupts.
• Perform target-specific cleanup such as zeroing DACs.
• Detect and handle errors. Note that even if your program is designed to run

indefinitely, you may need to handle severe error conditions, such as timer
interrupt overruns.

You can use the macros rtmGetErrorStatus and rtmSetErrorStatus to
detect and signal errors.

rt_OneStep and Scheduling Considerations

• “Overview of Operation” on page 20-5
• “Single-Rate Single-Tasking Operation” on page 20-5
• “Multirate Multitasking Operation” on page 20-6
• “Multirate Single-Tasking Operation” on page 20-8
• “Guidelines for Modifying rt_OneStep” on page 20-9

 Standalone Programs (No Operating System)

20-5

Overview of Operation

The operation of rt_OneStep depends upon

• Whether your model is single-rate or multirate. In a single-rate model, the sample
times of all blocks in the model, and the model's fixed step size, are the same. A
model in which the sample times and step size do not meet these conditions is termed
multirate.

• Your model's solver mode (SingleTasking versus MultiTasking)

Permitted Solver Modes for Embedded Coder Targeted Models summarizes the permitted
solver modes for single-rate and multirate models. Note that for a single-rate model, only
SingleTasking solver mode is allowed.

Permitted Solver Modes for Embedded Coder Targeted Models

Mode Single-Rate Multirate

SingleTasking Allowed Allowed
MultiTasking Disallowed Allowed
Auto Allowed

(defaults to
SingleTasking)

Allowed

(defaults to MultiTasking)

The generated code for rt_OneStep (and associated timing data structures and support
functions) is tailored to the number of rates in the model and to the solver mode. The
following sections discuss each possible case.

Single-Rate Single-Tasking Operation

The only valid solver mode for a single-rate model is SingleTasking. Such models run
in “single-rate” operation.

The following pseudocode shows the design of rt_OneStep in a single-rate program.

rt_OneStep()

{

 Check for interrupt overflow or other error

 Enable "rt_OneStep" (timer) interrupt

 Model_Step() -- Time step combines output,logging,update

}

For the single-rate case, the generated model_step function is

20 Real-Time and Embedded Systems

20-6

void model_step(void)

Single-rate rt_OneStep is designed to execute model_step within a single clock period.
To enforce this timing constraint, rt_OneStep maintains and checks a timer overrun
flag. On entry, timer interrupts are disabled until the overrun flag and other error
conditions have been checked. If the overrun flag is clear, rt_OneStep sets the flag, and
proceeds with timer interrupts enabled.

The overrun flag is cleared only upon successful return from model_step. Therefore,
if rt_OneStep is reinterrupted before completing model_step, the reinterruption is
detected through the overrun flag.

Reinterruption of rt_OneStep by the timer is an error condition. If this condition is
detected rt_OneStep signals an error and returns immediately. (Note that you can
change this behavior if you want to handle the condition differently.)

Note that the design of rt_OneStep assumes that interrupts are disabled before
rt_OneStep is called. rt_OneStep should be noninterruptible until the interrupt
overflow flag has been checked.

Multirate Multitasking Operation

In a multirate multitasking system, code generation uses a prioritized, preemptive
multitasking scheme to execute the different sample rates in your model.

The following pseudocode shows the design of rt_OneStep in a multirate multitasking
program.

rt_OneStep()

{

 Check for base-rate interrupt overrun

 Enable "rt_OneStep" interrupt

 Determine which rates need to run this time step

 Model_Step0() -- run base-rate time step code

 For N=1:NumTasks-1 -- iterate over sub-rate tasks

 If (sub-rate task N is scheduled)

 Check for sub-rate interrupt overrun

 Model_StepN() -- run sub-rate time step code

 EndIf

 EndFor

}

 Standalone Programs (No Operating System)

20-7

Task Identifiers

The execution of blocks having different sample rates is broken into tasks. Each block
that executes at a given sample rate is assigned a task identifier (tid), which associates
it with a task that executes at that rate. Where there are NumTasks tasks in the system,
the range of task identifiers is 0..NumTasks-1.
Prioritization of Base-Rate and Subrate Tasks

Tasks are prioritized, in descending order, by rate. The base-rate task is the task that
runs at the fastest rate in the system (the hardware clock rate). The base-rate task has
highest priority (tid 0). The next fastest task (tid 1) has the next highest priority, and
so on down to the slowest, lowest priority task (tid NumTasks-1).

The slower tasks, running at multiples of the base rate, are called subrate tasks.
Rate Grouping and Rate-Specific model_step Functions

In a single-rate model, the block output computations are performed within a single
function, model_step. For multirate, multitasking models, the code generator tries to
use a different strategy. This strategy is called rate grouping. Rate grouping generates
separate model_step functions for the base rate task and each subrate task in the
model. The function naming convention for these functions is

model_stepN

where N is a task identifier. For example, for a model named my_model that has three
rates, the following functions are generated:

void my_model_step0 (void);

void my_model_step1 (void);

void my_model_step2 (void);

Each model_stepN function executes the blocks sharing tid N; in other words, the
block code that executes within task N is grouped into the associated model_stepN
function.
Scheduling model_stepN Execution

On each clock tick, rt_OneStep maintains scheduling counters and event flags for each
subrate task. The counters are implemented as taskCounter arrays indexed on tid.
The event flags are implemented as arrays indexed on tid.

The scheduling counters and task flags for sub-rates are maintained by rt_OneStep.
The scheduling counters are basically clock rate dividers that count up the sample period

20 Real-Time and Embedded Systems

20-8

associated with each sub-rate task. A pair of tasks that exchanges data maintains an
interaction flag at the faster rate. Task interaction flags indicate that both fast and slow
tasks are scheduled to run.

The event flags indicate whether or not a given task is scheduled for execution.
rt_OneStep maintains the event flags based on a task counter that is maintained by
code in the main program module for the model. When a counter indicates that a task's
sample period has elapsed, the main code sets the event flag for that task.

On each invocation, rt_OneStep updates its scheduling data structures and steps
the base-rate task (rt_OneStep calls model_step0 because the base-rate task must
execute on every clock step). Then, rt_OneStep iterates over the scheduling flags in tid
order, unconditionally calling model_stepN for any task whose flag is set. The tasks are
executed in order of priority.

Preemption

Note that the design of rt_OneStep assumes that interrupts are disabled before
rt_OneStep is called. rt_OneStep should be noninterruptible until the base-rate
interrupt overflow flag has been checked (see pseudocode above).

The event flag array and loop variables used by rt_OneStep are stored as local (stack)
variables. Therefore, rt_OneStep is reentrant. If rt_OneStep is reinterrupted, higher
priority tasks preempt lower priority tasks. Upon return from interrupt, lower priority
tasks resume in the previously scheduled order.

Overrun Detection

Multirate rt_OneStep also maintains an array of timer overrun flags. rt_OneStep
detects timer overrun, per task, by the same logic as single-rate rt_OneStep.

Note If you have developed multirate S-functions, or if you use a customized static main
program module, see “Rate Grouping Compliance and Compatibility Issues” on page
20-17 for information about how to adapt your code for rate grouping compatibility.
This adaptation lets your multirate, multitasking models generate more efficient code.

Multirate Single-Tasking Operation

In a multirate single-tasking program, by definition, sample times in the model must be
an integer multiple of the model's fixed-step size.

 Standalone Programs (No Operating System)

20-9

In a multirate single-tasking program, blocks execute at different rates, but under the
same task identifier. The operation of rt_OneStep, in this case, is a simplified version
of multirate multitasking operation. Rate grouping is not used. The only task is the base-
rate task. Therefore, only one model_step function is generated:

void model_step(void)

On each clock tick, rt_OneStep checks the overrun flag and calls model_step. The
scheduling function for a multirate single-tasking program is rate_scheduler (rather
than rate_monotonic_scheduler). The scheduler maintains scheduling counters on
each clock tick. There is one counter for each sample rate in the model. The counters are
implemented in an array (indexed on tid) within the Timing structure within rtModel.

The counters are clock rate dividers that count up the sample period associated with each
subrate task. When a counter indicates that a sample period for a given rate has elapsed,
rate_scheduler clears the counter. This condition indicates that blocks running at that
rate should execute on the next call to model_step, which is responsible for checking the
counters.

Guidelines for Modifying rt_OneStep

rt_OneStep does not require extensive modification. The only required modification is
to reenable interrupts after the overrun flags and error conditions have been checked. If
applicable, you should also

• Save and restore your FPU context on entry and exit to rt_OneStep.
• Set model inputs associated with the base rate before calling model_step0.
• Get model outputs associated with the base rate after calling model_step0.

Note: If you modify rt_OneStep to read a value from a continuous output port after
each base-rate model step, see the relevant cautionary guideline below.

• In a multirate, multitasking model, set model inputs associated with subrates before
calling model_stepN in the subrate loop.

• In a multirate, multitasking model, get model outputs associated with subrates after
calling model_stepN in the subrate loop.

Comments in rt_OneStep indicate the place to add your code.

In multirate rt_OneStep, you can improve performance by unrolling for and while
loops.

20 Real-Time and Embedded Systems

20-10

In addition, you may choose to modify the overrun behavior to continue execution after
error recovery is complete.

Also observe the following cautionary guidelines:

• You should not modify the way in which the counters, event flags, or other timing
data structures are set in rt_OneStep, or in functions called from rt_OneStep. The
rt_OneStep timing data structures (including rtModel) and logic are critical to the
operation of the generated program.

• If you have customized the main program module to read model outputs after each
base-rate model step, be aware that selecting model options Support: continuous
time and Single output/update function together may cause output values read
from main for a continuous output port to differ slightly from the corresponding
output values in the model's logged data. This is because, while logged data is a
snapshot of output at major time steps, output read from main after the base-
rate model step potentially reflects intervening minor time steps. To eliminate the
discrepancy, either separate the generated output and update functions (clear the
Single output/update function option) or place a Zero-Order Hold block before the
continuous output port.

Static Main Program Module

• “Overview” on page 20-10
• “Rate Grouping and the Static Main Program” on page 20-11
• “Modify the Static Main Program” on page 20-13
• “Modify Static Main to Allocate and Access Model Instance Data” on page 20-14

Overview

In most cases, the easiest strategy for deploying generated code is to use the Generate
an example main program option to generate the ert_main.c or .cpp module (see
“Generate a Standalone Program” on page 20-2).

However, if you turn the Generate an example main program option off, you can
use a static main module as an example or template for developing your embedded
applications. Static main modules provided by MathWorks include:

• matlabroot/rtw/c/src/common/rt_main.c — Supports Nonreusable
function code interface packaging.

 Standalone Programs (No Operating System)

20-11

• matlabroot/rtw/c/src/common/rt_malloc_main.c — Supports Reusable
function code interface packaging. The model option Use dynamic memory
allocation for model initialization must be on and model parameter Pass root-
level I/O as must be set to Part of model data structure.

• matlabroot/rtw/c/src/common/rt_cppclass_main.cpp — Supports C++
class code interface packaging.

The static main module is not part of the generated code; it is provided as a basis for
your custom modifications, and for use in simulation. If your existing applications
depend upon a static ert_main.c (developed in releases before R2012b), rt_main.c,
rt_malloc_main.c, or rt_cppclass_main.cpp, you may need to continue using a
static main program module.

When developing applications using a static main module, you should copy the module to
your working folder and rename it before making modifications. For example, you could
rename rt_main.c to model_rt_main.c. Also, you must modify the template makefile
or toolchain settings such that the build process creates a corresponding object file, such
as model_rt_main.obj (on UNIX, model_rt_main.o), in the build folder.

The static main module contains

• rt_OneStep, a timer interrupt service routine (ISR). rt_OneStep calls model_step
to execute processing for one clock period of the model.

• A skeletal main function. As provided, main is useful in simulation only. You must
modify main for real-time interrupt-driven execution.

For single-rate models, the operation of rt_OneStep and the main function are
essentially the same in the static main module as they are in the autogenerated version
described in “About Standalone Program Execution” on page 20-2. For multirate,
multitasking models, however, the static and generated code are slightly different. The
next section describes this case.

Rate Grouping and the Static Main Program

Targets based on the ERT target sometimes use a static main module and disallow use of
the Generate an example main program option. This is done because target-specific
modifications have been added to the static main module, and these modifications would
not be preserved if the main program were regenerated.

Your static main module may or may not use rate grouping compatible model_stepN
functions. If your main module is based on the static rt_main.c, rt_malloc_main.c,

20 Real-Time and Embedded Systems

20-12

or rt_cppclass_main.cpp module, it does not use rate-specific model_stepN function
calls. It uses the old-style model_step function, passing in a task identifier:

void model_step(int_T tid);

By default, when the Generate an example main program option is off, the ERT
target generates a model_step “wrapper” for multirate, multitasking models. The
purpose of the wrapper is to interface the rate-specific model_stepN functions to the
old-style call. The wrapper code dispatches to the model_stepN call with a switch
statement, as in the following example:

void mymodel_step(int_T tid) /* Sample time: */

{

 switch(tid) {

 case 0 :

 mymodel_step0();

 break;

 case 1 :

 mymodel_step1();

 break;

 case 2 :

 mymodel_step2();

 break;

 default :

 break;

 }

}

The following pseudocode shows how rt_OneStep calls model_step from the static
main program in a multirate, multitasking model.

rt_OneStep()

{

 Check for base-rate interrupt overflow

 Enable "rt_OneStep" interrupt

 Determine which rates need to run this time step

 ModelStep(tid=0) --base-rate time step

 For N=1:NumTasks-1 -- iterate over sub-rate tasks

 Check for sub-rate interrupt overflow

 If (sub-rate task N is scheduled)

 ModelStep(tid=N) --sub-rate time step

 Standalone Programs (No Operating System)

20-13

 EndIf

 EndFor

}

You can use the TLC variable RateBasedStepFcn to specify that only the rate-based
step functions are generated, without the wrapper function. If your target calls the rate
grouping compatible model_stepN function directly, set RateBasedStepFcn to 1. In
this case, the wrapper function is not generated.

You should set RateBasedStepFcn prior to the %include "codegenentry.tlc"
statement in your system target file. Alternatively, you can set RateBasedStepFcn in
your target_settings.tlc file.

Modify the Static Main Program

As with the generated ert_main.c or .cpp, you should make a few modifications to the
main loop and rt_OneStep. See “Guidelines for Modifying the Main Program” on page
20-4 and “Guidelines for Modifying rt_OneStep” on page 20-9.

Also, you should replace the rt_OneStep call in the main loop with a background task
call or null statement.

Other modifications you may need to make are

• If applicable, follow comments in the code regarding where to add code for reading/
writing model I/O and saving/restoring FPU context.

Note: If you modify rt_main.c, rt_malloc_main.c, or rt_cppclass_main.cpp
to read a value from a continuous output port after each base-rate model step, see
the relevant cautionary guideline in “Guidelines for Modifying rt_OneStep” on page
20-9.

• When the Generate an example main program option is off, rtmodel.h is
generated to provide an interface between the main module and generated model
code. If you create your own static main program module, you would normally include
rtmodel.h.

Alternatively, you can suppress generation of rtmodel.h, and include model.h
directly in your main module. To suppress generation of rtmodel.h, use the following
statement in your system target file:

%assign AutoBuildProcedure = 0

20 Real-Time and Embedded Systems

20-14

• If you have cleared the Terminate function required option, remove or comment
out the following in your production version of rt_main.c, rt_malloc_main.c, or
rt_cppclass_main.cpp:

• The #if TERMFCN... compile-time error check
• The call to MODEL_TERMINATE

• For rt_main.c (not applicable to rt_cppclass_main.cpp): If you do not want to
combine output and update functions, clear the Single output/update function
option and make the following changes in your production version of rt_main.c:

• Replace calls to MODEL_STEP with calls to MODEL_OUTPUT and MODEL_UPDATE.
• Remove the #if ONESTEPFCN... error check.

• The static rt_main.c module does not support Reusable function code interface
packaging. The following error check raises a compile-time error if Reusable
function code interface packaging is used illegally.

#if MULTI_INSTANCE_CODE==1

Modify Static Main to Allocate and Access Model Instance Data

If you are using a static main program module, and your model is configured for
Reusable function code interface packaging, but the model option Use dynamic
memory allocation for model initialization is not selected, model instance data must
be allocated either statically or dynamically by the calling main code. Pointers to the
individual model data structures (such as Block IO, DWork, and Parameters) must be set
up in the top-level real-time model data structure.

To support main modifications, the build process generates a subset of the following real-
time model (RTM) macros, based on the data requirements of your model, into model.h.

RTM Macro Syntax Description

rtmGetBlockIO(rtm) Get the block I/O data structure
rtmSetBlockIO(rtm,val) Set the block I/O data structure
rtmGetContStates(rtm) Get the continuous states data structure
rtmSetContStates(rtm,val) Set the continuous states data structure
rtmGetDefaultParam(rtm) Get the default parameters data structure
rtmSetDefaultParam(rtm,val)Set the default parameters data structure
rtmGetPrevZCSigState(rtm) Get the previous zero-crossing signal state data structure

 Standalone Programs (No Operating System)

20-15

RTM Macro Syntax Description

rtmSetPrevZCSigState(rtm,val)Set the previous zero-crossing signal state data structure
rtmGetRootDWork(rtm) Get the DWork data structure
rtmSetRootDWork(rtm,val) Set the DWork data structure
rtmGetU(rtm) Get the root inputs data structure (when root inputs are passed

as part of the model data structure)
rtmSetU(rtm,val) Set the root inputs data structure (when root inputs are passed

as part of the model data structure)
rtmGetY(rtm) Get the root outputs data structure (when root outputs are

passed as part of the model data structure)
rtmSetY(rtm,val) Set the root outputs data structure (when root outputs are

passed as part of the model data structure)

Use these macros in your static main program to access individual model data structures
within the RTM data structure. For example, suppose that the example model
rtwdemo_reusable is configured with Reusable function code interface packaging,
Use dynamic memory allocation for model initialization cleared, Pass root-level
I/O as set to Individual arguments, and Optimization pane option Remove root
level I/O zero initialization cleared. Building the model generates the following model
data structures and model entry-points into rtwdemo_reusable.h:
/* Block states (auto storage) for system '<Root>' */

typedef struct {

 real_T Delay_DSTATE; /* '<Root>/Delay' */

} D_Work;

/* Parameters (auto storage) */

struct Parameters_ {

 real_T k1; /* Variable: k1

 * Referenced by: '<Root>/Gain'

 */

};

/* Real-time Model Data Structure */

struct tag_RTM {

 /*

 * ModelData:

 * The following substructure contains information regarding

 * the data used in the model.

 */

 struct {

 Parameters *defaultParam;

 D_Work *dwork;

 } ModelData;

20 Real-Time and Embedded Systems

20-16

};

/* Model entry point functions */

extern void rtwdemo_reusable_initialize(RT_MODEL *const rtM, real_T *rtU_In1,

 real_T *rtU_In2, real_T *rtY_Out1);

extern void rtwdemo_reusable_step(RT_MODEL *const rtM, real_T rtU_In1, real_T

 rtU_In2, real_T *rtY_Out1);

Additionally, if Generate an example main program is not selected for the model,
rtwdemo_reusable.h contains definitions for the RTM macros rtmGetDefaultParam,
rtmsetDefaultParam, rtmGetRootDWork, and rtmSetRootDWork.

Also, for reference, the generated rtmodel.h file contains an example parameter
definition with initial values (non-executing code):
#if 0

/* Example parameter data definition with initial values */

static Parameters rtP = {

 2.0 /* Variable: k1

 * Referenced by: '<Root>/Gain'

 */

}; /* Modifiable parameters */

#endif

In the definitions section of your static main file, you could use the following code
to statically allocate the real-time model data structures and arguments for the
rtwdemo_reusable model:
static RT_MODEL rtM_;

static RT_MODEL *const rtM = &rtM_; /* Real-time model */

static Parameters rtP = {

 2.0 /* Variable: k1

 * Referenced by: '<Root>/Gain'

 */

}; /* Modifiable parameters */

static D_Work rtDWork; /* Observable states */

/* '<Root>/In1' */

static real_T rtU_In1;

/* '<Root>/In2' */

static real_T rtU_In2;

/* '<Root>/Out1' */

static real_T rtY_Out1;

In the body of your main function, you could use the following RTM macro calls to set up
the model parameters and DWork data in the real-time model data structure:

 Standalone Programs (No Operating System)

20-17

int_T main(int_T argc, const char *argv[])

{

...

/* Pack model data into RTM */

rtmSetDefaultParam(rtM, &rtP);

rtmSetRootDWork(rtM, &rtDWork);

/* Initialize model */

rtwdemo_reusable_initialize(rtM, &rtU_In1, &rtU_In2, &rtY_Out1);

...

}

Follow a similar approach to set up multiple instances of model data, where the real-time
model data structure for each instance has its own data. In particular, the parameter
structure (rtP) should be initialized, for each instance, to the desired values, either
statically as part of the rtP data definition or at run time.

Rate Grouping Compliance and Compatibility Issues

• “Main Program Compatibility” on page 20-17
• “Make Your S-Functions Rate Grouping Compliant” on page 20-17

Main Program Compatibility

When the Generate an example main program option is off, code generation produces
slightly different rate grouping code, for compatibility with the older static ert_main.c
module. See “Rate Grouping and the Static Main Program” on page 20-11 for details.

Make Your S-Functions Rate Grouping Compliant

Built-in Simulink blocks, as well as DSP System Toolbox blocks, are compliant with
the requirements for generating rate grouping code. However, user-written multirate
inlined S-functions may not be rate grouping compliant. Noncompliant blocks generate
less efficient code, but are otherwise compatible with rate grouping. To take full
advantage of the efficiency of rate grouping, your multirate inlined S-functions must be
upgraded to be fully rate grouping compliant. You should upgrade your TLC S-function
implementations, as described in this section.

Use of noncompliant multirate blocks to generate rate-grouping code generates dead
code. This can cause two problems:

• Reduced code efficiency.

20 Real-Time and Embedded Systems

20-18

• Warning messages issued at compile time. Such warnings are caused when dead code
references temporary variables before initialization. Since the dead code does not run,
this problem does not affect the run-time behavior of the generated code.

To make your S-functions rate grouping compliant, you can use the following TLC
functions to generate ModelOutputs and ModelUpdate code, respectively:

OutputsForTID(block, system, tid)

UpdateForTID(block, system, tid)

The code listings below illustrate generation of output computations without rate
grouping (Listing 1) and with rate grouping (Listing 2). Note the following:

• The tid argument is a task identifier (0..NumTasks-1).
• Only code guarded by the tid passed in to OutputsForTID is generated. The if

(%<LibIsSFcnSampleHit(portName)>) test is not used in OutputsForTID.
• When generating rate grouping code, OutputsForTID and/or UpdateForTID is

called during code generation. When generating non-rate-grouping code, Outputs
and/or Update is called.

• In rate grouping compliant code, the top-level Outputs and/or Update functions call
OutputsForTID and/or UpdateForTID functions for each rate (tid) involved in the
block. The code returned by OutputsForTID and/or UpdateForTID must be guarded
by the corresponding tid guard:

if (%<LibIsSFcnSampleHit(portName)>)

as in Listing 2.

Listing 1: Outputs Code Generation Without Rate Grouping

%% multirate_blk.tlc

%implements "multirate_blk" "C"

%% Function: mdlOutputs ===

%% Abstract:

%%

%% Compute the two outputs (input signal decimated by the

%% specified parameter). The decimation is handled by sample times.

%% The decimation is only performed if the block is enabled.

%% Each ports has a different rate.

%%

%% Note, the usage of the enable should really be protected such that

%% Neach task has its own enable state. In this example, the enable

%% occurs immediately which may or may not be the expected behavior.

 Standalone Programs (No Operating System)

20-19

%%

 %function Outputs(block, system) Output

 /* %<Type> Block: %<Name> */

 %assign enable = LibBlockInputSignal(0, "", "", 0)

 {

 int_T *enabled = &%<LibBlockIWork(0, "", "", 0)>;

 %if LibGetSFcnTIDType("InputPortIdx0") == "continuous"

 %% Only check the enable signal on a major time step.

 if (%<LibIsMajorTimeStep()> && ...

 %<LibIsSFcnSampleHit("InputPortIdx0")>) {

 *enabled = (%<enable> > 0.0);

 }

 %else

 if (%<LibIsSFcnSampleHit("InputPortIdx0")>) {

 *enabled = (%<enable> > 0.0);

 }

 %endif

 if (*enabled) {

 %assign signal = LibBlockInputSignal(1, "", "", 0)

 if (%<LibIsSFcnSampleHit("OutputPortIdx0")>) {

 %assign y = LibBlockOutputSignal(0, "", "", 0)

 %<y> = %<signal>;

 }

 if (%<LibIsSFcnSampleHit("OutputPortIdx1")>) {

 %assign y = LibBlockOutputSignal(1, "", "", 0)

 %<y> = %<signal>;

 }

 }

 }

 %endfunction

%% [EOF] sfun_multirate.tlc

Listing 2: Outputs Code Generation With Rate Grouping

%% example_multirateblk.tlc

%implements "example_multirateblk" "C"

 %% Function: mdlOutputs ===

 %% Abstract:

 %%

 %% Compute the two outputs (the input signal decimated by the

 %% specified parameter). The decimation is handled by sample times.

 %% The decimation is only performed if the block is enabled.

 %% All ports have different sample rate.

 %%

 %% Note: the usage of the enable should really be protected such that

 %% each task has its own enable state. In this example, the enable

 %% occurs immediately which may or may not be the expected behavior.

 %%

 %function Outputs(block, system) Output

20 Real-Time and Embedded Systems

20-20

 %assign portIdxName = ["InputPortIdx0","OutputPortIdx0","OutputPortIdx1"]

 %assign portTID = [%<LibGetGlobalTIDFromLocalSFcnTID("InputPortIdx0")>, ...

 %<LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx0")>, ...

 %<LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx1")>]

 %foreach i = 3

 %assign portName = portIdxName[i]

 %assign tid = portTID[i]

 if (%<LibIsSFcnSampleHit(portName)>) {

 %<OutputsForTID(block,system,tid)>

 }

 %endforeach

 %endfunction

 %function OutputsForTID(block, system, tid) Output

 /* %<Type> Block: %<Name> */

 %assign enable = LibBlockInputSignal(0, "", "", 0)

 %assign enabled = LibBlockIWork(0, "", "", 0)

 %assign signal = LibBlockInputSignal(1, "", "", 0)

 %switch(tid)

 %case LibGetGlobalTIDFromLocalSFcnTID("InputPortIdx0")

 %if LibGetSFcnTIDType("InputPortIdx0") == "continuous"

 %% Only check the enable signal on a major time step.

 if (%<LibIsMajorTimeStep()>) {

 %<enabled> = (%<enable> > 0.0);

 }

 %else

 %<enabled> = (%<enable> > 0.0);

 %endif

 %break

 %case LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx0")

 if (%<enabled>) {

 %assign y = LibBlockOutputSignal(0, "", "", 0)

 %<y> = %<signal>;

 }

 %break

 %case LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx1")

 if (%<enabled>) {

 %assign y = LibBlockOutputSignal(1, "", "", 0)

 %<y> = %<signal>;

 }

 %break

 %default

 %% error it out

 %endswitch

 %endfunction

%% [EOF] sfun_multirate.tlc

 Operating System Integration

20-21

Operating System Integration

Embedded Coder supports integration for Linux, Texas Instruments™ DSP/BIOS™, and
Wind River VxWorks. For details, see “Embedded Systems”.

20 Real-Time and Embedded Systems

20-22

Processor Support Packages

Embedded Coder supports integration for specific processors. For details, see “Embedded
Systems”.

21

Export Code Generated from Model
to External Application

• “Export Function-Call Subsystems” on page 21-2
• “Control Generation of Function Prototypes” on page 21-12
• “C++ Class Interface Control” on page 21-14

21 Export Code Generated from Model to External Application

21-2

Export Function-Call Subsystems

In this section...

“Exporting Function-Call Subsystems” on page 21-2
“Requirements for Exporting Function-Call Subsystems” on page 21-3
“Techniques for Exporting Function-Call Subsystems” on page 21-5
“Optimize Exported Function-Call Subsystems” on page 21-7
“Export Functions That Depend on Elapsed Time” on page 21-7
“Function-Call Subsystem Export” on page 21-8
“Function-Call Subsystems Export Limitations” on page 21-11

Exporting Function-Call Subsystems

Embedded Coder software provides code export capabilities that you can use to

• Automatically generate code for

• A function-call subsystem that contains only blocks that support code generation
• A virtual subsystem that contains only such subsystems and a few other types of

blocks
• Create a SIL block that represents the generated code

You can use these capabilities only if the subsystem and its interface to the Simulink
model conform to certain requirements and constraints, as described in “Requirements
for Exporting Function-Call Subsystems” on page 21-3. For limitations that apply,
see “Function-Call Subsystems Export Limitations” on page 21-11. To see an example
of exported function-call subsystems, type rtwdemo_exporting_functions in the
MATLAB Command Window.

Note: For models designed in earlier releases, Embedded Coder software also supports
the ability to export functions from triggered subsystems. In general, the requirements
and limitations stated for exporting functions from function-call subsystems also apply to
exporting functions from triggered subsystems, with the following exceptions:

• Triggered subsystems from which you intend to export functions must be
encapsulated in a single top-level virtual subsystem.

 Export Function-Call Subsystems

21-3

• Triggered subsystems do not have to meet the requirements in “Trigger Signals
Require a Common Source” on page 21-4 and “Requirements for Exported
Virtual Subsystems” on page 21-4.

• The section “Export Functions That Depend on Elapsed Time” on page 21-7 is
not applicable to exporting functions from triggered subsystems.

Additional Information

See the following in the Simulink documentation for additional information relating to
exporting function-call subsystems:

• “Systems and Subsystems”
• “Signals”
• “Create a Triggered Subsystem”
• “Function-Call Subsystems and S-Functions”
• “Host-Specific Code”

If you want to use Stateflow blocks to trigger exportable function-call subsystems, you
may also need information from “Interface with Simulink”.

Requirements for Exporting Function-Call Subsystems

To be exportable as code, a function-call subsystem, or a virtual subsystem that contains
such subsystems, must meet certain requirements. Most requirements are similar for
either type of export, but some apply only to virtual subsystems. The requirements for
Simulink code generation also apply.

For brevity, exported subsystem in this section means only an exported function-call
subsystem or an exported virtual subsystem that contains such subsystems. The
requirements listed do not necessarily apply to other types of exported subsystems.

Requirements for Exported Subsystems

These requirements apply to both exported function-call subsystems and exported virtual
subsystems that contain such subsystems.

21 Export Code Generated from Model to External Application

21-4

Blocks Must Support Code Generation

All blocks within an exported subsystem must support code generation. However, blocks
outside the subsystem need not support code generation unless they will be converted to
code in some other context.
Blocks Must Not Use Absolute Time

Certain blocks use absolute time. Blocks that use absolute time are not supported in
exported function-call subsystems. For a complete list of such blocks, see “Absolute Time
Limitations” in the Simulink Coder documentation.
Blocks Must Not Depend on Elapsed Time

Certain blocks, like the Sine Wave block and Discrete Integrator block, depend on
elapsed time. If an exported function-call subsystem contains a block that depends on
elapsed time, the subsystem must specify periodic execution. See “Export Functions That
Depend on Elapsed Time” on page 21-7 in the Simulink Coder documentation.
Trigger Signals Require a Common Source

If more than one trigger signal crosses the boundary of an exported system, all of the
trigger signals must be periodic and originate from the same function-call initiator.
Trigger Signals Must Be Scalar

A trigger signal that crosses the boundary of an exported subsystem must be scalar.
Input and output data signals that do not act as triggers need not be scalar.
Data Signals Must Be Nonvirtual

A data signal that crosses the boundary of an exported system cannot be a virtual bus,
and cannot be implemented as a Goto-From connection. Every data signal crossing the
export boundary must be scalar, muxed, or a nonvirtual bus.

Requirements for Exported Virtual Subsystems

These requirements apply only to exported virtual subsystems that contain function-call
subsystems.
Virtual Subsystem Must Use Only Permissible Blocks

The top level of an exported virtual subsystem that contains function-call subsystem
blocks can contain only the following other types of blocks:

• Input and Output blocks (ports)

 Export Function-Call Subsystems

21-5

• Constant blocks (including blocks that resolve to constants, such as Add)
• Merge blocks
• Virtual connection blocks (Mux, Demux, Bus Creator, Bus Selector, Signal

Specification)
• Signal-viewer blocks, such as Scope blocks

These restrictions do not apply within function-call subsystems, whether or not they
appear in a virtual subsystem. They apply only at the top level of an exported virtual
subsystem that contains one or more function-call subsystems.
Constant Blocks Must Be Inlined

When a constant block appears at the top level of an exported virtual subsystem, the
containing model must check Inline parameters on the Optimization > Signals and
Parameters pane of the Configuration Parameters dialog box.
Constant Outputs Must Specify a Storage Class

When a constant signal drives an output port of an exported virtual subsystem, the
signal must specify a storage class.

Techniques for Exporting Function-Call Subsystems

• “General Workflow” on page 21-5
• “Specify a Custom Initialize Function Name” on page 21-6
• “Specify a Custom Description” on page 21-6

General Workflow

To export a function-call subsystem, or a virtual subsystem that contains function-call
subsystems,

1 Check that the subsystem to be exported satisfies the “Requirements for Exporting
Function-Call Subsystems” on page 21-3.

2 In the Configuration Parameters dialog box:

a On the Code Generation pane, specify an ERT code generation target such as
ert.tlc.

b If you want a SIL block with the generated code, go to the Verification pane
and, from the Create block drop-down list, select SIL.

c Click OK or Apply.

21 Export Code Generated from Model to External Application

21-6

3 Right-click the subsystem block and choose C/C++ Code > Export Functions from
the context menu.

The Build code for subsystem: Subsystem dialog box appears. This dialog
box is not specific to exporting function-call subsystems, and generating code does
not require entering information in the box.

4 Click Build.

The MATLAB Command Window displays messages similar to the code generation
sequence. Simulink generates code and places it in the working folder.

If you set Create block to SIL in step 2b, Simulink opens a new window that
contains an S-function block that represents the generated code. This block has the
same size, shape, and connectors as the original subsystem.

Code generation and optional block creation are now complete. You can test and use the
code and optional block as you could for generated ERT code and S-function block.

Specify a Custom Initialize Function Name

You can specify a custom name for the initialize function of your exported function as an
argument to the rtwbuild command. When used for this purpose, the command takes
the following form:
blockHandle = rtwbuild('subsystem', 'Mode', 'ExportFunctionCalls',..

 ’ExportFunctionInitializeFunctionName’, ’fcnname’)

where fcnname specifies the desired function name. For example, if you specify the name
'myinitfcn', the build process emits code similar to the following:

/* Model initialize function */

void myinitfcn(void){

...

}

Specify a Custom Description

You can enter a custom description for an exported function using the Block Properties
dialog box of an Inport block. To do this, go to the subsystem that is to be exported as
a function, right-click on the Inport block that drives the control port of the subsystem,
and select Properties. In the General tab, use the Description field to enter your
descriptive text. During function export, the text you enter is emitted to the generated
code in the header for the Inport block. For example, if you open the example program

 Export Function-Call Subsystems

21-7

rtwdemo_exporting_functions and enter a description in the Block Properties dialog
box for port t_1tic_A, code similar to the following is emitted:

/*

 * Output and update for exported function: t_1tic_A

 *

 * My custom description of the exported function

*/

void t_1tic_A(void)

{

...

}

Optimize Exported Function-Call Subsystems

To optimize the code generated for a function-call subsystem or virtual block that
contains such subsystems, you can

• Specify a storage class for every input signal and output signal that crosses the
boundary of the subsystem.

• For each function-call subsystem to be exported (whether directly or within a virtual
subsystem):

1 Right-click the subsystem and choose Block Parameters (Subsystem) from the
context menu.

2 Select the Code Generation tab and set the Function packaging parameter to
Auto.

3 Click OK or Apply.

Export Functions That Depend on Elapsed Time

Some blocks, such as the Sine Wave block (if sample-based) and the Discrete-Time
Integrator block, depend on elapsed time. See “Absolute and Elapsed Time Computation”
in the Simulink Coder documentation for more information.

When a block that depends on elapsed time exists in a function-call subsystem, the
subsystem cannot be exported unless it specifies periodic execution. To specify for this:

1 Right-click the Trigger block in the function-call subsystem and choose Block
Parameters from the context menu.

2 Specify periodic in the Sample time type field.

21 Export Code Generated from Model to External Application

21-8

3 Set the Sample time to the same granularity specified (directly or by inheritance) in
the function-call initiator.

4 Click OK or Apply.

Function-Call Subsystem Export

This example shows a virtual subsystem that contains two function-call subsystems, and
the associated code that implements the virtual subsystem. The first figure shows the
top level of a model that uses a Stateflow chart named Chart to input two function-call
trigger signals (denoted by dash-dot lines) to a virtual subsystem named Subsystem.

The next figure shows the contents of Subsystem in the previous figure. The subsystem
contains two function-call subsystems, each driven by one of the signals input from the
top level.

 Export Function-Call Subsystems

21-9

In the preceding model, the Stateflow chart can assert either of two scalar signals,
Toggle and Select.

• Asserting Toggle toggles the Boolean state of the function-call subsystem Toggle
Output Subsystem.

• Asserting Select causes the function-call subsystem Select Input Subsystem
to assign the value of DataIn1 or DataIn2 to its output signal. The value assigned
depends on the current state of Toggle Output Subsystem.

The following generated code implements the subsystem named Subsystem. The code
is typical for virtual subsystems that contain function-call subsystems. It specifies an
initialization function and a function for each contained subsystem, and would also
include functions to enable and disable subsystems if applicable.
#include "Subsystem.h"

#include "Subsystem_private.h"

/* Exported block signals */

real_T DataIn1; /* '<Root>/In3' */

real_T DataIn2; /* '<Root>/In4' */

real_T DataOut; /* '<S4>/Switch' */

boolean_T SelectorSignal; /* '<S5>/Logical Operator' */

/* Exported block states */

boolean_T SelectorState; /* '<S5>/Unit Delay' */

/* Real-time model */

RT_MODEL_Subsystem Subsystem_M_;

RT_MODEL_Subsystem *Subsystem_M = &Subsystem_M_;

/* Initial conditions for exported function: Toggle */

void Toggle_Init(void)

{

 /* Initial conditions for function-call system: '<S1>/Toggle Output Subsystem' */

 /* InitializeConditions for UnitDelay: '<S5>/Unit Delay' */

 SelectorState = Subsystem_P.UnitDelay_X0;

}

/* Output and update for exported function: Toggle */

void Toggle(void)

{

 /* Output and update for function-call system: '<S1>/Toggle Output Subsystem' */

 /* Logic: '<S5>/Logical Operator' incorporates:

 * UnitDelay: '<S5>/Unit Delay'

 */

 SelectorSignal = !SelectorState;

21 Export Code Generated from Model to External Application

21-10

 /* Update for UnitDelay: '<S5>/Unit Delay' */

 SelectorState = SelectorSignal;

}

/* Output and update for exported function: Select */

void Select(void)

{

 /* Output and update for function-call system: '<S1>/Select Input Subsystem' */

 /* Switch: '<S4>/Switch' incorporates:

 * Inport: '<Root>/In3'

 * Inport: '<Root>/In4'

 */

 if(SelectorSignal) {

 DataOut = DataIn1;

 } else {

 DataOut = DataIn2;

 }

}

/* Model initialize function */

void Subsystem_initialize(void)

{

 /* initialize error status */

 rtmSetErrorStatus(Subsystem_M, (const char_T *)0);

 /* block I/O */

 /* exported global signals */

 DataOut = 0.0;

 SelectorSignal = FALSE;

 /* states (dwork) */

 /* exported global states */

 SelectorState = FALSE;

 /* external inputs */

 DataIn1 = 0.0;

 DataIn2 = 0.0;

 Toggle_Init();

}

/* Model terminate function */

void Subsystem_terminate(void)

{

 /* (no terminate code required) */

}

 Export Function-Call Subsystems

21-11

Function-Call Subsystems Export Limitations

The function-call subsystem export capabilities have the following limitations:

• Subsystem block parameters do not control the names of the files containing the
generated code. Such filenames begin with the name of the exported subsystem.

• Subsystem block parameters do not control the names of top-level functions in the
generated code. Each function name reflects the name of the signal that triggers the
function, or for an unnamed signal, the block from which the signal originates.

• The software cannot export reusable code for a function-call subsystem. The Code
interface packaging value Reusable function does not apply for a function-call
subsystem.

• The function-call subsystem export capability does not support C++ class code
interface packaging.

• The software supports a SIL or PIL block in Accelerator mode only if its function-call
initiator is noninlined in Accelerator mode. Examples of noninlined initiators include
Stateflow charts.

• The SIL block must be driven by a Level-2 S-function initiator block, such as a
Stateflow chart or the built-in Function-call Generator block.

• An asynchronous (sample-time) function-call system can be exported, but the software
does not support the SIL or PIL block wrapper for an asynchronous system.

• The software does not support MAT-file logging for exported function calls.
Specifications that enable MAT-file logging is ignored.

• The use of the TLC function LibIsFirstInit is deprecated for exported function
calls.

21 Export Code Generated from Model to External Application

21-12

Control Generation of Function Prototypes

The Embedded Coder software provides a Configure Model Functions button, located
on the Code Generation > Interface pane of the Configuration Parameters dialog box,
that allows you to control the model function prototypes that are generated for ERT-
based Simulink models.

By default, the function prototype of an ERT-based model's generated model_step
function resembles the following:

void model_step(void);

The function prototype of an ERT-based model's generated model_initialize function
resembles the following:

void model_initialize(void);

(For more detailed information about the default calling interface for the model_step
function, see the model_step reference page.)

The Configure Model Functions button on the Interface pane provides you flexible
control over the model function prototypes that are generated for your model. Clicking
Configure Model Functions launches a Model Interface dialog box. Based on the
Function specification value you specify for your model function (supported values
include Default model initialize and step functions and Model specific
C prototypes), you can preview and modify the function prototypes. Once you validate
and apply your changes, you can generate code based on your function prototype
modifications.

For more information about using the Configure Model Functions button and the
Model Interface dialog box, see “Sample Procedure for Configuring Function Prototypes”
and the example model rtwdemo_fcnprotoctrl, which is preconfigured to demonstrate
function prototype control.

Alternatively, you can use function prototype control functions to programmatically
control model function prototypes. For more information, see “Configure Function
Prototypes Programmatically”“Configure Function Prototypes Programmatically”.

You can also control model function prototypes for nonvirtual subsystems, if you generate
subsystem code using right-click build. To launch the Model Interface for subsystem
dialog box, use the RTW.configSubsystemBuild function.

 Control Generation of Function Prototypes

21-13

Right-click building the subsystem generates the step and initialization functions
according to the customizations you make. For more information, see “Configure
Function Prototypes for Nonvirtual Subsystems”.

For limitations that apply, see “Function Prototype Control Limitations”.

21 Export Code Generated from Model to External Application

21-14

C++ Class Interface Control

Using the Code interface packaging option C++ class, on the Code Generation
> Interface pane of the Configuration Parameters dialog box, you can generate a C++
class interface to model code. The generated interface encapsulates required model data
into C++ class attributes and model entry point functions into C++ class methods. The
benefits of C++ class encapsulation include:

• Greater control over access to model data
• Ability to multiply instantiate model classes
• Easier integration of model code into C++ programming environments

C++ class encapsulation also works for right-click builds of nonvirtual subsystems.
(For information on requirements that apply, see “Configure C++ Class Interfaces for
Nonvirtual Subsystems”.)

The general procedure for generating C++ class interfaces to model code is as follows:

1 Configure your model to use an ert.tlc system target file provided by MathWorks.
2 Select the C++ language for your model.
3 Select C++ class code interface packaging for your model.
4 Optionally, configure related C++ class interface settings for your model code, using

either a graphical user interface (GUI) or application programming interface (API).
5 Generate model code and examine the results.

To get started with an example, see “Simple Use of C++ Class Control”. For more
details about configuring C++ class interfaces for your model code, see “Customize C+
+ Class Interfaces Using Graphical Interfaces” and “Customize C++ Class Interfaces
Programmatically”. For limitations that apply, see “C++ Class Interface Control
Limitations”.

Note: For an example of C++ class code generation, see the example model
rtwdemo_cppclass.

22

Code Replacement Customization for
Simulink Models

• “What Is Code Replacement Customization?” on page 22-3
• “Code You Can Replace From Simulink Models” on page 22-4
• “Code Replacement Match and Replacement Process” on page 22-22
• “Code Replacement Customization Limitations” on page 22-24
• “Develop a Code Replacement Library” on page 22-26
• “Quick Start Library Development” on page 22-27
• “Identify Code Replacement Requirements” on page 22-37
• “Prepare for Code Replacement Library Development” on page 22-40
• “Define Code Replacement Mappings” on page 22-42
• “Specify Build Information for Replacement Code” on page 22-59
• “Register Code Replacement Mappings” on page 22-68
• “Troubleshoot Code Replacement Library Registration” on page 22-76
• “Code Replacement Hits and Misses” on page 22-77
• “Verify Code Replacements” on page 22-78
• “Troubleshoot Code Replacement Misses” on page 22-87
• “Deploy Code Replacement Library” on page 22-93
• “Math Function Code Replacement” on page 22-94
• “Memory Function Code Replacement” on page 22-96
• “Nonfinite Function Code Replacement” on page 22-99
• “Semaphore and Mutex Function Replacement” on page 22-102
• “Algorithm-Based Code Replacement” on page 22-109
• “Lookup Table Function Code Replacement” on page 22-112
• “Data Alignment for Code Replacement” on page 22-132

22 Code Replacement Customization for Simulink Models

22-2

• “Replace MATLAB Functions with Custom Code Using coder.replace” on page
22-142

• “Replace coder.ceval Calls to External Functions” on page 22-144
• “Replace MATLAB Functions Specified in MATLAB Function Blocks” on page

22-150
• “Reserved Identifiers and Code Replacement” on page 22-154
• “Customize Matching and Replacement Process for Functions” on page 22-156
• “Scalar Operator Code Replacement” on page 22-161
• “Addition and Subtraction Operator Code Replacement” on page 22-164
• “Small Matrix Operation to Processor Code Replacement” on page 22-169
• “Matrix Multiplication Operation to MathWorks BLAS Code Replacement” on page

22-174
• “Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement” on page

22-182
• “Remap Operator Output to Function Input” on page 22-189
• “Customize Matching and Replacement Process for Operators” on page 22-192
• “Fixed-Point Operator Code Replacement” on page 22-199
• “Binary-Point-Only Scaling Code Replacement” on page 22-209
• “Slope Bias Scaling Code Replacement” on page 22-213
• “Net Slope Scaling Code Replacement” on page 22-217
• “Equal Slope and Zero Net Bias Code Replacement” on page 22-225
• “Data Type Conversions (Casts) and Operator Code Replacement” on page 22-229
• “Shift Left Operations and Code Replacement” on page 22-234

 What Is Code Replacement Customization?

22-3

What Is Code Replacement Customization?

Customize how and when the code generator replaces C/C++ code that it generates by
default for functions and operators by developing a custom code replacement library. You
can develop libraries interactively with the Code Replacement Tool or programmatically.

• Develop libraries tailored to specific application requirements
• Add identifiers to the list of reserved keywords the code generator considers during

code replacement
• Customize the code generator’s matching and replacement process for functions

To get started, “Quick Start Library Development”.

Related Examples
• “Quick Start Library Development”
• “Develop a Code Replacement Library”

More About
• “What Is Code Replacement?”
• “Code You Can Replace From Simulink Models”
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Customization Limitations”

External Web Sites
• “Replacing Math Functions and Operators”

22 Code Replacement Customization for Simulink Models

22-4

Code You Can Replace From Simulink Models
In this section...

“About Code You Can Replace” on page 22-4
“Math Functions – Simulink Support” on page 22-4
“Math Functions – Stateflow Support” on page 22-10
“Memory Functions” on page 22-15
“Nonfinite Functions” on page 22-16
“Mutex and Semaphore Functions” on page 22-17
“Operators” on page 22-18

About Code You Can Replace

Code that the code generator replaces depends on the code replacement library (CRL)
that you use. By default, the code generator does not apply a code replacement library.
Your choice of libraries is dependent on product licensing and whether you have access to
custom libraries.

For information on how to explore functions and operators that a code replacement
library supports, see “Choose a Code Replacement Library” license and want to develop a
custom code replacement library, see Code Replacement Customization.

Math Functions – Simulink Support

When generating C/C++ code from a Simulink model, depending on code replacement
libraries available in your development environment, you can configure the code
generator to replace instances of the following math functions with application-specific
implementations.

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

abs1 Integer
Floating point
Fixed point

Scalar
Vector
Matrix

Real

acos Floating point Scalar Real
Complex input/complex output
Real input/complex output

 Code You Can Replace From Simulink Models

22-5

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

acosd2 Floating point Scalar
Vector
Matrix

Real
Complex

acosh Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

acot2 Floating point Scalar
Vector
Matrix

Real
Complex

acotd2 Floating point Scalar
Vector
Matrix

Real
Complex

acoth2 Floating point Scalar
Vector
Matrix

Real
Complex

acsc2 Floating point Scalar
Vector
Matrix

Real
Complex

acscd2 Floating point Scalar
Vector
Matrix

Real
Complex

acsch2 Floating point Scalar
Vector
Matrix

Real
Complex

asec2 Floating point Scalar
Vector
Matrix

Real
Complex

asecd2 Floating point Scalar
Vector
Matrix

Real
Complex

asech2 Floating point Scalar
Vector
Matrix

Real
Complex

22 Code Replacement Customization for Simulink Models

22-6

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

asin Floating point Scalar Real
Complex input/complex output
Real input/complex output

asind2 Floating point Scalar
Vector
Matrix

Real
Complex

asinh Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

atan Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

atan2 Floating point Scalar
Vector
Matrix

Real

atan2d2 Floating point Scalar
Vector
Matrix

Real

atand2 Floating point Scalar
Vector
Matrix

Real
Complex

atanh Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

ceil • Floating-point
• Scalar

• Floating-point
• Scalar

• Floating-point
• Scalar

cos3 Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

cosd2 Floating point Scalar
Vector
Matrix

Real
Complex

 Code You Can Replace From Simulink Models

22-7

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

cosh Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

cot2 Floating point Scalar
Vector
Matrix

Real
Complex

cotd2 Floating point Scalar
Vector
Matrix

Real
Complex

coth2 Floating point Scalar
Vector
Matrix

Real
Complex

csc2 Floating point Scalar
Vector
Matrix

Real
Complex

cscd2 Floating point Scalar
Vector
Matrix

Real
Complex

csch2 Floating point Scalar
Vector
Matrix

Real
Complex

exactrSqrt Integer
Floating point

Scalar Real

exp Floating point Scalar
Vector
Matrix

Real

fix Floating point Scalar Real
floor • Floating-point

• Scalar
• Floating-point
• Scalar

• Floating-point
• Scalar

fmod4 Floating point Scalar Real

frexp Floating point Scalar Real

22 Code Replacement Customization for Simulink Models

22-8

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

hypot Floating point Scalar
Vector
Matrix

Real

ldexp Floating point Scalar Real
ln Floating point Scalar Real
log Floating point Scalar

Vector
Matrix

Real

log10 Floating point Scalar
Vector
Matrix

Real

log22 Floating point Scalar
Vector
Matrix

Real
Complex

max Integer
Floating point
Fixed point

Scalar Real

min Integer
Floating point
Fixed point

Scalar Real

mod Integer
Floating point

Scalar
Vector
Matrix

Real

pow Floating point Scalar
Vector
Matrix

Real

rem Floating point Scalar
Vector
Matrix

Real

round Floating point Scalar Real

 Code You Can Replace From Simulink Models

22-9

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

rSqrt Integer
Floating point

Scalar
Vector
Matrix

Real

saturate Integer
Floating point
Fixed point

Scalar
Vector
Matrix

Real

sec2 Floating point Scalar
Vector
Matrix

Real
Complex

secd2 Floating point Scalar
Vector
Matrix

Real
Complex

sech2 Floating point Scalar
Vector
Matrix

Real
Complex

sign Integer
Floating point
Fixed point

Scalar
Vector
Matrix

Real

signPow Floating point Scalar
Vector
Matrix

Real

sin3 Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

sincos3 Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

sind2 Floating point Scalar
Vector
Matrix

Real
Complex

sinh Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

22 Code Replacement Customization for Simulink Models

22-10

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

sqrt Integer
Floating point
Fixed point

Scalar
Vector
Matrix

Real

tan Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

tand2 Floating point Scalar
Vector
Matrix

Real
Complex

tanh Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

1 Wrap on integer overflow only. Clear block parameter Saturate on integer overflow.

2Only when used with the MATLAB Function block.

3 Supports the CORDIC approximation method.

4 Stateflow support only.

Math Functions – Stateflow Support

When generating C/C++ code from Stateflow charts, depending on code replacement
libraries available in your development environment, you can configure the code
generator to replace instances of the following math functions with application-specific
implementations.

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

abs1 Integer
Floating point

Scalar Real

acos2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output

 Code You Can Replace From Simulink Models

22-11

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

Real input/complex output

acosd3 Floating point Scalar
Vector
Matrix

Real
Complex

acot3 Floating point Scalar
Vector
Matrix

Real
Complex

acotd3 Floating point Scalar
Vector
Matrix

Real
Complex

acoth3,5 Floating point Scalar
Vector
Matrix

Real
Complex

acsc3 Floating point Scalar
Vector
Matrix

Real
Complex

acscd3 Floating point Scalar
Vector
Matrix

Real
Complex

acsch3 Floating point Scalar
Vector
Matrix

Real
Complex

asec3 Floating point Scalar
Vector
Matrix

Real
Complex

asecd3 Floating point Scalar
Vector
Matrix

Real
Complex

asech3 Floating point Scalar
Vector
Matrix

Real
Complex

22 Code Replacement Customization for Simulink Models

22-12

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

asin2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

asind3 Floating point Scalar
Vector
Matrix

Real
Complex

atan2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

atan22 Floating point Scalar
Vector
Matrix

Real

atan2d3 Floating point Scalar
Vector
Matrix

Real

atand3 Floating point Scalar
Vector
Matrix

Real
Complex

ceil • Floating-point
• Scalar

• Floating-point
• Scalar

• Floating-point
• Scalar

cos3 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

cosd3 Floating point Scalar
Vector
Matrix

Real
Complex

 Code You Can Replace From Simulink Models

22-13

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

cosh2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

cot3 Floating point Scalar
Vector
Matrix

Real
Complex

cotd3 Floating point Scalar
Vector
Matrix

Real
Complex

coth3 Floating point Scalar
Vector
Matrix

Real
Complex

csc3 Floating point Scalar
Vector
Matrix

Real
Complex

cscd3 Floating point Scalar
Vector
Matrix

Real
Complex

csch3 Floating point Scalar
Vector
Matrix

Real
Complex

exp Floating point Scalar Real
floor • Floating-point

• Scalar
• Floating-point
• Scalar

• Floating-point
• Scalar

fmod Floating point Scalar Real

hypot3 Floating point Scalar
Vector
Matrix

Real

ldexp Floating point Scalar Real

22 Code Replacement Customization for Simulink Models

22-14

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

log2 Floating point Scalar
Vector
Matrix

Real
Complex

log102 Floating point Scalar
Vector
Matrix

Real
Complex

log23 Floating point Scalar
Vector
Matrix

Real
Complex

max Integer
Floating point

Scalar Real

min Integer
Floating point

Scalar Real

pow Floating point Scalar Real

sec3 Floating point Scalar
Vector
Matrix

Real
Complex

secd3 Floating point Scalar
Vector
Matrix

Real
Complex

sech3 Floating point Scalar
Vector
Matrix

Real
Complex

sin2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

sind3 Floating point Scalar
Vector
Matrix

Real
Complex

 Code You Can Replace From Simulink Models

22-15

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

sinh2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

sqrt Floating point Scalar Real

tan2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

tand3 Floating point Scalar
Vector
Matrix

Real
Complex

tanh2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

1 Wrap on integer overflow only.

2For models involving vectors or matrices, the code generator replaces only functions coded in the
MATLAB action language.

3The code generator replaces only functions coded in the MATLAB action language.

Memory Functions

Depending on code replacement libraries available in your development environment,
you can configure the code generator to replace instances of the following memory
functions with application-specific implementations.

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

memcmp Void pointer (void*) Scalar Real

22 Code Replacement Customization for Simulink Models

22-16

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

Vector
Matrix

Complex

memcpy Void pointer (void*) Scalar
Vector
Matrix

Real
Complex

memset Void pointer (void*) Scalar
Vector
Matrix

Real
Complex

memset2zero Void pointer (void*) Scalar
Vector
Matrix

Real
Complex

Some target processors provide optimized functions to set memory to zero. Use the code
replacement library programming interface to replace the memset2zero function with
more efficient target-specific functions.

Nonfinite Functions

Depending on code replacement libraries available in your development environment,
you can configure the code generator to replace instances of the following nonfinite
functions with application-specific implementations.

Function Data Type Support Scalar, Vector,
Matrix Support

Real, Complex Support

getInf Floating point Scalar Real
getMinusInf Floating point Scalar Real
getNaN Floating point Scalar Real
rtIsInf Floating point Scalar Real

Complex
rtIsNaN Floating point Scalar Real

Complex

 Code You Can Replace From Simulink Models

22-17

Mutex and Semaphore Functions

Mutex and semaphore functions control access to resources shared by multiple processes
in multicore target environments. MathWorks provides code replacement libraries that
support mutex and semaphore replacement for Rate Transition and Task Transition
blocks on Windows, Linux, Mac, and VxWorks platforms.

Generated mutex and semaphore code typically consists of:

• In model initialization code, an initialization function call to create a mutex or
semaphore to control entry to a critical section of code.

• In model step code:

• Before code for a data transfer between tasks enters the critical section, mutex
lock or semaphore wait function calls to reserve a critical section of code.

• After code for a data transfer between tasks finishes executing the critical section,
mutex unlock or semaphore post function calls to release the critical section of
code.

• In model termination code, an optional destroy function call to explicitly delete the
mutex or semaphore.

Depending on code replacement libraries available in your development environment,
you can configure the code generator to replace instances of the following mutex and
semaphore functions with application-specific implementations.

In the following table, key is a string that identifies the function.

Function Key

Mutex Destroy RTW_MUTEX_DESTROY

Mutex Init RTW_MUTEX_INIT

Mutex Lock RTW_MUTEX_LOCK

Mutex Unlock RTW_MUTEX_UNLOCK

Semaphore Destroy RTW_SEM_DESTROY

Semaphore Init RTW_SEM_INIT

Semaphore Post RTW_SEM_POST

Semaphore Wait RTW_SEM_WAIT

22 Code Replacement Customization for Simulink Models

22-18

Operators

When generating C/C++ code from a Simulink model, depending on code replacement
libraries available in your development environment, you can configure the code
generator to replace instances of the following operators with application-specific
implementations.

In the following table:

• Key is a string that identifies the operator.
• Mixed data type support indicates that you can specify different data types for

different inputs.

Operator Key Data Type Support Scalar, Vector,
Matrix Support

Real,
Complex
Support

Addition (+) RTW_OP_ADD Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Subtraction (-) RTW_OP_MINUS Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Multiplication
(*)1

RTW_OP_MUL Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Division (/) RTW_OP_DIV Integer
Floating point
Fixed-point
Mixed

Scalar Real
Complex

Data type
conversion (cast)

RTW_OP_CAST Integer
Floating point2

Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Shift left (<<) RTW_OP_SL Integer
Fixed-point

Scalar
Vector

Real

 Code You Can Replace From Simulink Models

22-19

Operator Key Data Type Support Scalar, Vector,
Matrix Support

Real,
Complex
Support

Mixed Matrix3

Shift right
arithmetic (>>)4

RTW_OP_SRA Integer
Fixed-point
Mixed

Scalar
Vector
Matrix3

Real

Shift right
logical (>>)

RTW_OP_SRL Integer
Fixed-point
Mixed

Scalar
Vector
Matrix3

Real

Element-
wise matrix
multiplication
(.*)5

RTW_OP_ELEM_MUL Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Matrix right
division (/)

RTW_OP_RDIV Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Matrix left
division (\)

RTW_OP_LDIV Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Matrix inversion
(inv)

RTW_OP_INV Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Complex
conjugation

RTW_OP_CONJUGATE Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Transposition
(.')

RTW_OP_TRANS Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

22 Code Replacement Customization for Simulink Models

22-20

Operator Key Data Type Support Scalar, Vector,
Matrix Support

Real,
Complex
Support

Hermitian
(complex
conjugate)
transposition (')

RTW_OP_HERMITIAN Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Multiplication
with
transposition1

RTW_OP_TRMUL Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Multiplication
with Hermitian
transposition1

RTW_OP_HMMUL Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Greater than (>) RTW_OP_GREATER_

THAN

Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Greater than or
equal(>=)

RTW_OP_GREATER_

THAN_OR_EQUAL

Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Less than (<) RTW_OP_LESS_THAN Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Less than or
equal (<=)

RTW_OP_LESS_THAN_

OR_EQUAL

Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Equal (==) RTW_OP_EQUAL Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

 Code You Can Replace From Simulink Models

22-21

Operator Key Data Type Support Scalar, Vector,
Matrix Support

Real,
Complex
Support

Not equal (!=) RTW_OP_NOT_EQUAL Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

1 Can map to Basic Linear Algebra Subroutine (BLAS) multiplication functions.

2 Scaled floating point is not supported.

3 Shift operator replacement with matrix data is supported for shift values that you
specify with an input port. Replacement is not supported for shift values that you
specify in a block parameter dialog.

4 The code generator converts some arithmetic shift rights to logical shift rights. To
avoid unexpected results, when creating a code replacement library that includes a table
entry for an arithmetic shift right implementation, also include an entry for a logical
shift right implementation.

5 Use the multiplication (*) operator (RTW_OP_MUL) for scalar multiplication.

Related Examples
• “Develop a Code Replacement Library”
• “Quick Start Library Development”
• “Choose a Code Replacement Library”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Customization Limitations”

22 Code Replacement Customization for Simulink Models

22-22

Code Replacement Match and Replacement Process

When the code generator encounters a call site for a function or operator, it:

1 Creates and partially populates a code replacement entry object with the function or
operator name or key and conceptual arguments.

2 Uses the entry object to query the configured code replacement library for a
conceptual representation match. The code generator searches the tables in a code
replacement library for a match in the order that the tables appear in the library.
When searching for a match, the code generator takes into account:

• Conceptual name or key
• Arguments, including quantity, type, type qualifiers, and complexity
• Algorithm (computation method)
• Fixed-point saturation and rounding modes
• Priority

3 When a match exists, the code generator returns a code replacement object, fully
populated with the conceptual representation, implementation representation,
and priority. If the code generator finds multiple matches within a table, the entry
priority determines the match. The priority can range from 0 to 100. The highest
priority is 0. The code generator uses a higher-priority entry over a similar entry
with a lower priority.

4 Uses the C or C++ replacement function prototype in the code replacement object to
generate code.

When the code generator encounters a call site for a function or operator, it:

1 Creates and partially populates a code replacement entry object with the function or
operator name or key and conceptual arguments.

2 Uses the entry object to query the configured code replacement library for a
conceptual representation match. The code generator searches the tables in a code
replacement library for a match in the order that the tables appear in the library.
When searching for a match, the code generator takes into account:

• Conceptual name or key
• Arguments, including quantity, type, type qualifiers, and complexity
• Algorithm (computation method)

 Code Replacement Match and Replacement Process

22-23

• Fixed-point saturation and rounding modes
• Priority

3 When a match exists, the code generator returns a code replacement object, fully
populated with the conceptual representation, implementation representation,
and priority. If the code generator finds multiple matches within a table, the entry
priority determines the match. The priority can range from 0 to 100. The highest
priority is 0. The code generator uses a higher-priority entry over a similar entry
with a lower priority.

4 Uses the C or C++ replacement function prototype in the code replacement object to
generate code.

Related Examples
• “Customize Matching and Replacement Process for Functions”
• “Customize Matching and Replacement Process for Operators”

More About
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

22 Code Replacement Customization for Simulink Models

22-24

Code Replacement Customization Limitations

• Code replacement verification — It is possible that code replacement behaves
differently than you expect. For example, data types that you observe in code
generator input might not match what the code generator uses as intermediate data
types during an operation. Verify code replacements by examining generated code.
See “Verify Code Replacements”.

• Tokens in file paths—You can include tokens in file paths when specifying build
information for a code replacement entry by using the programming interface only.
The ability to include tokens is not available from the Code Replacement Tool. See
“Specify Build Information for Replacement Code”.

• Addition and subtraction operation replacements—See“Addition and Subtraction
Operator Code Replacement” for relevant limitations.

• Data alignment—

• Not supported for

• Software-in-the-loop (SIL)
• Processor-in-the-loop (PIL)
• Model reference parameters
• Exported functions in Stateflow charts

• If the replacement would impose alignment requirements on the shared utility
interface arguments, the code generator does not honor data alignment. Under
these conditions, replacement does not occur. Replacement is allowed if the
registered data alignment type specification supports alignment of local variables,
and the replacement involves only local variables.

• For Simulink.Bus:

• If user registered alignment specifications do not support structure field
alignment, aligning Simulink.Bus objects is not supported unless the
Simulink.Bus is imported.

• When aligning a Simulink.Bus data object, the elements in the bus object are
aligned on the same boundary. The boundary is the lowest common multiple of
the alignment requirements for each individual bus element.

• When you specify alignment for functions that occur in a model reference
hierarchy, and multiple models in the hierarchy operate on the same function
data, the bottommost model dictates alignment for the rest of the hierarchy.

 Code Replacement Customization Limitations

22-25

If the alignment requirement for a function in a model higher in the hierarchy
cannot be honored due to the alignment set by a model lower in the hierarchy, the
replacement in the higher model does not occur. In some cases, an error message
is generated. To work around this issue, if the shared data is represented by a bus
or signal object, manually set the alignment property on the shared data by setting
the alignment property of the Simulink.Bus or Simulink.Signal object.

See “Data Alignment for Code Replacement”.
• coder.replace function — See coder.replace for relevant limitations.

Related Examples
• “Verify Code Replacements”
• “Specify Build Information for Replacement Code”
• “Data Alignment for Code Replacement”
• “Replace MATLAB Functions with Custom Code Using coder.replace”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “Code Replacement Libraries”
• “Code Replacement Terminology”

22 Code Replacement Customization for Simulink Models

22-26

Develop a Code Replacement Library

1 “Identify Code Replacement Requirements”
2 “Prepare for Code Replacement Library Development”
3 “Define Code Replacement Mappings”
4 “Specify Build Information for Replacement Code”
5 “Register Code Replacement Mappings”
6 “Verify Code Replacements”
7 “Deploy Code Replacement Library”

Related Examples
• “Replace MATLAB Functions with Custom Code Using coder.replace”
• “Replace MATLAB Functions Specified in MATLAB Function Blocks”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace From Simulink Models”
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Customization Limitations”

External Web Sites
• “Replacing Math Functions and Operators”

 Quick Start Library Development

22-27

Quick Start Library Development

This example shows how to develop a code replacement library that includes an entry for
generating replacement code for the math function sin. You use the Code Replacement
Tool.

Prerequisites

To complete this example, install the following software:

• MATLAB
• Simulink
• Simulink Coder
• Embedded Coder

For instructions on installing MathWorks products, see the “Installation and Activation”.
If you have installed MATLAB and want to see what other MathWorks products are
installed, in the Command Window, enter ver.

For a list of supported compilers, see http://www.mathworks.com/support/compilers/
current_release/.

Open the Code Replacement Tool

1 Start a new MATLAB session.
2 Create or navigate (cd) to an empty folder.
3 At the command prompt, enter the crtool command. The Code Replacement Tool

window opens.

Create Code Replacement Table

1 In the Code Replacement Tool window, select File > New table.
2 In the right pane, name the table crl_table_sinfcn and click Apply. Later, when

you save the table, the tool saves it with the file name crl_table_sinfcn.m.

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

22 Code Replacement Customization for Simulink Models

22-28

Create Table Entry

Create a table entry that maps a sin function with double input and double output to
a custom implementation function.

1 In the left pane, select table crl_table_sinfcn. Then, select File > New entry >
Function. The new entry appears in the middle pane, initially without a name.

2 In the middle pane, select the new entry.
3 In the right pane, on the Mapping Information tab, from the Function menu,

select sin.
4 Leave Algorithm set to Unspecified, and leave parameters in the Conceptual

function group set to default values.
5 In the Replacement function group, name the replacement function sin_dbl.
6 Leave the remaining parameters in the Replacement function group set to default

values.

 Quick Start Library Development

22-29

7 Click Apply. The tool updates the Function signature preview to reflect the
specified replacement function name.

8 Scroll to the bottom of the Mapping Information tab and click Validate entry.
The tool validates your entry.

The following figure shows the completed mapping information.

22 Code Replacement Customization for Simulink Models

22-30

 Quick Start Library Development

22-31

Specify Build Information for Replacement Code

1 On the Build Information tab, for the Implementation header file parameter,
enter sin_dbl.h.

2 Leave the remaining parameters set to default values.
3 Click Apply.

4 Optionally, you can revalidate the entry. Return to the Mapping Information tab
and click Validate entry.

Create Another Table Entry

Create an entry that maps a sin function with single input and double output to
a custom implementation function named sin_sgl. Create the entry by copying and
pasting the sin_dbl entry.

1 In the middle pane, select the sin_dbl entry.
2 Select Edit > Copy
3 Select Edit > Paste
4 On the Mapping Information tab, in the Conceptual function section, set the

data type of input argument u1 to single.
5 In the Replacement function section, name the function sin_sgl. Set the data

type of input argument u1 to single.
6 Click Apply. Note the changes that appear for the Function signature preview.
7 On the Build Information tab, for the Implementation header file parameter,

enter sin_sgl.h. Leave the remaining parameters set to default values and click
Apply.

Validate the Code Replacement Table

1 Select Actions > Validate table.

22 Code Replacement Customization for Simulink Models

22-32

2 If the tool reports errors, fix them, and rerun the validation. Repeat fixing and
validating errors until the tool does not report errors. The following figure shows a
validation report.

Save the Code Replacement Table

Save the code replacement table to a MATLAB file in your working folder. Select File >
Save table. By default, the tool uses the table name to name the file. For this example,
the tool saves the table in the file crl_table_sinfcn.m.

Review the Code Replacement Table Definition

Consider reviewing the MATLAB code for your code replacement table definition. After
using the tool to create an initial version of a table definition file, you can update,
enhance, or copy the file in a text editor.

To review it, in MATLAB or another text editor, open the file crl_table_sinfcn.m.

Generate a Registration File

Before you can use your code replacement table, you must register it as part of a code
replacement library. Use the Code Replacement Tool to generate a registration file.

1 In the Code Replacement Tool, select File > Generate registration file.
2 In the Generate registration file dialog box, edit the dialog box fields to match the

following figure, and then click OK.

 Quick Start Library Development

22-33

3 In the Select location dialog box, specify a location for the registration file. The
location must be on the MATLAB path or in the current working folder. Save the file.
The tool saves the file as rtwTargetInfo.m.

Register the Code Replacement Table

At the command prompt, enter:

sl_refresh_customizations

Review and Test Code Replacements

Apply your code replacement library. Verify that the code generator makes code
replacements that you expect.

1 Check for errors. At the command line, invoke the table definition file. For example:

tbl = crl_table_sinfcn

tbl =

 TflTable with properties:

 Version: '1.0'

 ReservedSymbols: []

 StringResolutionMap: []

 AllEntries: [2x1 RTW.TflCFunctionEntry]

 EnableTrace: 1

If an error exists in the definition file, the invocation triggers a message. Fix the
error and try again.

2 Use the Code Replacement Viewer to check your code replacement entries. For
example:

crviewer('Sin Function Example')

In the viewer, select entries in your table and verify that the content is what you
expect. The viewer can help you detect issues such as:

• Incorrect argument order.
• Conceptual argument names that do not match what the code generator expects.
• Incorrect priority settings.

22 Code Replacement Customization for Simulink Models

22-34

3 Identify an existing model or create a new model that includes a Trigonometric
Function block that is set to the sin function. For example:

4 Open the model and configure it for code generation with an Embedded Coder (ERT-
based) target.

5 See whether your library is listed as an available option for the Code Generation
> Interface > Code replacement library model configuration parameter. If it is,
select it.

If it is not listed, open the registration file, rtwTargetInfo.m. See whether you
entered the correct code replacement table name when you created the file. If you
hover the cursor over the selected library, a tool tip appears. This tip contains
information derived from your code replacement library registration file, such as the
library description and the list of tables it contains.

6 Configure the code generation report for code replacement analysis by setting the
following parameters:

• On the Code Generation > Report pane, select Create code generation
report, Open report automatically, Code-to-model, Model-to-code, and
Summarize which blocks triggered code replacements.

• On the Code Generation > Comments pane, select Include comments,
Simulink block / Stateflow object comments, and Simulink block
descriptions.

7 Configure the model to generate code only. Before you build an executable, confirm
that the code generator is replacing code as expected.

8 Generate code for the model.
9 Review code replacement results in the Code Replacement Report section of the code

generation report.

 Quick Start Library Development

22-35

The report indicates that the code generator found a match and applied the
replacement code for the function sin_dbl.

10 Review the code replacements. In the model window, right-click the Trigonometric
Function block. Select C/C++ Code > Navigate to C/C++ Code. The code
generation report opens and highlights the code replacement in my_sin_func.c. In
this case, the code generator replaced sin with sin_dbl.

22 Code Replacement Customization for Simulink Models

22-36

Related Examples
• “Develop a Code Replacement Library”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace From Simulink Models”
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Customization Limitations”

External Web Sites
• “Replacing Math Functions and Operators”

 Identify Code Replacement Requirements

22-37

Identify Code Replacement Requirements

In this section...

“Mapping Information Requirements” on page 22-37
“Build Information Requirements” on page 22-38
“Registration Information Requirements” on page 22-38

Mapping Information Requirements

• Are you defining a code replacement mapping for the first time?
• Are you updating code replacement entries in an existing library? Or, are you creating

a new library?
• Are you rapid prototyping code replacements?
• Can you base your mappings on existing mappings?
• What type of code do you want to replace? Options include:

• Math operation
• Function
• BLAS operation
• CBLAS operation
• Net slope fixed-point operation
• Semaphore or mutex functions

• Do you want to change the inline or nonfinite behavior for functions?
• What specific functions and operations do you want to replace?
• What input and output arguments does the function or operator that you are

replacing take? For each argument, what is the data type, complexity, and
dimensionality?

• What does the prototype for your replacement code look like?

• What is the replacement function name?
• What are the input and output arguments?
• Are there return values?

22 Code Replacement Customization for Simulink Models

22-38

• What is the data type, complexity, and dimensionality of each argument and
return value?

Build Information Requirements

• Does your replacement function implementation require a header file? If yes, specify
the header file.

• If the replacement function implementation requires a header file, what is the path
for that file?

• Is the source file for the replacement function in your working folder? If not, you
can explicitly specify the source file name and extension. For example, if the file is
required in the generated makefile or specified in a build information object, specify
the source file.

• Does the replacement function use additional include files? If yes, what are they and
what are the paths for those files?

• Does the replacement function use additional source files? If yes, what are they and
what are the paths for those files?

• What compiler flags are required for compiling code that includes the replacement
code?

• What linker flags are required for building an executable that includes the
replacement code?

• Are the required header, source, and object files for building an executable that
includes your replacement code in the working folder for your project? If not, before
starting the build process, do you want the code generator to copy required files to the
build folder?

Registration Information Requirements

• What do you want to name your code replacement library?
• What code replacement tables do you want to include in the library? What are the file

names and paths for the tables?
• What is the purpose of the library? You can document the purpose as the library

description.
• Does the library apply to specific hardware devices? If yes, what devices?
• Are you developing a hierarchy of code replacement libraries? Is the library that you

are developing based (dependent) on another library? For example, you can specify a

 Identify Code Replacement Requirements

22-39

general TI device library as the base library for a more specific TI C28x device
library.

• Do you need to specify data alignment for the library? What data alignments are
required? For each specification, what type of alignment is required and for what
programming language?

Related Examples
• “Develop a Code Replacement Library”
• “Define Code Replacement Mappings”
• “Specify Build Information for Replacement Code”
• “Register Code Replacement Mappings”
• “Verify Code Replacements”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace From Simulink Models”
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Customization Limitations”

22 Code Replacement Customization for Simulink Models

22-40

Prepare for Code Replacement Library Development

After you identify your code replacement requirements, prepare for library development
by reviewing this checklist:

• Get familiar with the library development process.
• Decide whether to define code replacement mappings and produce a registration file

interactively with the Code Replacement Tool or programmatically.
• Identify or develop MATLAB code and Simulink models to test your code replacement

library.
• Consider the hierarchy and organization of your library. A library can consist

of multiple tables and each table can include multiple entries. How do you want
to organize the library to optimize reuse of tables and entries? For example, a
registration file can define code replacement tables organized in a hierarchy of code
replacement libraries based on entries that increase in specificity:

• Common entries
• Entries for TI devices
• Entries for TI C6xx devices
• Entries specific to the TI C67x device

• If support files, such as header files, additional source files, and dynamically linked
libraries are not in your current working folder, note their location. You need to
specify the paths for such files.

Related Examples
• “Develop a Code Replacement Library”
• “Define Code Replacement Mappings”
• “Specify Build Information for Replacement Code”
• “Register Code Replacement Mappings”
• “Verify Code Replacements”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”

 Prepare for Code Replacement Library Development

22-41

• “What Is Code Replacement Customization?”
• “Code You Can Replace From Simulink Models”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

22 Code Replacement Customization for Simulink Models

22-42

Define Code Replacement Mappings

In this section...

“Defining Code Replacement Mappings” on page 22-42
“Define Mappings Interactively with the Code Replacement Tool” on page 22-43
“Define Mappings Programmatically” on page 22-46

Defining Code Replacement Mappings

A code replacement mapping associates a conceptual representation of a function
or operator that is familiar to the code generator with a custom implementation
representation that specifies a C or C++ replacement function prototype. You capture a
mapping as an entry in a code replacement table:

• Interactively, by using the Code Replacement Tool.
• Programmatically, by using a MATLAB programming interface.

The following table lists situations to help you decide when to use each approach.

Situation Approach

Defining mappings for the first
time.

Code Replacement Tool.

Rapid prototyping mappings. Code Replacement Tool to quickly generate, register,
and test mappings.

Developing a mapping as a
template or starting point for
defining similar mappings.

Code Replacement Tool to generate definition code
that you can copy and modify.

Modifying a registration file,
including copying and pasting
content.

MATLAB Editor to update the programming interface
directly.

Defining mappings that specify
attributes not available from
the Code Replacement Tool
(for example, sets of algorithm
parameters).

Programming interface.

 Define Code Replacement Mappings

22-43

Situation Approach

Reusing existing code for new
mappings by copying, pasting,
and editing existing mappings.

Programming interface.

Define Mappings Interactively with the Code Replacement Tool

This example shows how to use the Code Replacement Tool to develop code replacement
mappings. The tool is ideal for getting started with developing mappings, rapid
prototyping, and developing a mapping to use as a starting point for defining similar
mappings.

Open the Code Replacement Tool

Do one of the following:

• In the Command Window, enter the command crtool.
• In the Simulink Editor, open the Configuration Parameters dialog box and navigate

to the Code Generation > Interface pane. To the right of the Code replacement
library parameter, click the Custom.

The Custom button is available only for ERT-based targets. An Embedded Coder
license is not required to create a custom code replacement library. However, you
must have an Embedded Coder license to use a such a library.

By default, the tool displays, left to right, a root pane, a list pane, and a dialog pane. You
can manipulate the display:

• Drag boundaries to widen, narrow, shorten, or lengthen panes, and to resize table
columns.

• Select View > Show dialog pane to hide or display the right-most pane.
• Click a table column heading to sort the table based on contents of the selected

column.
• Right-click a table column heading and select Hide to remove the column from the

display. (You cannot hide the Name column.)

22 Code Replacement Customization for Simulink Models

22-44

Create a Code Replacement Table

1 In the Code Replacement Tool window, select File > New table.
2 In the right pane, name the table and click Apply. Later, when you save the table,

the tool uses the table name that you specify to name the file. For example, if you
enter the name my_sinfcn, the tool names the file my_sinfcn.m.

Create Table Entries

Create one or more table entries. Each entry maps the conceptual representation of a
function or operator to your implementation representation. The information that you
enter depends on the type of entry you create. Enter the following information:

1 In the left pane, select the table to which you want to add the entry.
2 Select File > New entry > entry-type, where entry-type is one of:

• Math Operation
• Function
• BLAS Operation
• CBLAS Operation
• Net Slope Fixed-Point Operation
• Semaphore entry
• Customization entry

The new entry appears in the middle pane, initially without a name.
3 In the middle pane, select the new entry.
4 In the right pane, on the Mapping Information tab, from the Function or

Operation menu, select the function or operation that you want the code generator
to replace. Regardless of the entry type, make a selection from this menu. Your
selection determines what other information you specify.

Except for customization entries, you also specify information for your replacement
function prototype. You can also specify implementation attributes, such as the
rounding modes to apply.

5 If prompted, specify additional entry information that you want the code generator
to use when searching for a match. For example, when you select an addition or
subtraction operation, the tool prompts you to specify an algorithm (Cast before
operation or Cast after operation).

 Define Code Replacement Mappings

22-45

6 Review the conceptual argument information that the tool populates for the function
or operation. Conceptual input and output arguments represent arguments for
the function or operator being replaced. Conceptual arguments observe naming
conventions ('y1', 'u1', 'u2', ...) and data types familiar to the code generator.

If you do not want the data types for your implementation to be the same as the
conceptual argument types, clear the Make the conceptual and implementation
argument types the same check box. For example, most ANSI-C functions
operate on and return double data. Clear the check box if want to map a conceptual
representation of the function to an implementation representation that specifies an
argument and return value. For example, clear the check box to map the conceptual
representation of the function sin to an implementation representation that
specifies an argument and return value of type single (single sin(single)), of
type double (double sin(double). In this case, the code generator produces the
following code:

y = (single) sin(u1);

If you select Custom for a function entry, specify only conceptual argument
information.

7 Specify the name and argument information for your replacement function. As you
enter the information and click Apply, the tool updates the Function signature
preview.

8 Specify additional implementation attributes that apply. For example, depending on
the type and name of the entry that you specify, the tool prompts you to specify:

• Integer saturation mode
• Rounding modes
• Whether to allow inputs that include expressions
• Whether a function modifies internal or global state

9 Click Apply.

Validate Tables and Entries

The Code Replacement Tool provides a way to validate the syntax of code replacement
tables and table entries as you define them. If the tool finds validation errors, you can
address them and retry the validation. Repeat the process until the tool does not report
errors.

22 Code Replacement Customization for Simulink Models

22-46

To Do

Validate table entries Select an entry, scroll to the bottom of the Mapping
Information tab, and click Validate entry.
Alternatively, select one or more entries, right-click,
and select Validate entries.

Validate a table Select the table. Then, select Actions > Validate
table.

Save a Table

When you save a table, the tool validates unvalidated content.

1 Select File > Save table.
2 In the Browse For Folder dialog box, specify a location and name for the file.

Typically, you select a location on the MATLAB path. By default, the tool names the
file using the name that you specify for the table with the extension .m.

3 Click Save.

Open and Modify Tables

After saving a code replacement table, to make changes in the table:

1 Select File > Open table.
2 In the Import file dialog box, browse to the MATLAB file that contains the table.

Repeat the sequence to open and work on multiple tables.

If you open multiple tables, you can manage the tables together. For example, use the
tool to:

• Create new table entries.
• Delete entries.
• Copy and paste or cut and paste information between tables.

Define Mappings Programmatically

This example shows how to define a code replacement mapping programmatically. The
programming interface for defining code replacement table mappings is ideal for

 Define Code Replacement Mappings

22-47

• Modifying tables that you create with the Code Replacement Tool.
• Defining mappings for specialized entries that you cannot create with the Code

Replacement Tool.
• Replicating and modifying similar entries and tables.

Steps for defining a mapping programmatically are:

Create Code Replacement Table

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_sinfcn()

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

Create Table Entry

For each function or operator that you want the code generator to replace, map
a conceptual representation of the function or operator to an implementation
representation as a table entry.

1 Within the body of a table definition file, create a code replacement entry object. Call
one of the following functions.

Entry Type Function

Math operation RTW.TflCOperationEntry

Function RTW.TflCFunctionEntry

BLAS operation RTW.TflBlasEntryGenerator

CBLAS operation RTW.TflCBlasEntryGenerator

Fixed-point addition
and subtraction
operations (support for
SlopesMustBeTheSame and
ZeroNetBias parameters)

RTW.TflCOperationEntryGenerator

Net slope fixed-point
operation

RTW.TflCOperationEntryGenerator_NetSlope

Semaphore or mutex entry RTW.TflCSemaphoreEntry

22 Code Replacement Customization for Simulink Models

22-48

Entry Type Function

Custom function entry MyCustomFunctionEntry (where
MyCustomFunctionEntry is a class derived from
RTW.TflCFunctionEntryML)

Custom operation entry MyCustomOperationEntry (where
MyCustomOperationEntry is a class derived from
RTW.TflCOperationEntryML)

For example:

hEnt = RTW.TflCFunctionEntry;

You can combine steps of creating the entry, setting entry parameters, creating
conceptual and implementation arguments, and adding the entry to a table with a
single function call to registerCFunctionEntry, registerCPPFunctionEntry, or
registerCPromotableMacroEntry if you are creating an entry for a function and the
function implementation meets the following criteria:

• Implementation argument names and order match the names and order of
corresponding conceptual arguments.

• Input arguments are of the same type.
• The return and input argument names follow the code generator’s default naming

conventions:

• Return argument is y1.
• Input arguments are u1, u2, ..., un.

For example:

registerCFunctionEntry(hTable, 100, 1, 'sin', 'double', ...

 'sin_dbl', 'double', 'sin_dbl.h','','');

As another alternative, you can significantly reduce the amount of code that you write by
combining the steps of creating the entry and conceptual and implementation arguments
with a call to the createCRLEntry function. In this case, you specify the conceptual and
implementation information as detailed string specifications.

For example:

hEnt = createCRLEntry(hTable, ...

 'double y1 = sin(double u1)', ...

 Define Code Replacement Mappings

22-49

 'mySin');

This approach does not support:

• C++ implementations
• Data alignment
• Operator replacement with net slope arguments
• Entry parameter specifications (for example, priority, algorithm, building

information)
• Semaphore and mutex function replacements

Set Entry Parameters

Set entry parameters, such as the priority, algorithm information, and implementation
(replacement) function name. Call the function listed in the following table for the entry
type that you created.

Entry Type Function

Math operation setTflCOperationEntryParameters

Function setTflCFunctionEntryParameters

BLAS operation setTflCOperationEntryParameters

CBLAS operation setTflCOperationEntryParameters

Fixed-point addition and subtraction
operations where there is a many-
to-one mapping, such as a mapping
for a range of fixed-point types to the
same replacement function (support
for SlopesMustBeTheSame and
ZeroNetBias parameters)

setTflCOperationEntryParameters

Net slope fixed-point operation setTflCOperationEntryParameters

Semaphore or mutex entry setTflCSemaphoreEntryParameters

Custom function entry setTflCFunctionEntryParameters

Custom operation entry setTflCOperationEntryParameters

To see a list of the parameters that you can set, at the command line, create a new entry
and omit the semicolon at the end of the command. For example:

22 Code Replacement Customization for Simulink Models

22-50

hEnt = RTW.TflCFunctionEntry

hEnt =

 TflCFunctionEntry with properties:

 Implementation: [1x1 RTW.CImplementation]

 SlopesMustBeTheSame: 0

 BiasMustBeTheSame: 0

 AlgorithmParams: []

 ImplType: 'FCN_IMPL_FUNCT'

 AdditionalHeaderFiles: {0x1 cell}

 AdditionalSourceFiles: {0x1 cell}

 AdditionalIncludePaths: {0x1 cell}

 AdditionalSourcePaths: {0x1 cell}

 AdditionalLinkObjs: {0x1 cell}

 AdditionalLinkObjsPaths: {0x1 cell}

 AdditionalLinkFlags: {0x1 cell}

 AdditionalCompileFlags: {0x1 cell}

 SearchPaths: {0x1 cell}

 Key: ''

 Priority: 100

 ConceptualArgs: [0x1 handle]

 EntryInfo: []

 GenCallback: ''

 GenFileName: ''

 SaturationMode: 'RTW_SATURATE_UNSPECIFIED'

 RoundingModes: {'RTW_ROUND_UNSPECIFIED'}

 TypeConversionMode: 'RTW_EXPLICIT_CONVERSION'

 AcceptExprInput: 1

 SideEffects: 0

 UsageCount: 0

 RecordedUsageCount: 0

 Description: ''

 StoreFcnReturnInLocalVar: 0

 TraceManager: [1x1 RTW.TflTraceManager]

To see the implementation parameters, enter:

hEnt.Implemenation

ans =

 CImplementation with properties:

 Define Code Replacement Mappings

22-51

 HeaderFile: ''

 SourceFile: ''

 HeaderPath: ''

 SourcePath: ''

 Return: []

 StructFieldMap: []

 Name: ''

 Arguments: [0x1 handle]

 ArgumentDescriptor: []

For example, to set entry parameters for the sin function and name your replacement
function sin_dbl, use the following function call:

setTflCFunctionEntryParameters(hEnt, ...

 'Key', 'sin', ...

 'ImplementationName', 'sin_dbl');

Create Conceptual Arguments

Create conceptual arguments and add them to the entry’s array of conceptual arguments.

• Specify output arguments before input arguments.
• Specify argument names that comply with code generator argument naming

conventions:

• y1 for a return argument
• u1, u2, ..., un for input arguments

• Specify data types that are familiar to the code generator.
• The function signature, including argument naming, order, and attributes, must

fulfill the signature match sought by function or operator callers.
• The code generator determines the size of the value for an argument with an unsized

type, such as integer, based on hardware implementation configuration settings.

For each argument:

1 Identify whether the argument is for input or output, the name, and data type. If you
do not know what arguments to specify for a supported function or operation, use the
Code Replacement Tool to find them. For example, to find the conceptual arguments
for the sin function, open the tool, create a table, create a function entry, and in the
Function menu select sin.

2 Create and add the conceptual argument to an entry. You can choose a method from
the methods listed in this table.

22 Code Replacement Customization for Simulink Models

22-52

If Then

You want simpler code or
want to explicitly specify
whether the argument
is scalar or nonscalar
(vector or matrix).

Call the function createAndAddConceptualArg. For
example:

createAndAddConceptualArg(hEnt, ...

 'RTW.TflArgNumeric', ...

 'Name', 'y1',...

 'IOType', 'RTW_IO_OUTPUT',...

 'DataTypeMode', 'double');

The second argument specifies whether the argument is
scalar (RTW.TflArgNumeric orRTW.TflArgMatrix) .

You want to create an
argument based on
a built-in argument
definition (for example,
scalar or nonscalar).

Call getTflArgFromString to create the argument.
Then, call addConceptualArg to add the argument to
the entry.

arg = getTflArgFromString(hEnt, 'y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(hEnt, arg);

You need to define
several similar
mappings, you want to
minimize the code to
write, and the entries
do not require data
alignment, use net slope
arguments, or involve
semaphore or mutex
replacements.

Call createCRLEntry to create the entry and specify
conceptual and implementation arguments in a single
function call.

hEnt = createCRLEntry(hTable, ...

 'double y1 = sin(double u1)', ...

 'mySin');

The following code shows the second approach listed in the table for specifying the
conceptual output and input argument definitions for the sin function.

% Conceptual Args

arg = getTflArgFromString(hEnt, 'y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(hEnt, arg);

arg = getTflArgFromString(hEnt, 'u1','double');

 Define Code Replacement Mappings

22-53

addConceptualArg(hEnt, arg);

Create Implementation Arguments

Create implementation arguments for the C or C++ replacement function and add them
to the entry.

• When replacing code, the code generator uses the argument names to determine how
it passes data to the implementation function.

• For function replacements, the order of implementation argument names must match
the order of the conceptual argument names.

• For operator replacements, the order of implementation argument names do not
have to match the order of the conceptual argument names. For example, for an
operator replacement for addition, y1=u1+u2, the conceptual arguments are y1, u1,
and u2, in that order. If the signature of your implementation function is t myAdd(t
u2, t u1), where t is a valid C type, based on the argument name matches, the
code generator passes the value of the first conceptual argument, u1, to the second
implementation argument of myAdd. The code generator passes the value of the
second conceptual argument, u2, to the first implementation argument of myAdd.

• For operator replacements, you can remap operator output arguments to
implementation function input arguments.

For each argument:

1 Identify whether the argument is for input or output, the name, and the data type.
2 Create and add the implementation argument to an entry. You can choose a method

from the methods listed in this table.

If Then

You want to populate
implementation
arguments as copies
of previously created
matching conceptual
arguments

Call the function
copyConceptualArgsToImplementation. For example:

copyConceptualArgsToImplementation(hEnt);

You want to create and
add implementation
arguments individually,
or vary argument

Call functions createAndSetCImplementationReturn
andcreateAndAddImplementationArg . For example:

createAndSetCImplementationReturn(hEnt,

 'RTW.TflArgNumeric', ...

22 Code Replacement Customization for Simulink Models

22-54

If Then

attributes, while
maintaining conceptual
argument order

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', true, ...

 'WordLength', 32, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry,

 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT',...

 'IsSigned', true,...

 'WordLength', 32, ...

 'FractionLength', 0);

 Define Code Replacement Mappings

22-55

If Then

You want to minimize
the amount of code,
or specify constant
arguments to pass to
the implementation
function

Create the argument with a call to the function
getTflArgFromString. Then, use the convenience
method setReturn or addArgument to specify whether
an argument is a return value or argument and to add
the argument to the entry’s array of implementation
arguments. For example:

arg = getTflArgFromString(hEnt, 'y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setReturn(arg);

arg = getTflArgFromString(hEnt, 'u1','double');

hEnt.Implementation.addArgument(arg);

The following call to getTflArgFromString passes the
constant 0 to argument u2:

arg = getTflArgFromString(hEnt, 'u2', 'int16', 0)

hEnt.Implementation.addArgument(arg);

For semaphore and mutex entries, use the functions
getTflDWorkFromString and addDWorkArg to
create and add a DWork argument to the entry. Then
create implementation arguments as shown above with
getTflArgFromString and the convenience methods
setReturn and addArgument. For example:

arg = getTflDWorkFromString('d1', 'void*')

hEnt.addDWorkArg(arg);

arg = hEnt.getTflArgFromString('y1', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setRetrurn(arg);

arg = hEnt.getTflArgFromString('u1', 'integer');

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('d1', 'void**');

hEnt.Implementation.addArgument(arg);

22 Code Replacement Customization for Simulink Models

22-56

If Then

You need to define
several similar
mappings, you want to
minimize the code to
write, and the entries
do not require data
alignment, use net slope
arguments, or involve
semaphore or mutex
replacements.

Call createCRLEntry to create the entry and specify
conceptual and implementation arguments in a single
function call.

hEnt = createCRLEntry(hTable, ...

 'double y1 = sin(double u1)', ...

 'mySin');

The following code shows the third approach listed in the table for specifying the
implementation output and input argument definitions for the sin function:

% Implementation Args

arg = hEnt.getTflArgFromString('y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setReturn(arg);

arg = hEnt.getTflArgFromString('u1','double');

hEnt.Implementation.addArgument(arg);

Add Entry to Table

Add an entry to a code replacement table by calling the function addEntry.

addEntry(hTable, hEnt);

Validate Entry

After you create or modify a code replacement table entry, validate it by invoking it at
the MATLAB command line. For example:

hTbl = crl_table_sinfcn

hTbl =

RTW.TflTable

 Version: '1.0'

 AllEntries: [2x1 RTW.TflCFunctionEntry]

 ReservedSymbols: []

 Define Code Replacement Mappings

22-57

 StringResolutionMap: []

If the table includes errors, MATLAB reports them. The following examples shows how
MATLAB reports a typo in a data type name:
hTbl = crl_table_sinfcn

??? RTW_CORE:tfl:TflTable: Unsupported data type, 'dooble'.

Error in ==> crl_table_sinfcn at 7

hTable.registerCFunctionEntry(100, 1, 'sin', 'dooble', 'sin_dbl', ...

Save Table

Save the table definition file. Use the name of the table definition function to name the
file, for example, crl_table_sinfcn.m.

Related Examples
• “Identify Code Replacement Requirements”
• “Prepare for Code Replacement Library Development”
• “Specify Build Information for Replacement Code”
• “Register Code Replacement Mappings”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”
• “Math Function Code Replacement”
• “Memory Function Code Replacement”
• “Nonfinite Function Code Replacement”
• “Semaphore and Mutex Function Replacement”
• “Algorithm-Based Code Replacement”
• “Lookup Table Function Code Replacement”
• “Data Alignment for Code Replacement”
• “Replace MATLAB Functions with Custom Code Using coder.replace”
• “Replace MATLAB Functions Specified in MATLAB Function Blocks”
• “Customize Matching and Replacement Process for Functions”
• “Scalar Operator Code Replacement”
• “Addition and Subtraction Operator Code Replacement”
• “Small Matrix Operation to Processor Code Replacement”

22 Code Replacement Customization for Simulink Models

22-58

• “Matrix Multiplication Operation to MathWorks BLAS Code Replacement”
• “Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”
• “Fixed-Point Operator Code Replacement”
• “Binary-Point-Only Scaling Code Replacement”
• “Slope Bias Scaling Code Replacement”
• “Net Slope Scaling Code Replacement”
• “Equal Slope and Zero Net Bias Code Replacement”
• “Data Type Conversions (Casts) and Operator Code Replacement”
• “Shift Left Operations and Code Replacement”

More About
• “Code You Can Replace From Simulink Models”
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Customization Limitations”

External Web Sites
• “Replacing Math Functions and Operators”

 Specify Build Information for Replacement Code

22-59

Specify Build Information for Replacement Code

In this section...

“Build Information” on page 22-59
“Specify Build Information Interactively with the Code Replacement Tool” on page
22-60
“Specify Build Information Programmatically” on page 22-62

Build Information

A code replacement table entry can specify build information for the code generator
to use when replacing code for a match. For example, specify files for implementation
replacement code if you are using a generated makefile and the code generation software
compiles the code.

The build information can include:

• Paths and file names for header files
• Paths and file names for source files
• Paths and file names for object files
• Compile flags
• Link flags

Add build information to an entry:

• Interactively, by using the Build Information tab in the Code Replacement Tool.
• Programmatically, by using a MATLAB programming interface.

The following table lists situations to help you decide when to use each approach.

Situation Approach

Creating code replacement
entries for the first time.

Code Replacement Tool.

You used the Code Replacement
Tool to create the entries for

Code Replacement Tool to quickly specify the build
information.

22 Code Replacement Customization for Simulink Models

22-60

Situation Approach

which the build information
applies.
Rapid prototyping entries. Code Replacement Tool to quickly generate, register,

and test entries.
Developing an entry to use as
a template or starting point for
defining similar entries.

Code Replacement Tool to generate entry code that
you can copy and modify.

Modifying existing mappings. MATLAB Editor to update the programming interface
directly.

• If an entry uses header, source, or object files, consider whether you need to make the
files accessible to the code generator. You can copy files to the build folder or you can
specify individual file names and paths explicitly.

• If you specify additional header files/include paths or source files/paths and you copy
files, the compiler and utilities such as packNGo might find duplicate instances of
files (an instance in the build folder and an instance in the original folder).

• If you choose to copy files to the build folder and you are using the packNGo function
to relocate static and generated code files to another development environment, do
not collocate files that you copy with files that you do not copy. The packNGo function
produces an error if it finds multiple instances of the same file.

• If you use the programming interface, paths that you specify can include tokens.
A token is a variable defined as a string or cell array of strings in the MATLAB
workspace that you enclose with dollar signs ($variable$). The code generator
evaluates and replaces a token with the defined value. For example, consider the
path $myfolder$\folder1, where myfolder is a string variable defined in the
MATLAB workspace as 'd:\work\source\module1'. The code generator generates
the custom path as d:\work\source\module1\folder1.

Specify Build Information Interactively with the Code Replacement Tool

The Code Replacement Tool provides a quick, easy way for you to specify build
information for code replacement table entries. It is ideal for getting started with
defining a table entry, rapid prototyping, and developing table entries to use as a starting
point for defining similar mappings.

1 Determine the information that you must specify.

 Specify Build Information for Replacement Code

22-61

2 Open the Code Replacement Tool.
3 Select the code replacement table entry for which you want to specify the build

information. In the left pane, select the table that contains the entry. In the middle
pane, select the entry that you want to modify.

4 In the right pane, select the Build Information tab.
5 On the Build Information tab, specify your build information.

Parameter Specify

Implementation header file File name and extension for the header file
the code generator needs to generate the
replacement code. For example, sin_dbl.h.

Implementation source file File name and extension for the C or C++ source
file the code generator needs to generate the
replacement code. For example, sin_dbl.c.

Additional header files/include
paths

Paths and file names for additional header
files the code generator needs to generate
the replacement code. For example, C:\libs
\headerFiles and C:\libs\headerFiles
\common.h. This parameter adds -I to the
compile line in the generated makefile.

Additional source files/ paths Paths and file names for additional source
files the code generator needs to generate
the replacement code. For example, C:
\libs\srcFiles and C:\libs\srcFiles
\common.c. This parameter adds -I to the
compile line in the generated makefile.

Additional object files/ paths Paths and file names for additional object files
the linker needs to build the replacement code.
For example, C:\libs\objFiles and C:
\libs\objFiles\common.obj.

Additional link flags Flags the linker needs to generate an executable
file for the replacement code.

Additional compile flags Flags the compiler needs to generate object code
for the replacement code.

Copy files to build directory Whether to copy header, source, or object files,
which are required to generate replacement

22 Code Replacement Customization for Simulink Models

22-62

Parameter Specify

code, to the build folder before code generation.
If you specify files with Additional header
files/include paths or Additional source
files/ paths and you copy files, the compiler
and utilities such as packNGo might find
duplicate instances of files.

6 Click Apply.
7 Select the Mapping Information tab. Scroll to the bottom of that table and click

Validate entry. The tool validates the changes that you made to the entry.
8 Save the table that includes the entry that you just modified.

Specify Build Information Programmatically

The programming interface for specifying build information for a code replacement entry
is ideal for:

• Modifying entries created with the Code Replacement Tool.
• Replicating and then modifying similar entries and tables.

The basic workflow for specifying build information programmatically is:

1 Identify or create the code replacement entry that you want to specify the build
information.

2 Determine what information to specify.
3 Specify your build information.

Specify Action

Implementation
header file

Use one of the following:

• Set properties ImplementationHeaderFile
and ImplementationHeaderPath in a call
to setTflCFunctionEntryParameters,
setTflCOperationEntryParameters, or
setTflCSemaphoreEntryParameters. For example:

setTflCFunctionEntryParameters(hEnt, ...

 'ImplementationHeaderFile', 'sin_dbl.h', ...

 Specify Build Information for Replacement Code

22-63

Specify Action
 'ImplementationHeaderPath', 'D:/lib/headerFiles'

 'Key', 'sin', ...

 'ImplementationName', 'sin_dbl');

• Set argument headerFile in a call to
registerCFunctionEntry, registerCPPFunctionEntry, or
registerCPromotableMacroEntry

Implementation
source file

Set properties ImplementationSourceFile
and ImplementationSourcePath in a call
to setTflCFunctionEntryParameters,
setTflCOperationEntryParameters, or
setTflCSemaphoreEntryParameters. For example:

setTflCFunctionEntryParameters(hEnt, ...

 'ImplementationHeaderFile', 'sin_dbl.c', ...

 'ImplementationHeaderPath', 'D:/lib/sourceFiles'

 'Key', 'sin', ...

 'ImplementationName', 'sin_dbl');

Additional header
files/include paths

For each file, specify the file name and path in calls to the functions
addAdditionalHeaderFile and addAdditionalIncludePath. For
example:

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

hEnt = RTW.TflCFunctionEntry;

addAdditionalHeaderFile(hEnt, 'common.h');

addAdditionalIncludePath(hEnt, fullfile(libdir, 'include'));

These functions add -I to the compile line in the generated makefile.

22 Code Replacement Customization for Simulink Models

22-64

Specify Action

Additional source
files/paths

For each file, specify the file name and path in calls to the functions
addAdditionalSourceFile and addAdditionalSourcePath. For
example:

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

hEnt = RTW.TflCFunctionEntry;

addAdditionalSourceFile(hEnt, 'common.c');

addAdditionalSourcePath(hEnt, fullfile(libdir, 'src'));

These functions add -I to the compile line in the generated makefile.
Additional object
files/paths

For each file, specify the file name and path in calls to the functions
addAdditionalLinkObj and addAdditionalLinkObjPath. For
example:

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

hEnt = RTW.TflCFunctionEntry;

addAdditionalLinkObj(hEnt, 'sin.o');

addAdditionalLinkObjPath(hEnt, fullfile(libdir, 'bin'));

Compile flags Set the entry property AdditionalCompileFlags to a cell array of strings
representing the required compile flags. For example:

hEnt = RTW.TflCFunctionEntry;

hEnt.AdditionalCompileFlags = {'-Zi -Wall', '-03'};

Link flags Set the entry property AdditionalLinkFlags to a cell array of strings
representing the required link flags. For example:

hEnt = RTW.TflCFunctionEntry;

hEnt.AdditionalCompileFlags = {'-MD -Gy', '-T'};

 Specify Build Information for Replacement Code

22-65

Specify Action

Whether to copy
header, source, or
object files, which
are required to
generate replacement
code, to the build
folder before code
generation

Use one of the following:

• Set property GenCallback to 'RTW.copyFileToBuildDir'
in a call to setTflCFunctionEntryParameters,
setTflCOperationEntryParameters, or
setTflCSemaphoreEntryParameters. For example:

setTflCFunctionEntryParameters(hEnt, ...

 'ImplementationHeaderFile', 'sin_dbl.h', ...

 'ImplementationHeaderPath', 'D:/lib/headerFiles'

 'Key', 'sin', ...

 'ImplementationName', 'sin_dbl'

 'GenCallback', 'RTW.copyFileToBuildDir');

• Set argument genCallback in a call to
registerCFunctionEntry, registerCPPFunctionEntry,
or registerCPromotableMacroEntry to
'RTW.copyFileToBuildDir'.

If a match occurs for a table entry, a call to the function
RTW.copyFileToBuildDir copies required files to the build folder.

If you specify additional header files/include paths or additional source
files/paths and you copy files, the compiler and utilities such as packNGo
might find duplicate instances of files.

4 Save the table that includes the entry that you added or modified.

The following example defines a table entry for an optimized multiplication function that
takes signed 32-bit integers and returns a signed 32-bit integer, taking saturation into
account. Multiplications in the generated code are replaced with calls to the optimized
function. The optimized function does not reside in the build folder. For the code
generator to access the files, copy them into the build folder to be compiled and linked
into the application.

The table entry specifies the source and header file names and paths. To
request the copy operation, the table entry sets the genCallback property to
'RTW.copyFileToBuildDir' in the call to the setTflCOperationEntryParameters
function. In this example, the header file s32_mul.h contains an inlined function that
invokes assembly functions contained in s32_mul.s. If a match occurs for the table

22 Code Replacement Customization for Simulink Models

22-66

entry, the function RTW.copyFileToBuildDir copies the specified source and header
files to the build folder for use during the remainder of the build process.
function hTable = make_my_crl_table

hTable = RTW.TflTable;

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

 'Priority', 100, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

 'ImplementationName', 's32_mul_s32_s32_sat', ...

 'ImplementationHeaderFile', 's32_mul.h', ...

 'ImplementationSourceFile', 's32_mul.s', ...

 'ImplementationHeaderPath', {fullfile('$(MATLAB_ROOT)','crl')}, ...

 'ImplementationSourcePath', {fullfile('$(MATLAB_ROOT)','crl')}, ...

 'GenCallback', 'RTW.copyFileToBuildDir');

.

.

.

addEntry(hTable, op_entry);

The following example uses the functions addAdditionalHeaderFile,
addAdditionalIncludePath, addAdditionalSourceFile,
addAdditionalSourcePath, addAdditionalLinkObj, and
addAdditionalLinkObjPath in addition to the code generation callback function
RTW.copyFileToBuildDir.
hTable = RTW.TflTable;

% Path to external source, header, and object files

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_SATURATE_UNSPECIFIED', ...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

 'ImplementationName', 's32_add_s32_s32', ...

 'ImplementationHeaderFile', 's32_add_s32_s32.h', ...

 'ImplementationSourceFile', 's32_add_s32_s32.c'...

 'GenCallback', 'RTW.copyFileToBuildDir');

addAdditionalHeaderFile(op_entry, 'all_additions.h');

addAdditionalIncludePath(op_entry, fullfile(libdir, 'include'));

addAdditionalSourceFile(op_entry, 'all_additions.c');

addAdditionalSourcePath(op_entry, fullfile(libdir, 'src'));

addAdditionalLinkObj(op_entry, 'addition.o');

addAdditionalLinkObjPath(op_entry, fullfile(libdir, 'bin'));

.

 Specify Build Information for Replacement Code

22-67

.

.

addEntry(hTable, op_entry);

Related Examples
• “Identify Code Replacement Requirements”
• “Prepare for Code Replacement Library Development”
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”
• “Develop a Code Replacement Library”
• “Relocate Code to Another Development Environment”

More About
• “What Is Code Replacement Customization?”
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Customization Limitations”

External Web Sites
• “Replacing Math Functions and Operators”

22 Code Replacement Customization for Simulink Models

22-68

Register Code Replacement Mappings
In this section...

“Code Replacement Library Registration” on page 22-68
“Create Registration File Interactively with the Code Replacement Tool” on page
22-69
“Create Registration File Programmatically” on page 22-71
“Register a Code Replacement Library” on page 22-73
“Registration Files That Define Multiple Code Replacement Libraries” on page 22-73
“Registration Files That Define Code Replacement Library Hierarchies” on page
22-74

Code Replacement Library Registration

After you define code replacement entries in a code replacement table, you can include
the table in a code replacement library that you register with the code generator. When
registered, a library appears in the list of available code replacement libraries that you
can choose from when configuring the code generator.

Register a code replacement table as a code replacement library:

• Interactively, by using the Code Replacement Tool
• Programmatically, by using a MATLAB programming interface

The following table lists situations when you might consider one approach over the other.

If... Then...

Registering a code replacement
table for the first time

Use the Code Replacement Tool.

You used the Code Replacement
Tool to create the table

Use the Code Replacement Tool to quickly register the
table.

Rapid prototyping code
replacement

Use the Code Replacement Tool to quickly generate,
register, and test entries.

Creating registration file to use
as a template or starting point
for defining similar registration
files

Use the Code Replacement Tool to generate code that
you can copy and modify.

 Register Code Replacement Mappings

22-69

If... Then...

Modifying existing registration
files

Use the MATLAB Editor to update the registration
file.

Defining multiple code
replacement libraries in one
registration file

Use the MATLAB Editor to create a new or extend an
existing registration file.

Defining code replacement
library hierarchy in a
registration file

Use the MATLAB Editor to create a new or extend an
existing registration file.

Create Registration File Interactively with the Code Replacement Tool

The Code Replacement tool provides a quick, easy way for you to create a registration
file for a code replacement table. It is ideal for getting started, rapid prototyping,
and generating a registration file that you want to use as a starting point for similar
registrations.

1 After you validate and save a code replacement table, select File > Generate
registration file to open the Generate registration file dialog box.

2 Enter the registration information. Minimally, specify:

22 Code Replacement Customization for Simulink Models

22-70

For... Specify...

Registry name String naming the code replacement library. For example,
Sin Function Example.

Table list Strings naming one or more code replacement tables to
include in the library. Specify each table as one of the
following:

• Name of a table file on the MATLAB search path
• Absolute path to a table file
• Path to a table file relative to $(MATLAB_ROOT)

You can specify multiple tables. If you do, separate the table
specifications with a comma. For example:

crl_table_sinfcn, c:/work_crl/crl_table_muldiv

See “Registration Files That Define Multiple Code
Replacement Libraries” for examples of each type of table
specification.

Optionally, you can specify:

For... Specify...

Description Text string that describes the purpose and content of the
library.

Target HW device Strings naming one or more hardware devices the code
replacement library supports. Separate names with a
comma. To support all device types, enter an asterisk (*). For
example, TI C28x, TI C62x.

Base CRL String naming a code replacement library that you want to
serve as a base library for the library you are registering.
Use this field to specify library hierarchies. For example,
you can specify a general TI device library as the base
library for a more specific TI C28x device library.

 Register Code Replacement Mappings

22-71

For... Specify...

Generate data
alignment
specification

Flag that enables data alignment specification.

Create Registration File Programmatically

The programming interface for creating a registration file for a code replacement table is
ideal for:

• Modifying registration files created with the Code Replacement Tool
• Replicating and modifying similar registration files
• Defining multiple code replacement libraries in one registration file

The basic workflow for creating a registration file programmatically consists of the
following steps:

1 Define an rtwTargetInfo function. The code generator recognizes this function
as a customization file. The function definition must include at least the following
content:

function rtwTargetInfo(cm)

cm.registerTargetInfo(@loc_register_crl);

function this = loc_register_crl

this(1) = RTW.TflRegistry;

this(1).Name = 'crl-name';

this(1).TableList = {'table',...};

For... Replace...

this(1).Name = 'crl-name'; crl-name with a string naming the code
replacement library. For example, Sin
Function Example.

this(1).TableList =

{'table',...};

table with a string that identifies the code
replacement table that contains your code
replacement entries. Specify a table as one of
the following:

22 Code Replacement Customization for Simulink Models

22-72

For... Replace...

• Name of a table file on the MATLAB search
path

• Absolute path to a table file
• Path to a table file relative to

$(MATLAB_ROOT)

You can specify multiple tables. If you do,
separate the table specifications with commas.

Optionally, you can specify:

For... Replace...

this(1).Description =

'text'

text with a string that describes the purpose
and content of the library.

this(1).TargetHWDeviceType

= {'device-type',...}

device-type with a string that names a
hardware device the code replacement library
supports. You can specify multiple device
types. Separate device types with a comma. For
example, TI C28x, TI C62x. To support all
device types, enter an asterisk (*).

this(1).BaseTfl = 'base-

lib'

base-lib with a string that names a code
replacement library that you want to serve as a
base library for the library you are registering.
Use this field to specify library hierarchies.
For example, you can specify a general TI
device library as the base library for a TI
C28x device library.

See “Registration Files That Define Code
Replacement Library Hierarchies” for an
example.

For example:

function rtwTargetInfo(cm)

 Register Code Replacement Mappings

22-73

cm.registerTargetInfo(@loc_register_crl);

function this = loc_register_crl

this(1) = RTW.TflRegistry;

this(1).Name = 'Sin Function Example';

this(1).TableList = {'crl_table_sinfcn'};

this(1).TargetHWDeviceType = {'*'};

this(1).Description = 'Example - sin function replacement';

2 Save the file with the name rtwTargetInfo.m.
3 Place the file on the MATLAB path. When the file is on the MATLAB path, the code

generator reads the file after starting and applies the customizations during the
current MATLAB session.

Register a Code Replacement Library

Before you can use the code replacement tables defined in a registration file, refresh
Simulink customizations within the current MATLAB session. To initiate a refresh, enter
the following command:

sl_refresh_customizations

Registration Files That Define Multiple Code Replacement Libraries

Use the programming interface to create a registration file that defines multiple code
replacement libraries. The following example defines multiple code replacement libraries.
The TableList fields specify code replacement tables that reside at different locations.
The tables reside on the MATLAB search path or at locations specified using path
strings.
function rtwTargetInfo(cm)

cm.registerTargetInfo(@locCrlRegFcn);

function thisCrl = locCrlRegFcn

 % Register a code replacement library for use with model: rtwdemo_crladdsub

 thisCrl(1) = RTW.TflRegistry;

 thisCrl(1).Name = 'Addition & Subtraction Examples';

 thisCrl(1).Description = 'Example of addition/subtraction op replacement';

 thisCrl(1).TableList = {'crl_table_addsub'};

 thisCrl(1).TargetHWDeviceType = {'*'};

 % Register a code replacement library for use with model: rtwdemo_crlmuldiv

22 Code Replacement Customization for Simulink Models

22-74

 thisCrl(2) = RTW.TflRegistry;

 thisCrl(2).Name = 'Multiplication & Division Examples';

 thisCrl(2).Description = 'Example of mult/div op repl for built-in integers';

 thisCrl(2).TableList = {'c:/work_crl/crl_table_muldiv'};

 thisCrl(2).TargetHWDeviceType = {'*'};

 % Register a code replacement library for use with model: rtwdemo_crlfixpt

 thisCrl(3) = RTW.TflRegistry;

 thisCrl(3).Name = 'Fixed-Point Examples';

 thisCrl(3).Description = 'Example of fixed-point operator replacement';

 thisCrl(3).TableList = {fullfile('$(MATLAB_ROOT)', ...

 'toolbox','rtw','rtwdemos','crl_demo','crl_table_fixpt')};

 thisCrl(3).TargetHWDeviceType = {'*'};

Registration Files That Define Code Replacement Library Hierarchies

Using the programming interface, you can organize multiple code replacement libraries
in a hierarchy. The following example shows a registration file that defines four code
replacement tables organized in a hierarchy of four code replacement libraries. The
tables include entries that increase in specificity: common entries, entries for TI devices,
entries for TI C6xx devices, and entries specific to the TI C67x device.
function rtwTargetInfo(cm)

cm.registerTargetInfo(@locCrlRegFcn);

function thisCrl = locCrlRegFcn

 % Register a code replacement library that includes common entries

 thisCrl(1) = RTW.TflRegistry;

 thisCrl(1).Name = 'Common Replacements';

 thisCrl(1).Description = 'Common code replacement entries shared by other libraries';

 thisCrl(1).TableList = {'crl_table_general'};

 thisCrl(1).TargetHWDeviceType = {'*'};

 % Register a code replacement library for TI devices

 thisCrl(2) = RTW.TflRegistry;

 thisCrl(2).Name = 'TI Device Replacements';

 thisCrl(2).Description = 'Code replacement entries shared across TI devices';

 thisCrl(2).TableList = {'crl_table_TI_devices'};

 thisCrl(2).TargetHWDeviceType = {'TI C28x', 'TI C55x', 'TI C62x', 'TI C64x', 'TI 67x'};

 thisCrl(1).BaseTfl = 'Common Replacements'

 % Register a code replacement library for TI c6xx devices

 thisCrl(3) = RTW.TflRegistry;

 thisCrl(3).Name = 'TI c6xx Device Replacements';

 thisCrl(3).Description = 'Code replacement entries shared across TI C6xx devices';

 thisCrl(3).TableList = {'crl_table_TIC6xx_devices'};

 thisCrl(3).TargetHWDeviceType = {'TI C62x', 'TI C64x', 'TI 67x'};

 % Register a code replacement library for the TI c67x device

 thisCrl(3) = RTW.TflRegistry;

 thisCrl(3).Name = 'TI c67x Device Replacements';

 thisCrl(3).Description = 'Code replacement entries for the TI C67x device';

 thisCrl(3).TableList = {'crl_table_TIC67x_device'};

 thisCrl(3).TargetHWDeviceType = {'TI 67x'};

 Register Code Replacement Mappings

22-75

Related Examples
• “Define Code Replacement Mappings”
• “Data Alignment for Code Replacement”
• “Specify Build Information for Replacement Code”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”
• “Deploy Code Replacement Library”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

22 Code Replacement Customization for Simulink Models

22-76

Troubleshoot Code Replacement Library Registration

If a code replacement library is not listed as a configuration option or does not appear in
the Code Replacement Viewer:

• Refresh the library registration information within the current MATLAB
session (RTW.TargetRegistry.getInstance('reset'); or for the Simulink
environment,sl_refresh_customizations).

• See whether the registration file, rtwTargetInfo.m, contains an error.

Related Examples
• “Register Code Replacement Mappings”

 Code Replacement Hits and Misses

22-77

Code Replacement Hits and Misses

The code generator logs code replacement table entries for which it finds and does not
find matches in the hit cache and miss cache, respectively. When a code replacement
entry match fails and code is not replaced, the code generator logs the call site object
(CSO) for the miss in the miss cache. When an entry match succeeds, the code generator
logs the matched entry in the hit cache.

The code generator overwrites the hit and miss cache data each time it produces code.
The cache data reflects hits and misses for only the last application component (MATLAB
code or Simulink model) for which you generate code.

You can use the Code Replacement Viewer to review trace information based on logged
hit and miss trace data. The hit cache provides trace information that helps to verify code
replacements.

The miss cache and related miss data collected and stored in code replacement tables
provide trace information for misses. Use this information for misses to troubleshoot
expected code replacements that do not occur. Trace information for a miss:

• Identifies the call site object.
• Provides a link to the relevant source location for the miss.
• Includes information about the reason for the miss.

Related Examples
• “Verify Code Replacements”
• “Troubleshoot Code Replacement Misses”

22 Code Replacement Customization for Simulink Models

22-78

Verify Code Replacements

In this section...

“Code Replacement Table Validation” on page 22-78
“Validate Table Definition File” on page 22-78
“Review Library Content” on page 22-79
“Review Table Content” on page 22-80
“Review Code Replacements” on page 22-82

Code Replacement Table Validation

After you create or modify a code replacement table, use the following techniques to
examine and validate the table and its entries.

• Invoke the table definition file at the command prompt.
• Use the Code Replacement Viewer to examine libraries, tables, and entries.
• Trace code replacements from the source where you applied the code replacement

library.
• Examine code replacement hits and misses logged during code generation.

Validate Table Definition File

After you create or modify a code replacement table definition file, validate it. At the
command prompt, specify the name of the table in a call to the isvalid function. For
example:
isvalid(crl_table_sinfcn)

ans =

 1

MATLAB displays errors that occur. In the following example, MATLAB detects a typo in
a data type name.
isvalid(crl_table_sinfcn)

??? RTW_CORE:tfl:TflTable: Unsupported data type, 'dooble'.

 Verify Code Replacements

22-79

Error in ==> crl_table_sinfcn at 7

hTable.registerCFunctionEntry(100, 1, 'sin', 'dooble', 'sin_dbl', ...

Review Library Content

After you create or modify a code replacement library, use the Code Replacement Viewer
to review and verify the list of tables in the library and the entries in each table.

1 Open the viewer to display the contents of your library. At the command prompt,
enter the following command:

crviewer('library')

For example:

crviewer('Addition & Subtraction Examples')

2 Review the list of tables in the left pane. Are tables missing? Are the tables listed in
the correct relative order? By default, the viewer displays tables in search order.

3 In the left pane, click each table and review the list of entries in the center pane. Are
entries missing? Does the list include extraneous or unexpected entries?

22 Code Replacement Customization for Simulink Models

22-80

Review Table Content

After you create or modify a code replacement table, use the Code Replacement Viewer to
review and verify table entries.

1 Open the viewer to display the contents of your table. At the command prompt, enter
the following command. table is a MATLAB file that defines code replacement
tables. The file must be in the current folder or on the MATLAB path.

crviewer(table)

For example:

crviewer(crl_table_addsub)

 Verify Code Replacements

22-81

2 Review the list of entries in the center pane. Are entries missing? Does the list
include extraneous or unexpected entries? By default, the viewer displays entries in
search order.

3 In the center pane, click each entry and verify the entry information in the right
pane.

22 Code Replacement Customization for Simulink Models

22-82

• Argument order is correct.
• Conceptual argument names match code generator naming conventions.
• Implementation argument names are correct.
• Algorithm properties (for example, saturation and rounding mode) are set

correctly.
• Header or source file specification is not missing.
• I/O types are correct.
• Relative priority of entries is correct.

Review Code Replacements

After you review the content of your code replacement library and tables, generate code
and a code generation report. Verify that the code generator replaces code as you expect.

 Verify Code Replacements

22-83

The Code Replacements Report details the code replacement library functions that the
code generator uses for code replacements. The report provides a mapping between each
replacement instance and the model element that triggered the replacement.

The following example illustrates two complementary approaches to reviewing code
replacements:

• Check the Code Replacements Report section of the code generation report for
expected replacements.

• Trace code replacements.

For models that consist of model hierarchies, repeat the following procedure for each
model in the hierarchy. Generate code for and review the trace information of each
referenced model separately. Logged cache hit and miss information captured in the
Code Replacement Viewer is valid for the last model for which code was generated. As
you generate code for each model in the hierarchy, the code generator overwrites logged
information.

1 Open the model where you anticipate that a function or operator replacement occurs.
This example uses the model rtwdemo_crladdsub.

2 Configure the code generator to use your code replacement library. For this example,
set the library to Addition & Subtraction Examples.

3 Configure the code generation report to include the Code Replacements Report. On
the Code Generation > Report pane, select:

• Create code generation report
• Open report automatically
• Model-to-code
• Summarize which blocks triggered code replacements

4 Configure comments for the generated code. On the Code Generation >
Comments pane, select:

• Include comments
• Either or both of Simulink block / Stateflow object comments and

Simulink block descriptions

In the Code Replacements Report, these options include Simulink block
information.

22 Code Replacement Customization for Simulink Models

22-84

5 Configure the code generator to generate only code. Before you build an executable
file, review your code replacements in the generated code.

6 Generate code and a report.
7 Open the Code Replacements Report section of the code generation report.

The report lists the replacement functions that the code generator used. It provides a
mapping between each replacement instance and the Simulink block that triggered
the replacement.

Review the report:

• Check whether expected function and operator code replacements occurred.
• In the replacements sections, click each block link to see the source that triggered

the reported code replacement.
8 In the Simulink model window, use model-to-code highlighting to trace code

replacements. Identify and right-click a block where you expected code replacement

 Verify Code Replacements

22-85

to occur. Select C/C++ Code > Navigate to C/C++ Code. The code generation
report appears with the corresponding replacement code highlighted. In the example
model rtwdemo_crladdsub, right-click the Add8 block and select C/C++ Code >
Navigate to C/C++ Code.

Inspect the generated code to see if the function or operator replacement occurred as
you expected.

If a function or operator is not replaced as expected, the code generator used a higher-
priority (lower-priority value) match or did not find a match.

To analyze and troubleshoot code replacement misses, use the trace information that the
Code Replacement Viewer provides. See “Troubleshoot Code Replacement Misses”.

Related Examples
• “Replace Code Generated from Simulink Models”
• “Generate a Code Generation Report”

22 Code Replacement Customization for Simulink Models

22-86

• “Reports for Code Generation”
• “Traceability in Code Generation Report”
• “Choose a SIL or PIL Approach”
• “Program Builds”
• “Build and Run a Program”
• “Develop a Code Replacement Library”

More About
• “Code Replacement Hits and Misses”
• “What Is Code Tracing?”
• “About SIL and PIL Simulations”
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Customization Limitations”

External Web Sites
• “Replacing Math Functions and Operators”

 Troubleshoot Code Replacement Misses

22-87

Troubleshoot Code Replacement Misses

In this section...

“Miss Reason Messages” on page 22-87
“Analyze and Correct Code Replacement Misses” on page 22-88

Miss Reason Messages

The Code Replacement Viewer displays miss reason messages in trace information for
code replacement misses. A legend listing each message that appears in the miss report
precedes the report details. A message consists of:

• Numeric identifier, which identifies the message in the report details.
• Message text, which in some cases includes placeholders for names of arguments, call

site object values, table entry values, and property names.

For example:

1. Mismatched data types (argument name, CSO value, table entry value)

The parenthetical information represents placeholders for actual values that appear in
the report details.

In the Miss Source Locations table that lists the miss details, the Reason column
includes:

• The message identifier, as listed in the legend.
• The placeholder values for that instance of the miss reason message.

The following Reason details indicate a data type mismatch because the call site object
specifies data type int8 for arguments y1, u1, and u2, while the code replacement table
entry specifies uint32.

1. y1, int8, uint32

 u1, int8, uint32

 u2, int8, uint32

Depending on your situation and the reported miss reason, troubleshoot reported misses
by looking for instances of the following:

• A typo in the code replacement table entry definition or a source parameter setting.

22 Code Replacement Customization for Simulink Models

22-88

• Information missing from the code replacement table entry or a source parameter
setting.

• Invalid or incorrect information in the code replacement table entry definition or a
source parameter setting.

• Arguments incorrectly ordered in the code replacement table entry definition or the
source being replaced with replacement code.

• Failed algorithm classification for an addition or subtraction operation due to:

• An ideal accumulator not being calculated because the type of an input argument
is not fixed-point or the slope adjustment factors of the input arguments are not
equal.

• Input or output casts with a floating-point cast type.
• Input or output casts with cast types that have different slope adjustment factors

or biases.
• Output casts not being convertible to a single output cast.
• Input casts resulting in loss of bits.

Analyze and Correct Code Replacement Misses

The following example shows how to use Code Replacement Viewer trace information to
troubleshoot code replacement misses. You must have already reviewed and tested code
replacements for your model.

1 Review the code generated for a model element, looking for expected code
replacements. For this example, examine the code generated for block Sub32
in model rtwdemo_crladdsub. Right-click the block and select C/C++ Code >
Navigate to C/C++ Code.

The Code Generation Report opens to the location of the generated code for that
block.

The code generator replaced code, but the replacement was for the signed version of
the 32-bit subtraction operation. You expected an unsigned operation.

 Troubleshoot Code Replacement Misses

22-89

2 Regenerate or reopen the Code Replacements Report for your model. If you already
generated the code generation report that includes the Code Replacements Report
for model rtwdemo_crladdsub, open the file rtwdemo_crladdsub_ert_rtw/html/
rtwdemo_crladdsub_codegen_rpt.html. For information on how to regenerate
the report, see “Review Code Replacements”.

3 Click the link to open the Code Replacement Viewer.
4 In the viewer left pane, select your code replacement table. The following display

shows entries for code replacement table crl_table_addsub.

5 In the middle pane, select table entry RTW_OP_MINUS with implementation function
u32_sub_u32_u32.

6 In the right pane, select the Trace Information tab.

22 Code Replacement Customization for Simulink Models

22-90

The Trace Information is a table that lists the following information for each miss:

• Call site object preview. The call site object is the conceptual representation of
a subtraction operator. The code generator uses this object to query the code
replacement library for a match.

• A link to the source location in the model for which the code generator considered
replacing code.

• The reasons that the miss occurred. For the list of reasons that misses occur, see
“Miss Reason Messages” on page 22-87.

For this example, the report shows misses for two blocks: Sub32 and Sub8.
7 Find that source in the trace information. Depending on your situation and the

reported miss reason, consider looking for a condition such as a typo in the code
replacement table entry definition or in a source parameter setting. “Miss Reason
Messages” on page 22-87 lists conditions to consider.

For this example, determine why code for the Sub32 block was not replaced with
code for an unsigned 32-bit subtraction operation. The miss reason for the Sub32

 Troubleshoot Code Replacement Misses

22-91

block indicates a data type mismatch. The data type in the call site object for the
three arguments is a signed 32-bit integer. The code replacement entry specifies an
unsigned 32-bit integer.

8 Correct the model or code replacement table entry. If the issue is in the model, use
the source location link in the trace information to find the model element to correct.
For this example, you expected an unsigned subtraction operation for the Sub32
block. Click the link in the trace report for the Sub32 block.

The model opens with the Sub32 block highlighted.

Change the data type setting for the two input signals and the output signal for the
Sub32 block to uint32.

9 Regenerate code. Use the Code Replacement Viewer trace information to verify that
your model or code replacement table entry corrects the code replacement issue. In
the following display, the trace information shows a hit for block Sub32.

22 Code Replacement Customization for Simulink Models

22-92

Related Examples
• “Verify Code Replacements”
• “Addition and Subtraction Operator Code Replacement”

More About
• “Code Replacement Hits and Misses”

 Deploy Code Replacement Library

22-93

Deploy Code Replacement Library

When you are ready to package and deploy a custom code replacement library for others
to use,

1 Move your code replacement table files to an area that is on the MATLAB search
path and that is accessible to and shared by other users.

2 Move the rtwTargetInfo.m registration file, to an area that is on the MATLAB
search path and that is accessible to and shared by other users. If you are deploying
a library to a folder in a development environment that already contains a
rtwTargetInfo.m file, copy the registration code from your code replacement
library version of rtwTargetInfo.m and paste it into the shared version of that file.

3 Register the library customizations or restart MATLAB.
4 Verify that the libraries are available for configuring the code generator and that

code replacements occur as expected.
5 Inform users that the libraries are available and provide direction on when and how

to apply them.

Related Examples
• “Relocate Code to Another Development Environment”
• “Verify Code Replacements”
• “Develop a Code Replacement Library”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

22 Code Replacement Customization for Simulink Models

22-94

Math Function Code Replacement
This example shows how to define a code replacement mapping for a math function. The
example defines a mapping for the sin function programmatically. Alternatively, you can
use the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_sinfcn2()

%CRL_TABLE_SINFCN2 - Define function entry for code replacement table.

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create an entry for the function mapping with a call to the
RTW.TflCFunctionEntry function.

% Create entry for sin function replacement

fcn_entry = RTW.TflCFunctionEntry;

4 Set function entry parameters with a call to the
setTflCFunctionEntryParameters function.
setTflCFunctionEntryParameters(fcn_entry, ...

 'Key', 'sin', ...

 'Priority', 30, ...

 'ImplementationName', 'mySin', ...

 'ImplementationHeaderFile', 'basicMath.h',...

 'ImplementationSourceFile', 'basicMath.c');

5 Create conceptual arguments y1 and u1. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call.
createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1',...

 'IOType', 'RTW_IO_OUTPUT',...

 'DataTypeMode', 'double');

createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT',...

 'DataTypeMode', 'double');

6 Copy the conceptual arguments to the implementation arguments. There are
multiple ways to set up the implementation arguments. This example uses a call
to the copyConceptualArgsToImplementation function to create and add
implementation arguments to the entry by copying matching conceptual arguments.

 Math Function Code Replacement

22-95

copyConceptualArgsToImplementation(fcn_entry);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, fcn_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

Related Examples
• “Define Code Replacement Mappings”
• “Data Alignment for Code Replacement”
• “Algorithm-Based Code Replacement”
• “Reserved Identifiers and Code Replacement”
• “Customize Matching and Replacement Process for Functions”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “Code You Can Replace From Simulink Models”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

22 Code Replacement Customization for Simulink Models

22-96

Memory Function Code Replacement

This example shows how to define a code replacement mapping for a memory
function. The example defines a mapping for the memcpy function programmatically.
Alternatively, you can use the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_memcpy()

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create an entry for the function mapping with a call to the
RTW.TflCFunctionEntry function.

% Create entry for void* memcpy(void*, void*, size_t)

fcn_entry = RTW.TflCFunctionEntry;

4 Set function entry parameters with a call to the
setTflCFunctionEntryParameters function.
% Set SideEffects to 'true' for function returning void to prevent it from

% being optimized away.

setTflCFunctionEntryParameters(fcn_entry, ...

 'Key', 'memcpy', ...

 'Priority', 90, ...

 'ImplementationName', 'memcpy_int', ...

 'ImplementationHeaderFile', 'memcpy_int.h',...

 'SideEffects', true);

5 Create conceptual arguments y1, u1, u2, and u3. There are multiple ways to set up
the conceptual arguments. This example uses calls to the getTflArgFromString
and addConceptualArg functions to create and add the arguments.
arg = getTflArgFromString(hTable, 'y1', 'void*');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(fcn_entry, arg);

arg = getTflArgFromString(hTable, 'u1', 'void*');

addConceptualArg(fcn_entry, arg);

arg = getTflArgFromString(hTable, 'u2', 'void*');

addConceptualArg(fcn_entry, arg);

arg = getTflArgFromString(hTable, 'u3', 'size_t');

addConceptualArg(fcn_entry, arg);

6 Copy the conceptual arguments to the implementation arguments. There are
multiple ways to set up the implementation arguments. This example uses a call

 Memory Function Code Replacement

22-97

to the copyConceptualArgsToImplementation function to create and add
implementation arguments to the entry by copying matching conceptual arguments.

copyConceptualArgsToImplementation(fcn_entry);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, fcn_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example:

1 Register the code replacement mapping.
2 Create a model that uses the memcpy function for vector assignments. For example,

use In, Out, and Mux blocks to create the following model. (Alternatively, open the
example model rtwdemo_crlmath and copy the contents of Subsystem1 to a new
model.)

3 Select the diagram and use Edit > Subsystem to make it a subsystem.

4 Configure the subsystem with the following settings:

• On the Solver pane, select a fixed-step solver.
• On the Optimization > Signals and Parameters pane, select Use memcpy

for vector assignment and set Memcpy threshold (bytes) to 64.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your memory function entry.

22 Code Replacement Customization for Simulink Models

22-98

5 In the Model Explorer, configure the Signal Attributes for the In1, In2, and In3
source blocks. For each, set Port dimensions to [1,100], and set Data type to
int32. Apply the changes. Save the model.

6 Generate code and a code generation report.
7 Review the code replacements.

Related Examples
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”
• “Verify Code Replacements”
• “Data Alignment for Code Replacement”
• “Reserved Identifiers and Code Replacement”
• “Customize Matching and Replacement Process for Functions”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “Code You Can Replace From Simulink Models”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

 Nonfinite Function Code Replacement

22-99

Nonfinite Function Code Replacement
This example shows how to define a code replacement mapping for nonfinite utility
functions.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_nonfinite()

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create entries for the function mappings. To minimize the size of this function, the
example uses a local function, locAddFcnEnt, to group lines of code repeated for
each entry. A call to the RTW.TflCFunctionEntry function creates an entry for the
collection of local function entry definitions.
%% Create entries for nonfinite utility functions

% locAddFcnEnt(hTable, key, implName, out, in1, hdr)

locAddFcnEnt(hTable, 'getNaN', 'getNaN', 'double', 'void', 'nonfin.h');

locAddFcnEnt(hTable, 'getNaN', 'getNaNF', 'single', 'void', 'nonfin.h');

locAddFcnEnt(hTable, 'getInf', 'getInf', 'double', 'void', 'nonfin.h');

locAddFcnEnt(hTable, 'getInf', 'getInfF', 'single', 'void', 'nonfin.h');

locAddFcnEnt(hTable, 'getMinusInf', 'getMinusInf', 'double', 'void', 'nonfin.h');

locAddFcnEnt(hTable, 'getMinusInf', 'getMinusInfF', 'single', 'void', 'nonfin.h');

%% Local Function

function locAddFcnEnt(hTable, key, implName, out, in1, hdr)

 if isempty(hTable)

 return;

 end

 fcn_entry = RTW.TflCFunctionEntry;

4 Set function entry parameters with a call to the
setTflCFunctionEntryParameters function.
 setTflCFunctionEntryParameters(fcn_entry, ...

 'Key', key, ...

 'Priority', 90, ...

 'ImplementationName', implName, ...

 'ImplementationHeaderFile', hdr);

5 Create conceptual arguments y1 and u1. There are multiple ways to set up the
conceptual arguments. This example uses calls to the getTflArgFromString and
addConceptualArg functions to create and add the arguments.
 arg = getTflArgFromString(hTable, 'y1', out);

 arg.IOType = 'RTW_IO_OUTPUT';

 addConceptualArg(fcn_entry, arg);

22 Code Replacement Customization for Simulink Models

22-100

 arg = getTflArgFromString(hTable, 'u1', in1);

 addConceptualArg(fcn_entry, arg);

6 Copy the conceptual arguments to the implementation arguments. There are
multiple ways to set up the implementation arguments. This example uses a call
to the copyConceptualArgsToImplementation function to create and add
implementation arguments to the entry by copying matching conceptual arguments.
copyConceptualArgsToImplementation(fcn_entry);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, fcn_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example:

1 Register the code replacement mapping.
2 Create a model that uses a nonfinite function. For example, create a model that

includes a Math Function block that is set to the rem function. For example:

3 Configure the model with the following settings:

• On the Solver pane, select a fixed-step solver.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your memory function entry and select Support: non-finite
numbers.

4 In the Model Explorer, configure the Signal Attributes for the In1 and Constant
source blocks. For each source block, set Data type to double. Apply the changes.
Save the model.

5 Generate code and a code generation report.
6 Review the code replacements.

Related Examples
• “Define Code Replacement Mappings”

 Nonfinite Function Code Replacement

22-101

• “Register Code Replacement Mappings”
• “Verify Code Replacements”
• “Data Alignment for Code Replacement”
• “Reserved Identifiers and Code Replacement”
• “Customize Matching and Replacement Process for Functions”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “Code You Can Replace From Simulink Models”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

22 Code Replacement Customization for Simulink Models

22-102

Semaphore and Mutex Function Replacement

You can create a code replacement table for a custom target that supports concurrent
execution. Create table entries that specify custom implementations of semaphore or
mutex operations. The table must have four semaphore entries, four mutex entries, or
both, and include the table in a custom code replacement library. (The semaphore or
mutex entries are mutually dependent. Provide them in complete sets of four.)

Note: A custom target that supports concurrent multitasking must set the target
configuration parameter ConcurrentExecutionCompliant. For more information, see
“Support Concurrent Execution of Multiple Tasks” in the Simulink Coder documentation.

If the build process generates semaphore or mutex function calls for data transfer
between tasks during code generation for a multicore target environment, use a
custom library. The library can specify code replacements for custom semaphore or
mutex implementations that are optimal for your target environment. Using the Code
Replacement Tool (crtool) or equivalent code replacement functions, you can:

• Configure code replacement table entries for custom semaphore or mutex functions.
During system startup, execution of the code for data transfer between tasks, and
system shutdown the generated code calls these functions.

• Configure DWork arguments that represent global data, which the semaphore or
mutex functions access. A DWork pointer is passed to the model entry functions.

Generated mutex and semaphore code typically consists of these elements:

Code Generated Code

Model initialization Initialization function call that creates a mutex or
semaphore function to control entry to a critical section of
code.

Model step • Before code for a data transfer between tasks enters
the critical section, mutex lock or semaphore wait
function calls reserve the critical section of code.

• After code for a data transfer between tasks finishes
executing the critical section, mutex unlock or
semaphore post function calls release the critical
section of code.

 Semaphore and Mutex Function Replacement

22-103

Code Generated Code

Model termination Optional destroy function call to delete the mutex or
semaphore explicitly.

This example shows how to create code replacement table entries for a mutex
replacement scenario. You configure a multicore target model for concurrent execution
and for data transfer between tasks of differing rates, which Rate Transition blocks
handle. In the generated code for the model, each Rate Transition block has a separate,
unique mutex. Mutex lock and unlock operations within the Rate Transition block
generated code share access to the same global data. They achieve this by using the
unique mutex created for that Rate Transition block.

1 Open the Code Replacement Tool.
2 Create and open a new table.
3 Name the table crl_table_rt_mutex.
4 Create an entry for a mutex initialization function replacement.

a Select File > New entry > Semaphore entry to open a new table entry for
configuring a semaphore or mutex replacement.

b In the Mapping Information tab, use the Function parameter to select
Mutex Init. Initial default values for the table entry appear. In the
Conceptual function section, typically you can leave the argument settings at
their defaults.

c In the DWork attributes section, the Allocate DWork option is selected. The
dialog box provides a unique entry tag for the DWork argument d1.

22 Code Replacement Customization for Simulink Models

22-104

On the DWork attributes pane, configure a DWork argument to the
replacement function. The DWork argument supports sharing of a semaphore or
mutex between:

• Code that creates the semaphore or mutex
• Code that requests and relinquishes access
• Code that deletes the semaphore or mutex

In this example, the DWork argument for the Mutex Init function defines a
unique entry tag, entry_25576. That function also defines DWork arguments
for Mutex Lock, Mutex Unlock, and Mutex Destroy, which reference the
entry tag to share the DWork data.

The only data type supported for the DWork Data type parameter is void*.
d In the Replacement function section, enter a function name in the Name

field. This example uses myMutexCreate. In the list of Function arguments,
leave the DWork argument d1 data type as void**.

The C function signature preview is:

void myMutexCreate (void** d1);

 Semaphore and Mutex Function Replacement

22-105

e In the Replacement function section, select Function modifies internal
or global state. This option instructs the code generator not to optimize away
the implementation function described by this entry because it accesses global
memory values. Click Apply. Optionally, you can click Validate entry to
validate the information entered in the Mapping Information tab.

To create a sample table entry, configure the replacement function signature
without the replacement function and its build information. If header and source
files for these functions are available, select the Build Information table to
specify them.

f The Mutex Init table entry is complete. Optionally, you can save the table to a
file, and inspect the MATLAB code created for the table definition so far.

5 Repeat the following sequence to create the table entries for the mutex lock, unlock,
and destroy function replacements. Each table entry references the DWork unique
tag entry, entry_25576, defined in the Mutex Init table entry.

a Select File > New entry > Semaphore entry.
b In the Mapping Information tab, use the Function parameter to select

Mutex Lock, Mutex Unlock, or Mutex Destroy. Initial default values for the
table entry appear. In the Conceptual function section, typically you can leave
the argument settings at their defaults.

c For a Rate Transition block mutex, the wait, post, and destroy functions operate
on the DWork allocated at system startup by the mutex initialization function.
In the DWork attributes section, verify that the Allocate DWork option is
cleared. From the DWork Allocator entry drop-down list, select the entry tag
matching the value in the Mutex Init table entry. In this example, the entry
tag is entry_25576.

d In the Replacement function section, Name field, enter a function name. This
example uses myMutexLock, myMutexUnlock, and myMutexDelete. In the list
of Function arguments, leave the DWork argument d1 data type as void*.

22 Code Replacement Customization for Simulink Models

22-106

e In the Implementation attributes section, select the option Function
modifies internal or global state. This option instructs the code generator
not to optimize away the implementation function described by this entry
because it accesses global memory values.

f Optionally, supply build information for the replacement function on the Build
Information tab.

g Click Apply. In the middle pane, right-click the table entry and select Validate
entry(s).

6 When you have added the table entries for Mutex Lock, Mutex Unlock, and Mutex
Destroy to the entry for Mutex Init, the rate transition mutex replacement table
is complete. In the left-most pane, right-click the table name and select Validate
table. Address errors and repeat the table validation.

 Semaphore and Mutex Function Replacement

22-107

7 Save the table to a MATLAB file in your working folder, for example, using File >
Save table. The name of the saved file is the table name, crl_table_rt_mutex,
with an .m extension. Optionally, you can open the saved file and examine the
MATLAB code for the code replacement table definition.

To test this example:

1 Register the code replacement mapping.
2 Create a model that contains a rate transition for which the build process generates

mutex function calls. For example:

3 Configure the model for a multicore target environment and the following settings:

• On the Solver pane, select a fixed-step solver.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your mutex entry.

Related Examples
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”

22 Code Replacement Customization for Simulink Models

22-108

• “Verify Code Replacements”
• “Data Alignment for Code Replacement”
• “Reserved Identifiers and Code Replacement”
• “Customize Matching and Replacement Process for Functions”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “Code You Can Replace From Simulink Models”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

 Algorithm-Based Code Replacement

22-109

Algorithm-Based Code Replacement

For some math function blocks, you can control code replacement based on the
computation or approximation algorithm configured for that block. For example, you can
configure:

• The Reciprocal Sqrt block to use the Newton-Raphson or Exact computation
method.

• The Trigonometric Function block, with Function set to sin, cos, or sincos, to use
the approximation method CORDIC or None.

You can define code replacement entries to replace these functions for one or all of the
available computation methods. For example, you can define an entry to replace only
Newton-Raphson instances of the rSqrt function.

To set the algorithm for a function in an entry definition, use the EntryInfoAlgorithm
property in a call to the function setTflCFunctionEntryParameters. The following
table lists arguments for specifying the computation method to match during code
generation.

Function Argument

rSqrt • 'RTW_DEFAULT' (match the default computation method,
Exact)

• 'RTW_NEWTON_RAPHSON'

• 'RTW_UNSPECIFIED' (match any computation method)
sin

cos

sincos

• 'RTW_CORDIC'

• 'RTW_DEFAULT' (match the default approximation
method, None)

• 'RTW_UNSPECIFIED' (match any approximation method)

For example, to replace only Newton-Raphson instances of the rSqrt function, create
an entry as follows:

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_rsqrt()

%CRL_TABLE_RSQRT - Define function entry for code replacement table.

2 Within the function body, create the table by calling the function RTW.TflTable.

22 Code Replacement Customization for Simulink Models

22-110

hTable = RTW.TflTable;

3 Create an entry for the function mapping with a call to the
RTW.TflCFunctionEntry function.

% Create entry for rsqrt function replacement

fcn_entry = RTW.TflCFunctionEntry;

4 Set function entry parameters with a call to the
setTflCFunctionEntryParameters function.
setTflCFunctionEntryParameters(fcn_entry, ...

 'Key', 'rSqrt', ...

 'Priority', 80, ...

 'ImplementationName', 'rsqrt_newton', ...

 'ImplementationHeaderFile', 'rsqrt.h', ...

 'EntryInfoAlgorithm', 'RTW_NEWTON_RAPHSON');

5 Create conceptual arguments y1 and u1. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call.

createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'DataTypeMode', 'double');

createAndAddConceptualArg(e, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'DataTypeMode', 'double');

6 Copy the conceptual arguments to the implementation arguments. This example
uses a call to the copyConceptualArgsToImplementation function to create
and add implementation arguments to the entry by copying matching conceptual
arguments.
copyConceptualArgsToImplementation(fcn_entry);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, fcn_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

The generated code for a Newton-Raphson instance of the rSqrt function looks like the
following code:

/* Model step function */

 Algorithm-Based Code Replacement

22-111

void mrsqrt_step(void)

{

 /* Outport: '<Root>/Out1' incorporates:

 * Inport: '<Root>/In1'

 * Sqrt: '<Root>/rSqrtBlk'

 */

 mrsqrt_Y.Out1 = rsqrt_newton(mrsqrt_U.In1);

}

Related Examples
• “Math Function Code Replacement”
• “Define Code Replacement Mappings”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “Code You Can Replace From Simulink Models”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

22 Code Replacement Customization for Simulink Models

22-112

Lookup Table Function Code Replacement

In this section...

“Lookup Table Algorithm Replacement” on page 22-112
“Lookup Table Function Signatures” on page 22-112
“Interactive Mapping with Code Replacement Tool” on page 22-117
“Programmatic Specification” on page 22-122
“Sample Code Replacement Definition for the lookup2D Function” on page 22-129

Lookup Table Algorithm Replacement

You can configure the algorithm for table lookup operations and index searches to better
meet your application code requirements. Use the Algorithm tab of lookup table blocks.
For example, you can specify the interpolation, extrapolation, and index search methods.

If the code generated for available algorithm options does not meet requirements for your
application, create custom code replacement table entries to replace generated algorithm
code. You can create the table entries programmatically or interactively by using the
Code Replacement Tool.

For more information about using lookup table blocks, see “Nonlinearity” in the Simulink
documentation.

Lookup Table Function Signatures

To create code replacement table entries for a function corresponding to a lookup table
algorithm, you must have:

• Information about the conceptual function signature.
• Relevant algorithm parameters.

The following table provides the conceptual function signature information.

Conceptual Function Signature Argument Summary

y1 = interp1D(u1, u2, u3, u4) y1 – output
u1 – index
u2 – fraction
u3 – table data

 Lookup Table Function Code Replacement

22-113

Conceptual Function Signature Argument Summary

u4 – table dimension length
y1 = interp2D(u1, u2, u3, u4, u5, u6, u7) y1 – output

u1, u3 – index
u2, u4 – fraction
u5 – table data
u6, u7 – table dimension lengths

y1 = interp3D(u1, u2, u3, u4, u5, u6, u7, u8,

u9, u10)

y1 – output
u1, u3, u5 – index
u2, u4, u6 – fraction
u7 – table data
u8, u9, u10 – table dimension
lengths

y1 = interp4D(u1, u2, u3, u4, u5, u6, u7, u8,

u9, u10, u11, u12, u13)

y1 – output
u1, u3, u5, u7 – index
u2, u4, u6, u8 – fraction
u9 – table data
u10, u11, u12, u13 – table
dimension lengths

y1 = interp5D(u1, u2, u3, u4, u5, u6, u7, u8,

u9, u10, u11, u12, u13, u14, u15, u16)

y1 – output
u1, u3, u5, u7, u9 – index
u2, u4, u6, u8, u10 – fraction
u11 – table data
u12, u13, u14, u15, u16 – table
dimension lengths

y1 = interpND({ui, uf,}... ut, un...) y1 – output
ui, uf is an index and fraction pair
per dimension
ut – table data
un – table dimension lengths

y1 = lookup1D(u1, u2, u3, u4) y1 – output
u1 – input
u2 – breakpoint data
u3 – table data
u4 – table dimension length

22 Code Replacement Customization for Simulink Models

22-114

Conceptual Function Signature Argument Summary

y1 = lookup2D(u1, u2, u3, u4, u5, u6, u7) y1 – output
u1, u2 – input
u3, u4 – breakpoint data
u5 – table data
u6, u7 – table dimension lengths

y1 = lookup3D(u1, u2, u3, u4, u5, u6, u7, u8,

u9, u10)

y1 – output
u1, u2, u3 – input
u4, u5, u6 – breakpoint data
u7 – table data
u8, u9, u10 – table dimension
lengths

y1 = lookup4D(u1, u2, u3, u4, u5, u6, u7, u8,

u9, u10, u11, u12, u13)

y1 – output
u1, u2, u3, u4 – input
u5, u6, u7, u8 – breakpoint data
u9 – table data
u10, u11, u12, u13 – table
dimension lengths

y1 = lookup5D(u1, u2, u3, u4, u5, u6, u7, u8,

u9, u10, u11, u12, u13, u14, u15, u16)

y1 – output
u1, u2, u3, u4, u5 – input
u6, u7, u8, u9, u10 – breakpoint
data
u11 – table data
u12, u13, u14, u15, u16 – table
dimension lengths

y1 = lookupND(un,..., ub,..., ut, un...) y1 – output
un, input per dimension
ub, breakpoint per dimension
ut – table data
un – table dimension lengths

y1 = lookupND_Direct(u1, u2,...ui, ui+1) y1 – output
u1...ui – input
ui+1 – table data

 Lookup Table Function Code Replacement

22-115

Conceptual Function Signature Argument Summary

y1, y2 = prelookup(u1, u2, u3) y1 – index
y2 – fraction
u1 – input
u2 – breakpoint data
u3 – number of breakpoints

When defining a table entry programmatically, you might also need to change the values
of required (primary) and optional algorithm parameters.

• Set values for required parameters to achieve code replacement.
• If you do not set a value for an optional parameter, the algorithm parameter software

applies don’t care. The code replacement software ignores the parameter while
searching for matches.

To look up algorithm parameter information for a lookup table function:

1 Create a table entry for a function.

tableEntry = RTW.TflCFunctionEntry;

2 Identify the lookup table function in the table entry. Use the Key table entry
parameter in a call to setTflCFunctionEntryParameters. The following example
identifies an entry for the prelookup function.
setTflCFunctionEntryParameters(tableEntry, ...

 'Key', 'prelookup', ...

 'Priority', 100, ...

 'ImplementationName', 'myPrelookup');

3 Get the algorithm parameter set for the entry with a call to
getAlgorithmParameters.
algParams = getAlgorithmParameters(tableEntry);

algParams =

 Prelookup with properties:

 ExtrapMethod: [1x1 coder.algorithm.parameter.ExtrapMethod]

 RndMeth: [1x1 coder.algorithm.parameter.RndMeth]

 IndexSearchMethod: [1x1 coder.algorithm.parameter.IndexSearchMethod]

 UseLastBreakpoint: [1x1 coder.algorithm.parameter.UseLastBreakpoint]

 RemoveProtectionInput: [1x1 coder.algorithm.parameter.RemoveProtectionInput]

4 Examine information available for each parameter.
algParams.ExtrapMethod

ans =

22 Code Replacement Customization for Simulink Models

22-116

 ExtrapMethod with properties:

 Name: 'ExtrapMethod'

 Options: {'Linear' 'Clip'}

 Primary: 1

 Value: {'Linear'}

algParams.RndMeth

ans =

 RndMeth with properties:

 Name: 'RndMeth'

 Options: {1x7 cell}

 Primary: 0

 Value: {1x7 cell}

algParams.RndMeth.Value

ans =

 Columns 1 through 6

 'Ceiling' 'Convergent' 'Floor' 'Nearest' 'Round' 'Simplest'

 Column 7

 'Zero'

algParams.IndexSearchMethod

ans =

 IndexSearchMethod with properties:

 Name: 'IndexSearchMethod'

 Options: {'Linear search' 'Binary search' 'Evenly spaced points'}

 Primary: 0

 Value: {'Binary search' 'Evenly spaced points' 'Linear search'}

algParams.UseLastBreakpoint

ans =

 UseLastBreakpoint with properties:

 Name: 'UseLastBreakpoint'

 Options: {'off' 'on'}

 Primary: 0

 Value: {'off' 'on'}

algParams.RemoveProtectionInput

ans =

 RemoveProtectionInput with properties:

 Name: 'RemoveProtectionInput'

 Options: {'off' 'on'}

 Primary: 0

 Value: {'off' 'on'}

 Lookup Table Function Code Replacement

22-117

Interactive Mapping with Code Replacement Tool

This example shows how to specify a code replacement table entry for a lookup table
algorithm by using the Code Replacement Tool.

Open and Examine Example Replacement Function

Identify or create the C or C++ replacement function for the algorithm that you want to
use in place of a Simulink software algorithm.

This example uses the following C replacement function header and source files.
These files are in the folder matlab/help/toolbox/ecoder/examples/
code_replacement:

• myLookup1D.h

• myLookup1D.c

Place a copy of these files in your working folder.

Open and examine the code for myLookup1D.h.
real_T my_Lookup1D_Repl(real_T u0, const real_T *bp0, const real_T *table, uint32_T tdl);

Open and examine the code in myLookup1D.c. Note the function signature. When you
enter the implementation argument specification in the Code Replacement Tool, specify
argument properties.
#include "myLookup1D.h"

real_T my_Lookup1D_Repl(real_T u0, const real_T *bp0, const real_T *table, uint32_T tdl)

{

 real_T y;

 uint16_T frac;

 uint32_T bpIdx;

 uint32_T maxIndex=tdl-1;

 if (u0 <= bp0[0U]) {

 bpIdx = 0U;

 frac = 0U;

 } else if (u0 < bp0[maxIndex]) {

 bpIdx = maxIndex >> 1U;

 while ((u0 < bp0[bpIdx]) && (bpIdx > 0U)) {

 bpIdx--;

 }

 while ((bpIdx < maxIndex - 1U) && (u0 >= bp0[bpIdx + 1U])) {

 bpIdx++;

 }

 frac = (uint16_T)((u0 - bp0[bpIdx]) / (bp0[bpIdx + 1U] -

22 Code Replacement Customization for Simulink Models

22-118

 bp0[bpIdx]) * 32768.0);

 } else {

 bpIdx = maxIndex;

 frac = 0U;

 }

 if (bpIdx == maxIndex) {

 y = table[bpIdx];

 } else {

 y = (table[bpIdx + 1U] - table[bpIdx]) * ((real_T)frac * 3.0517578125E-5) +

 table[bpIdx];

 }

 return y;

}

Open and Examine the Example Model

This example uses the model matlab/help/toolbox/ecoder/examples/
code_replacement/lookup1d.slx to test your code replacement specification. Place a
copy of the model in your working folder and name it my_lookup1d.slx.

Open and examine the model. Note input and output specifications and block parameter
settings. To achieve a match, you must specify conceptual arguments based on how the 1-
D Lookup Table block is configured in the example model.

Create Code Replacement Table

1 At the command prompt, enter crtool to open the Code Replacement Tool.
2 Add a new table, select that table, and add a new function entry.
3 On the Mapping Information tab, select Custom for the Function parameter.
4 Look up the call signature and algorithm parameter information for the lookup table

function that you want to update with an algorithm replacement. See “Lookup Table
Function Signatures” on page 22-112.

 Lookup Table Function Code Replacement

22-119

For this example, you replace the algorithm for the conceptual function associated
with the 1-D Lookup Table block. The signature for that function is:

y1 = lookup1D(u1, u2, u3, u4)

Arguments u1, u2, u3, u4 represent input, breakpoint data, table data, and table
dimension length, respectively. The function returns output to y1.

5 To the right of the Function drop-down list, in the function-name text box, enter
the name of the Simulink lookup table function. For this example, type the name
lookup1D. Type the name exactly as it appears in the documented signature,
including character casing. Press Enter.

The tool displays algorithm parameter settings that trigger a match for the 1-
D Lookup Table block in the example model. Required parameters appear with
only one value. For this example, do not change the values. Optional parameters
appear with multiple values. Changes to optional parameters do not affect the match
process.

6 Specify the conceptual arguments. Under the Conceptual arguments list box,
click + to add the arguments that are in the documented function signature. The
lookup1D function takes one output argument and four input arguments. Click +
five times.

The tool creates an output argument y1 and four input arguments u1, u2, u3, and
u4. By default, the four arguments are scalars of type double.

You can adjust the conceptual argument properties. For this example, you do not
make changes for y1 and u1. However, as the block parameter dialog box for the
example model shows, you must adjust the argument properties for the breakpoint
and table data arguments.

22 Code Replacement Customization for Simulink Models

22-120

Adjust the conceptual argument properties by using the following table. Click Apply.

Signature
Argument
Name

Conceptual
Argument Name

Data type I/O type Argument
type

Lower range Upper range

y y1 double OUTPUT Scalar Not
applicable

Not
applicable

u1 u1 double INPUT Scalar Not
applicable

Not
applicable

bp1 u2 double INPUT Matrix [0 0] [Inf Inf]

table u3 double INPUT Matrix [0 0] [Inf Inf]

tdl u4 uint32 INPUT Scalar Not
applicable

Not
applicable

7 Enter information for the replacement function prototype. The prototype for the
example function is:
real_T my_Lookup1D_Repl(real_T u0, const real_T *bp0, const real_T *table, uint32_T tdl)

 Lookup Table Function Code Replacement

22-121

In the Replacement function > Function prototype section, type the function
name my_Lookup1D_Repl in the Name text box.

8 Specify the arguments for the replacement function. Under the Function
arguments list box, click + five times to add five implementation arguments.

You might need to adjust the function argument properties. As the replacement
function signature shows, adjust the argument properties for the breakpoint, table
data, and table dimension length arguments. For u2 (breakpoints) and u3 (table),
select the Const check box. For u4, set Data type to uint32.

The function signature preview should appear as follows:
double my_Lookup1D_Repl(double u1, const double *u2, const double *u3, uint32 u4)

9 Set relevant implementation attributes. Use the default settings.
10 Validate the entry. If the tool reports errors, fix them, and retry the validation.

Repeat the procedure until the tool does not report errors.
11 Save the code replacement table in your working folder as

my_lookup_replacement_table.m.

Specify Build Information

On the Build Information tab, specify information relevant to generating C or
C++ code and building an executable from the model. Enter myLookup1D.h for
Implementation Header File and myLookup1D.c for Implementation Source File.

If you copied the example files to a folder other than the working folder containing the
test model, lookup1d.slx, specify the source and header file paths. Otherwise, leave
the other Build Information parameters set to default values. Click Apply.

Test the Entry

To test this example:

1 Register the code replacement mapping.

22 Code Replacement Customization for Simulink Models

22-122

2 Use the example model matlab/help/toolbox/ecoder/examples/
code_replacement/lookup1d.slx.

3 Configure the model with the following settings:

• On the Solver pane, select a fixed-step solver.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your memory function entry.

Programmatic Specification

This example shows how to specify code replacement table entries for lookup table
functions programmatically.

Open and Examine Example Replacement Function

Identify or create the C or C++ replacement function for the algorithm that you want to
use in place of a Simulink software algorithm.

This example uses the following C replacement function header and source files.
These files are in the folder matlab/help/toolbox/ecoder/examples/
code_replacement:

• myLookup1D.h

• myLookup1D.c

Place a copy of these files in your working folder.

Open and examine the code for myLookup1D.h.
real_T my_Lookup1D_Repl(real_T u0, const real_T *bp0, const real_T *table, uint32_T tdl);

Open and examine the code in myLookup1D.c. Note the function signature. When you
enter the implementation argument specification in the Code Replacement Tool, specify
argument properties.
#include "myLookup1D.h"

real_T my_Lookup1D_Repl(real_T u0, const real_T *bp0, const real_T *table, uint32_T tdl)

{

 real_T y;

 uint16_T frac;

 uint32_T bpIdx;

 uint32_T maxIndex=tdl-1;

 Lookup Table Function Code Replacement

22-123

 if (u0 <= bp0[0U]) {

 bpIdx = 0U;

 frac = 0U;

 } else if (u0 < bp0[maxIndex]) {

 bpIdx = maxIndex >> 1U;

 while ((u0 < bp0[bpIdx]) && (bpIdx > 0U)) {

 bpIdx--;

 }

 while ((bpIdx < maxIndex - 1U) && (u0 >= bp0[bpIdx + 1U])) {

 bpIdx++;

 }

 frac = (uint16_T)((u0 - bp0[bpIdx]) / (bp0[bpIdx + 1U] -

 bp0[bpIdx]) * 32768.0);

 } else {

 bpIdx = maxIndex;

 frac = 0U;

 }

 if (bpIdx == maxIndex) {

 y = table[bpIdx];

 } else {

 y = (table[bpIdx + 1U] - table[bpIdx]) * ((real_T)frac * 3.0517578125E-5) +

 table[bpIdx];

 }

 return y;

}

Review Lookup Function Signature

Look up the call signature information for the lookup function that you want to update
with an algorithm replacement. See “Lookup Table Function Signatures” on page
22-112.

Replace the algorithm for the function associated with the 1–D Lookup Table block. The
signature for that function is:

y1 = lookup1D(u1, u2, u3, u4)

Arguments u1, u2, u3, and u4 represent input, breakpoint data, table data, and table
dimension length, respectively. The function returns output to y1.

Create Code Replacement Entry

Create a code replacement table file as a MATLAB function, that describes the lookup
table function code replacement table entries. Place a copy of the file matlab/help/
toolbox/ecoder/examples/code_replacement/Lookup1D_CRL_table.m in
your working folder. This file defines a code replacement table for the C function
my_Lookup1D_Repl.

22 Code Replacement Customization for Simulink Models

22-124

Open Lookup1D_CRL_table.m and examine the definition.

1 Create a table definition file that contains a function definition. For example:

function hLib = my_lookup_replacement_table

2 Within the function body, create the table by calling the function RTW.TflTable.

hLib = RTW.TflTable;

3 Create an entry for the function mapping with a call to the
RTW.TflCFunctionEntry function.

hEnt = RTW.TflCFunctionEntry;

4 Set function entry parameters with a call to the
setTflCFunctionEntryParameters function. The function key, implementation
name, and header and source files in the function call identify the Simulink lookup
table function name, lookup1D, and the following information for replacement
function my_Lookup1D_Repl:

• Function name
• Header file
• Source file

Specify the Simulink lookup table function name exactly as it appears in the
documented signature, including character casing (see “Lookup Table Function
Signatures” on page 22-112). If you copied the example files to a folder other than
the working folder that contains the test model, lookup1d.slx, specify the source
and header file paths.
setTflCFunctionEntryParameters(hEnt, ...

 'Key', 'lookup1D', ...

 'Priority', 100, ...

 'ImplementationName', 'my_Lookup1D_Repl', ...

 'ImplementationHeaderFile', 'myLookup1D.h', ...

 'ImplementationSourceFile', 'myLookup1D.c', ...

 'GenCallback', 'RTW.copyFileToBuildDir');

5 Create conceptual arguments and add them to the entry. This example uses calls to
the getTflArgFromString and addConceptualArg functions to create and add
the arguments.

The example defines five conceptual arguments for the lookup1D function, one
output argument y1 and four input arguments u1, u2, u3, and u4. Arguments y1
and u1 are defined as scalar double data. Arguments u2 and u3 represent bp1 and

 Lookup Table Function Code Replacement

22-125

table in the signature and are defined as 1x10 matrices of double data. Argument
u4 represents tdl and is defined as scalar of uint32 data. This definition triggers a
match with the example model.
arg = hEnt.getTflArgFromString('y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(hEnt, arg);

arg = hEnt.getTflArgFromString('u1','double');

addConceptualArg(hEnt, arg);

arg = RTW.TflArgMatrix('u2', 'RTW_IO_INPUT', 'double');

arg.DimRange = [0 0; Inf Inf];

addConceptualArg(hEnt, arg);

arg = RTW.TflArgMatrix('u3', 'RTW_IO_INPUT', 'double');

arg.DimRange = [0 0; Inf Inf];

addConceptualArg(hEnt, arg);

arg = hEnt.getTflArgFromString('u4','uint32');

addConceptualArg(hEnt, arg);

6 Review the algorithm parameter information for the lookup function that you want
to update with an algorithm replacement. Use the getAlgorithmParameters
function to display the parameter information.
algParams = getAlgorithmParameters(hEnt)

algParams =

 Lookup with properties:

 InterpMethod: [1x1 coder.algorithm.parameter.InterpMethod]

 ExtrapMethod: [1x1 coder.algorithm.parameter.ExtrapMethod]

 RndMeth: [1x1 coder.algorithm.parameter.RndMeth]

 IndexSearchMethod: [1x1 coder.algorithm.parameter.IndexSearchMethod]

 UseLastTableValue: [1x1 coder.algorithm.parameter.UseLastTableValue]

 RemoveProtectionInput: [1x1 coder.algorithm.parameter.RemoveProtectionInput]

 SaturateOnIntegerOverflow: [1x1 coder.algorithm.parameter.SaturateOnIntegerOverflow]

 SupportTunableTableSize: [1x1 coder.algorithm.parameter.SupportTunableTableSize]

 BPPower2Spacing: [1x1 coder.algorithm.parameter.BPPower2Spacing]

Examine the information for each parameter. The Options property lists possible
values. Primary indicates whether a parameter is required (1) or optional (0). The
Value property specifies the current value. For required parameters, initially,
Value is set to the default value for a given lookup table function.

algParams.InterpMethod

ans =

 InterpMethod with properties:

22 Code Replacement Customization for Simulink Models

22-126

 Name: 'InterpMethod'

 Options: {'Linear' 'Flat' 'Nearest'}

 Primary: 1

 Value: {'Linear'}

algParams.RndMeth

ans =

 RndMeth with properties:

 Name: 'RndMeth'

 Options: {1x7 cell}

 Primary: 0

 Value: {1x7 cell}

algParams.RndMeth.Options

ans =

 Columns 1 through 5

 'Ceiling' 'Convergent' 'Floor' 'Nearest' 'Round'

 Columns 6 through 7

 'Simplest' 'Zero'

algParams.RndMeth

ans =

 RndMeth with properties:

 Name: 'RndMeth'

 Options: {1x7 cell}

 Primary: 0

 Value: {1x7 cell}

.

.

.

7 Set the algorithm properties for the lookup1D table entry. Assign a value to each
parameter. Update the parameter settings for the entry by calling the function

 Lookup Table Function Code Replacement

22-127

setAlgorithmParameters. The following parameter settings trigger a match with
the example model.

algParams.InterpMethod = 'Linear';

algParams.ExtrapMethod = 'Clip';

algParams.RndMeth = 'Round';

algParams.IndexSearchMethod = 'Linear search';

algParams.UseLastTableValue = 'Evenly spaced point';

algParams.RemoveProtectionInput = 'off';

algParams.SaturateOnIntegerOverflow = 'off';

algParams.SupportTunableTableSize = 'off';

algParams.BPPower2Spacing = 'off';

setAlgorithmParameters(hEnt, algParams);

ans =

 RndMeth with properties:

 Name: 'RndMeth'

 Options: {1x7 cell}

 Primary: 0

 Value: {1x7 cell}

.

.

.

To verify your changes, call getAlgorithmParameters to get the parameter set for
the table entry. Examine the value of each parameter.

getAlgorithmParameters(hEnt, algParams);

algParams.InterpMethod.Value

ans =

 'Linear'

algParams.ExtrapMethod.Value

ans =

 'Clip'

algParams.RndMeth.Value

ans =

22 Code Replacement Customization for Simulink Models

22-128

 'Round'

.

.

.

8 Create the implementation arguments and add them to the entry. This example
uses calls to the getTflArgFromString function to create five implementation
arguments that map to arguments in the replacement function prototype: one output
argument y1 and four input arguments u1, u2, u3, and u4. The convenience methods
setReturn and addArgument specify whether an argument is a return value or
argument. The addArgument function also adds each argument to the entry’s array
of implementation arguments.

arg = hEnt.getTflArgFromString('y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setReturn(arg);

arg = hEnt.getTflArgFromString('u1','double');

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u2','double*');

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u3','double*');

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u4','uint32');

hEnt.Implementation.addArgument(arg);

9 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hLib, hEnt);

10 Save the table definition file. Use the name of the table definition function to name
the file.

Test the Entry

To test this example:

1 Register the code replacement mapping.
2 Use the example model matlab/help/toolbox/ecoder/examples/

code_replacement/lookup1d.slx.
3 Configure the model with the following settings:

 Lookup Table Function Code Replacement

22-129

• On the Solver pane, select a fixed-step solver.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your memory function entry.

Sample Code Replacement Definition for the lookup2D Function

The following code shows a replacement definition for the lookup2D function.

function hLib = my_2dlookup_replacement_table

hLib = RTW.TflTable;

hEnt = RTW.TflCFunctionEntry;

setTflCFunctionEntryParameters(hEnt, ...

 'Key', 'lookup2D', ...

 'Priority', 100, ...

 'ImplementationName', 'custom_lookup2d', ...

 'ImplementationHeaderFile', 'custom_lookup2d.h', ...

 'ImplementationSourceFile', 'custom_lookup2d.c', ...

 'GenCallback', 'RTW.copyFileToBuildDir');

% Conceptual Args

arg = hEnt.getTflArgFromString('y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(hEnt, arg);

arg = hEnt.getTflArgFromString('u1','double');

addConceptualArg(hEnt, arg);

arg = hEnt.getTflArgFromString('u2','double');

addConceptualArg(hEnt, arg);

arg = RTW.TflArgMatrix('u3', 'RTW_IO_INPUT', 'double');

arg.DimRange = [1 1; 10 1];

addConceptualArg(hEnt, arg);

arg = RTW.TflArgMatrix('u4', 'RTW_IO_INPUT', 'double');

arg.DimRange = [1 1; 10 1];

addConceptualArg(hEnt, arg);

22 Code Replacement Customization for Simulink Models

22-130

arg = RTW.TflArgMatrix('u5', 'RTW_IO_INPUT', 'double');

arg.DimRange = [1 1; 10 1];

addConceptualArg(hEnt, arg);

arg = hEnt.getTflArgFromString('u6','uint32');

addConceptualArg(hEnt, arg);

arg = hEnt.getTflArgFromString('u7','uint32');

addConceptualArg(hEnt, arg);

% Algorithm Parameters

addAlgorithmProperty(hEnt, 'ExtrapMethod','Clip');

addAlgorithmProperty(hEnt, 'IndexSearchMethod','Linear search');

addAlgorithmProperty(hEnt, 'InterpMethod','Linear');

addAlgorithmProperty(hEnt, 'RemoveProtectionInput','off');

addAlgorithmProperty(hEnt, 'UseLastTableValue','on');

% Implementation Args

arg = hEnt.getTflArgFromString('y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setReturn(arg);

arg = hEnt.getTflArgFromString('u1','double');

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u2','double');

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u3','double*');

arg.Type.BaseType.ReadOnly = true;

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u4','double*');

arg.Type.BaseType.ReadOnly = true;

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u5','double*');

arg.Type.BaseType.ReadOnly = true;

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u6','uint32');

 Lookup Table Function Code Replacement

22-131

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u7','uint32');

hEnt.Implementation.addArgument(arg);

hLib.addEntry(hEnt);

Related Examples
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”
• “Verify Code Replacements”
• “Data Alignment for Code Replacement”
• “Reserved Identifiers and Code Replacement”
• “Customize Matching and Replacement Process for Functions”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “Code You Can Replace From Simulink Models”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

22 Code Replacement Customization for Simulink Models

22-132

Data Alignment for Code Replacement

In this section...

“Code Replacement Data Alignment” on page 22-132
“Specify Data Alignment Requirements for Function Arguments” on page 22-132
“Provide Data Alignment Specifications for Compilers” on page 22-134
“Basic Example of Code Replacement Data Alignment” on page 22-138

Code Replacement Data Alignment

Code replacement libraries can align data objects passed into a replacement function to
a specified boundary. You can take advantage of function implementations that require
aligned data to optimize application performance. To configure data alignment for a
function implementation:

1 Specify the data alignment requirements in a code replacement entry. Specify
alignment separately for each implementation function argument or collectively for
all function arguments. See “Specify Data Alignment Requirements for Function
Arguments” on page 22-132.

2 Specify the data alignment capabilities and syntax for one or more compilers.
Include the alignment specifications in a library registration entry in the
rtwTargetInfo.m file. See “Provide Data Alignment Specifications for Compilers”
on page 22-134.

3 Register the library containing the table entry and alignment specification object.
4 Configure the code generator to use the code replacement library and generate code.

Observe the results.

For examples, see “Basic Example of Code Replacement Data Alignment” on page
22-138 and the “Data Alignment for Function Implementations” section of the
“Replacing Math Functions and Operators” example page.

Specify Data Alignment Requirements for Function Arguments

To specify the data alignment requirement for an argument in a code replacement entry:

• If you are defining a replacement function in a code replacement table registration
file, create an argument descriptor object (RTW.ArgumentDescriptor). Use its

 Data Alignment for Code Replacement

22-133

AlignmentBoundary property to specify the required alignment boundary and
assign the object to the argument Descriptor property.

• If you are defining a replacement function using the Code Replacement Tool, on
the Mapping Information tab, in the Argument properties section for the
replacement function, enter a value for the Alignment value parameter.

The AlignmentBoundary property (or Alignment value parameter) specifies the
alignment boundary for data passed to a function argument, in number of bytes. The
AlignmentBoundary property is valid only for addressable objects, including matrix and
pointer arguments. It is not applicable for value arguments. Valid values are:

• -1 (default) — If the data is a Simulink.Bus, Simulink.Signal, or
Simulink.Parameter object, specifies that the code generator determines an
optimal alignment based on usage. Otherwise, specifies that there is not an alignment
requirement for this argument.

• Positive integer that is a power of 2, not exceeding 128 — Specifies number of bytes
in the boundary. The starting memory address for the data allocated for the function
argument is a multiple of the specified value. If you specify an alignment boundary
that is less than the natural alignment of the argument data type, the alignment
directive is emitted in the generated code. However, the target compiler ignores the
directive.

The following code specifies the AlignmentBoundary for an argument as 16 bytes.

hLib = RTW.TflTable;

entry = RTW.TflCOperationEntry;

22 Code Replacement Customization for Simulink Models

22-134

arg = getTflArgFromString(hLib, 'u1','single*');

desc = RTW.ArgumentDescriptor;

desc.AlignmentBoundary = 16;

arg.Descriptor = desc;

entry.Implementation.addArgument(arg);

The equivalent alignment boundary specification in the Code Replacement Tool dialog
box is in this figure.

Note: If your model imports Simulink.Bus, Simulink.Parameter, or
Simulink.Signal objects, specify an alignment boundary in the object properties,
using the Alignment property. For more information, see Simulink.Bus,
Simulink.Parameter, and Simulink.Signal.

Provide Data Alignment Specifications for Compilers

To support data alignment in generated code, describe the data alignment capabilities
and syntax for your compilers in the code replacement library registration. Provide one or
more alignment specifications for each compiler in a library registry entry.

To describe the data alignment capabilities and syntax for a compiler:

• If you are defining a code replacement library registration entry in a
rtwTargetInfo.m customization file, add one or more AlignmentSpecification
objects to an RTW.DataAlignment object. Attach the RTW.DataAlignment object to
the TargetCharacteristics object of the registry entry.

The RTW.DataAlignment object also has the property DefaultMallocAlignment,
which specifies the default alignment boundary, in bytes, that the compiler uses for
dynamically allocated memory. If the code generator uses dynamic memory allocation
for a data object involved in a code replacement, this value determines if the memory
satisfies the alignment requirement of the replacement. If not, the code generator

 Data Alignment for Code Replacement

22-135

does not use the replacement. The default value for DefaultMallocAlignment is
-1, indicating that the default alignment boundary used for dynamically allocated
memory is unknown. In this case, the code generator uses the natural alignment of
the data type to determine whether to allow a replacement.

Additionally, you can specify the alignment boundary for complex types by using the
addComplexTypeAlignment function.

• If you are generating a customization file function using the Code Replacement Tool,
fill out the following fields for each compiler.

Click the plus (+) symbol to add additional compiler specifications.

For each data alignment specification, provide the following information.

Alignment-

Specification

Property

Dialog Box
Parameter

Description

AlignmentType Alignment
type

Cell array of predefined enumerated strings, specifying
which types of alignment this specification supports.

• DATA_ALIGNMENT_LOCAL_VAR — Local variables.
• DATA_ALIGNMENT_GLOBAL_VAR — Global variables.

22 Code Replacement Customization for Simulink Models

22-136

Alignment-

Specification

Property

Dialog Box
Parameter

Description

• DATA_ALIGNMENT_STRUCT_FIELD — Individual
structure fields.

• DATA_ALIGNMENT_WHOLE_STRUCT — Whole structure,
with padding (individual structure field alignment, if
specified, is favored and takes precedence over whole
structure alignment).

Each alignment specification must specify at
least DATA_ALIGNMENT_GLOBAL_VAR and
DATA_ALIGNMENT_STRUCT_FIELD.

AlignmentPosition Alignment
position

Predefined enumerated string specifying the position in
which you must place the compiler alignment directive for
alignment type DATA_ALIGNMENT_WHOLE_STRUCT:

• DATA_ALIGNMENT_PREDIRECTIVE — The alignment
directive is emitted before struct st_tag{…}, as part
of the type definition statement (for example, MSVC).

• DATA_ALIGNMENT_POSTDIRECTIVE — The alignment
directive is emitted after struct st_tag{…}, as part of
the type definition statement (for example, gcc).

• DATA_ALIGNMENT_PRECEDING_STATEMENT —
The alignment directive is emitted as a standalone
statement immediately preceding the definition of the
structure type. A semicolon (;) must terminate the
registered alignment syntax.

• DATA_ALIGNMENT_FOLLOWING_STATEMENT —
The alignment directive is emitted as a standalone
statement immediately following the definition of the
structure type. A semicolon (;) must terminate the
registered alignment syntax.

For alignment types other than
DATA_ALIGNMENT_WHOLE_STRUCT, code generation uses
alignment position DATA_ALIGNMENT_PREDIRECTIVE.

 Data Alignment for Code Replacement

22-137

Alignment-

Specification

Property

Dialog Box
Parameter

Description

AlignmentSyntax-

Template

Alignment
syntax

Specifies the alignment directive string that the compiler
supports. The string is registered as a syntax template that
has placeholders in it. These placeholders are supported:

• %n — Replaced by the alignment boundary for the
replacement function argument.

• %s — Replaced by the aligned symbol, usually the
identifier of a variable.

For example, for the gcc compiler, you can specify
__attribute__((aligned(%n))), or for the MSVC
compiler, __declspec(align(%n)).

SupportedLanguagesSupported
languages

Cell array specifying the languages to which this alignment
specification applies, among c and c++. Sometimes
alignment syntax and position differ between languages for
a compiler.
.

Here is a data alignment specification for the GCC compiler:

da = RTW.DataAlignment;

as = RTW.AlignmentSpecification;

as.AlignmentType = {'DATA_ALIGNMENT_LOCAL_VAR', ...

 'DATA_ALIGNMENT_STRUCT_FIELD', ...

 'DATA_ALIGNMENT_GLOBAL_VAR'};

as.AlignmentSyntaxTemplate = '__attribute__((aligned(%n)))';

as.AlignmentPosition = 'DATA_ALIGNMENT_PREDIRECTIVE';

as.SupportedLanguages = {'c', 'c++'};

da.addAlignmentSpecification(as);

tc = RTW.TargetCharacteristics;

tc.DataAlignment = da;

Here is the corresponding specification in the Generate customization dialog box of
the Code Replacement Tool.

22 Code Replacement Customization for Simulink Models

22-138

Basic Example of Code Replacement Data Alignment

A simple example of the complete workflow for data alignment specified for code
replacement is:

1 Create and save the following code replacement table definition file,
crl_table_mmul_4x4_single_align.m. This table defines a replacement entry
for the * (multiplication) operator, the single data type, and input dimensions
[4,4]. The entry also specifies a data alignment boundary of 16 bytes for each
replacement function argument. The entry expresses the requirement that the
starting memory address for the data allocated for the function arguments during
code generation is a multiple of 16.
function hLib = crl_table_mmul_4x4_single_align

%CRL_TABLE_MMUL_4x4_SINGLE_ALIGN - Describe matrix operator entry with data alignment

hLib = RTW.TflTable;

entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(entry, ...

 'Key', 'RTW_OP_MUL', ...

 'Priority', 90, ...

 'ImplementationName', 'matrix_mul_4x4_s');

% conceptual arguments

createAndAddConceptualArg(entry, 'RTW.TflArgMatrix',...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'single', ...

 'DimRange', [4 4]);

 Data Alignment for Code Replacement

22-139

createAndAddConceptualArg(entry, 'RTW.TflArgMatrix',...

 'Name', 'u1', ...

 'BaseType', 'single', ...

 'DimRange', [4 4]);

createAndAddConceptualArg(entry, 'RTW.TflArgMatrix',...

 'Name', 'u2', ...

 'BaseType', 'single', ...

 'DimRange', [4 4]);

% implementation arguments

arg = getTflArgFromString(hLib, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hLib, 'y1','single*');

desc = RTW.ArgumentDescriptor;

desc.AlignmentBoundary = 16;

arg.Descriptor = desc;

entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hlib, 'u1','single*');

desc = RTW.ArgumentDescriptor;

desc.AlignmentBoundary = 16;

arg.Descriptor = desc;

entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hLib, 'u2','single*');

desc = RTW.ArgumentDescriptor;

desc.AlignmentBoundary = 16;

arg.Descriptor = desc;

entry.Implementation.addArgument(arg);

hLib.addEntry(entry);

2 Create and save the following registration file, rtwTargetInfo.m. If
you want to compile the code generated in this example, first modify the
AlignmentSyntaxTemplate property for the compiler that you use.
For example, for the MSVC compiler, replace the gcc template string
__attribute__((aligned(%n))) with __declspec(align(%n)).

function rtwTargetInfo(cm)

% rtwTargetInfo function to register a code replacement library (CRL)

% for use with code generation

 % Register the CRL defined in local function locCrlRegFcn

 cm.registerTargetInfo(@locCrlRegFcn);

end % End of RTWTARGETINFO

% Local function to define a CRL containing crl_table_mmul_4x4_single_align

function thisCrl = locCrlRegFcn

 % create an alignment specification object, assume gcc

22 Code Replacement Customization for Simulink Models

22-140

 as = RTW.AlignmentSpecification;

 as.AlignmentType = {'DATA_ALIGNMENT_LOCAL_VAR', ...

 'DATA_ALIGNMENT_GLOBAL_VAR', ...

 'DATA_ALIGNMENT_STRUCT_FIELD'};

 as.AlignmentSyntaxTemplate = '__attribute__((aligned(%n)))';

 as.SupportedLanguages={'c', 'c++'};

 % add the alignment specification object

 da = RTW.DataAlignment;

 da.addAlignmentSpecification(as);

 % add the data alignment object to target characteristics

 tc = RTW.TargetCharacteristics;

 tc.DataAlignment = da;

 % Instantiate a CRL registry entry

 thisCrl = RTW.TflRegistry;

 % Define the CRL properties

 thisCrl.Name = 'Data Alignment Example';

 thisCrl.Description = 'Example of replacement with data alignment';

 thisCrl.TableList = {'crl_table_mmul_4x4_single_align'};

 thisCrl.TargetCharacteristics = tc;

end % End of LOCCRLREGFCN

3 To register your library with code generator without having to restart MATLAB,
enter this command:

RTW.TargetRegistry.getInstance('reset');

4 Configure the code generator to use your code replacement library.
5 Generate code and a code generation report.
6 Review the code replacements. For example, check whether a multiplication

operation is replaced with a matrix_mul_4x4_s function call. In mmalign.h,
check whether the gcc alignment directive __attribute__((aligned(16))) is
generated to align the function variables.

Related Examples
• “Define Code Replacement Mappings”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “Code You Can Replace From Simulink Models”
• “Code Replacement Terminology”

 Data Alignment for Code Replacement

22-141

External Web Sites
• “Replacing Math Functions and Operators”

22 Code Replacement Customization for Simulink Models

22-142

Replace MATLAB Functions with Custom Code Using
coder.replace

The coder.replace function provides the ability to replace a specified MATLAB
function with a code replacement function in generated code. Use coder.replace in
MATLAB code from which you want to generate C code using:

• MATLAB Coder
• MATLAB code in a Simulink MATLAB Function block

You can replace MATLAB functions that have:

• Single or multiple inputs
• Single or multiple outputs
• Scalar and matrix inputs and outputs

Supported types include:

• single, double (complex and noncomplex)
• int8, uint8 (complex and noncomplex)
• int16, uint16 (complex and noncomplex)
• int32, uint32 (complex and noncomplex)
• Fixed-point integers
• Mixed types (different type on each input)

Related Examples
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “Code You Can Replace From Simulink Models”
• “Code Replacement Terminology”

 Replace MATLAB Functions with Custom Code Using coder.replace

22-143

External Web Sites
• “Replacing Math Functions and Operators”

22 Code Replacement Customization for Simulink Models

22-144

Replace coder.ceval Calls to External Functions

In this section...

“External Function Calls and coder.ceval” on page 22-144
“Example Files” on page 22-144
“Interactive External Function Call Replacement Specification with Code Replacement
Tool” on page 22-146
“Programmatic External Function Call Replacement Specification” on page 22-147

External Function Calls and coder.ceval

The coder.ceval function calls external C/C++ functions from code generated from
MATLAB code. The code replacement software supports replacement of the function
that you specify in a call to coder.ceval. An application of this code replacement
scenario is to write generic MATLAB code that you can customize for different platforms
with code replacements. A code replacement library can define hardware-specific code
replacements for the function call. Use coder.ceval in MATLAB code from which you
want to generate C code using:

• MATLAB Coder
• MATLAB code in a Simulink MATLAB Function block

Example Files

For the examples in “Interactive External Function Call Replacement Specification
with Code Replacement Tool” and “Programmatic External Function Call Replacement
Specification” you must have set up the following:

• Custom C function my_add.c.

/* my_add.c */

#include "my_add.h"

double my_add(double in1, double in2)

{

 return in1 + in2;

 Replace coder.ceval Calls to External Functions

22-145

}

• Custom C header file my_add.h.

/* my_add.h */

double my_add(double in1, double in2);

• MATLAB function call_my_add.m, which uses coder.ceval to invoke my_add.c.

function y = call_my_add(in1, in2) %#codegen

y=0.0;

if ~coder.target('Rtw')

% Executing in MATLAB, call MATLAB equivalent of C function my_add

 y= in1+in2;

else

% Executing in generated code, call C function my_add

 y = coder.ceval('my_add', in1, in2);

end

• MATLAB test function call_my_add_test.m, which calls call_my_add.m.

in1=10;

in2=20;

y = call_my_add(in1, in2);

disp('Output')

disp('y =')

disp(y);

• Replacement C function my_add_replacement.c.

/* my_add_replacement.c */

#include "my_add_replacement.h"

double my_add_replacement(double in1, double in2)

{

 return in1 + in2;

}

• Replacement C header file my_add_replacement.h.

/* my_add_replacement.h */

22 Code Replacement Customization for Simulink Models

22-146

double my_add_replacement(double in1, double in2);

Interactive External Function Call Replacement Specification with Code
Replacement Tool

This example shows how to define a code replacement table entry for a MATLAB function
that calls coder.ceval to invoke an external C function. The example shows how to
define the entry interactively with the Code Replacement Tool.

1 Identify or create the C/C++ code and relevant header files, the MATLAB function
that calls coder.ceval, a MATLAB test function, and the source and header
files for your replacement code. To follow along with this example, set up the files
identified in “Example Files”.

2 In the Code Replacement Tool, add a table, select that table, and add a function
entry. For more information, see “Define Code Replacement Mappings”.

3 On the Mapping Information tab, select Custom for the Function parameter.
4 In the function-name text box, type the custom function name. For this example,

type the name my_add.
5 Under the Conceptual arguments list box, click + to add three arguments. By

default, the tool creates an output argument y1 and input arguments u1 and u2 of
type double.

6 In the Replacement function > Function prototype section, type the name
my_add_replacement in the Name text box.

7 Under the Function arguments list box, click + to add three function
implementation arguments. By default, the tool creates an output argument y1 and
input arguments u1 and u2 of type double. Use the default settings.

8 In the Function signature preview box, if you see the expected function
signature, click Apply. The function signature for this example, appears as:

double my_add_replacement(double u1, double u2);

9 On the Build Information tab, specify my_add_replacement.h for the
Implementation header file parameter and my_add_replacement.c for the
Implementation source file.

10 Click Validate entry.
11 Save the code replacement table in the same folder as my_add_replacement.c.

Name the file crl_table_my_add.m.

To test the example:

 Replace coder.ceval Calls to External Functions

22-147

1 Register the table that contains the entry in a code replacement library.
2 Configure the code generator to use the code replacement library and to include the

Code Replacements Report in the code generation report.
3 Generate code and the report.
4 Review the code replacements.

Programmatic External Function Call Replacement Specification

This example shows how to define a code replacement table entry for a MATLAB function
that calls coder.ceval to invoke an external C function. The example shows how to
define the entry programmatically.

1 Identify or create the C/C++ code and relevant header files, the MATLAB function
that calls coder.ceval to invoke the C/C++ function, a MATLAB test function,
and the source and header files for your replacement code. To follow along with this
example, set up the files identified in “Example Files”.

2 Create a table definition file that contains a function definition. For example:

function hLib = crl_table_my_add

3 Within the function body, create the table by calling the function RTW.TflTable.
4 Create an entry for the function mapping with a call to the

RTW.TflCFunctionEntry function.

hEnt = RTW.TflCFunctionEntry;

5 Set function entry parameters with a call to the
setTflCFunctionEntryParameters function.

hEnt.setTflCFunctionEntryParameters(...

 'Key', 'my_add', ...

 'Priority', 100, ...

 'ImplementationName', 'my_add_replacement', ...

 'ImplementationHeaderFile', 'my_add_replacement.h', ...

 'ImplementationSourceFile', 'my_add_replacement.c');

6 Create conceptual arguments y1, u1, and u1. This example uses calls to the
getTflArgFromString and addConceptualArg functions to create and add the
arguments.

arg = hEnt.getTflArgFromString('y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

22 Code Replacement Customization for Simulink Models

22-148

hEnt.addConceptualArg(arg);

arg = hEnt.getTflArgFromString('u1','double');

hEnt.addConceptualArg(arg);

arg = hEnt.getTflArgFromString('u2','double');

hEnt.addConceptualArg(arg);

7 Create the implementation arguments and add them to the entry. This example uses
calls to the getTflArgFromString function to create implementation arguments.
These functions map to arguments in the replacement function prototype: output
argument y1 and input arguments u1 and u2. For each argument, the example
uses the convenience method setReturn or addArgument to specify whether an
argument is a return value or argument. For each argument, this example adds the
argument to the entry array of implementation arguments.

arg = hEnt.getTflArgFromString('y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setReturn(arg);

arg = hEnt.getTflArgFromString('u1','double');

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u2','double');

hEnt.Implementation.addArgument(arg);

8 Add the entry to a code replacement table with a call to the addEntry function.

hLib.addEntry(hEnt);

9 Save the table definition file. Use the name of the table definition function to name
the file.

To test the example:

1 Register the table that contains the entry in a code replacement library.
2 Configure the code generator to use the code replacement library and to include the

Code Replacements Report in the code generation report.
3 Generate code and the report.
4 Review the code replacements.

Related Examples
• “Integrate MATLAB Algorithm in Model”

 Replace coder.ceval Calls to External Functions

22-149

• “Define Code Replacement Mappings”
• “Develop a Code Replacement Library”
• “Replacing Math Functions and Operators”
• “Quick Start Library Development”

More About
• “Code Replacement Match and Replacement Process”
• “Code Replacement Terminology”

22 Code Replacement Customization for Simulink Models

22-150

Replace MATLAB Functions Specified in MATLAB Function Blocks

This example shows how to use code replacement to replace a MATLAB function
specified in a MATLAB Function block.

1 Open the ex_replace model. At the command prompt, enter:

addpath(fullfile(docroot,'toolbox','ecoder','examples'))

ex_replace

2 View the MATLAB Function Block code. In the model, double-click the MATLAB
Function block to view the code in the MATLAB editor.

function y = customFcn(u1, u2) %#codegen

% This block supports MATLAB for code generation.

% Replace this MATLAB function with CRL replacement function and if no

% CRL replacement is found, generate an error during code generation.

coder.replace('-errorifnoreplacement');

assert(isa(u1,'int32'));

assert(isa(u2,'int32'));

y = power(u1,u2);

The coder.replace('-errorifnoreplacement') statement instructs the code
generator to replace this MATLAB function with a code replacement library function.
The code generator produces an error if it does not find a match.

3 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_coderreplace()

4 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

5 Create an entry for the function mapping with a call to the
RTW.TflCFunctionEntry function.

hEnt = RTW.TflCFunctionEntry;

6 Set function entry parameters with a call to the
setTflCFunctionEntryParameters function.
setTflCFunctionEntryParameters(hEnt, ...

 'Key', 'customFcn', ...

 Replace MATLAB Functions Specified in MATLAB Function Blocks

22-151

 'Priority', 100, ...

 'ImplementationName', 'scalarFcnReplacement', ...

 'ImplementationHeaderFile', 'MyMath.h', ...

 'ImplementationSourceFile', 'MyMath.c')

7 Create conceptual arguments y1, u1, and u1. This example uses calls to the
getTflArgFromString and addConceptualArg functions to create and add the
arguments.
arg = getTflArgFromString(hEnt, 'y1','int32');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(hEnt, arg);

arg = getTflArgFromString(hEnt, 'u1','int32');

addConceptualArg(hEnt, arg);

arg = getTflArgFromString(hEnt, 'u2','int32');

addConceptualArg(hent, arg);

8 Create the implementation arguments and add them to the entry. This example uses
calls to the getTflArgFromString function to create implementation arguments
that map to arguments in the replacement function prototype: output argument
void, input arguments u1 and u2, and output argument y1. The convenience
methods setReturn and addArgument specify whether an argument is a return
value or argument. The addArgument function also adds each argument to the
entry’s array of implementation arguments.

arg = getTflArgFromString(hEnt, 'void','void');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setReturn(arg);

arg = getTflArgFromString(hEnt, 'u1','int32');

hEnt.Implementation.addArgument(arg);

arg = getTflArgFromString(hEnt, 'u2','int32');

hEnt.Implementation.addArgument(arg);

arg = getTflArgFromString(hEnt, 'y1','int32*');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.addArgument(arg);

9 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hLib, hEnt);

10 Save the table definition file. Use the name of the table definition function to name
the file.

To test the example:

22 Code Replacement Customization for Simulink Models

22-152

1 Register the code replacement mapping.
2 Create files MyMath.c and MyMath.h that define the replacement function,

scalarFcnReplacement, which has two int32 inputs and one int32 output.

MyMath.c

#include "MyMath.h"

void scalarFcnReplacement(int32_T u1, int32_T u2, int32_T* y1) {

 *y1 = u1^u2;

}

MyMath.h

#ifndef _ScalarMath_h

#define _ScalarMath_h

#include "rtwtypes.h"

#ifdef __cplusplus

extern "C" {

#endif

extern void scalarFcnReplacement(int32_T u1, int32_T u2, int32_T* y1);

#ifdef __cplusplus

}

#endif

#endif

3 Open the ex_replace model.
4 Configure the code generator to use the code replacement library and to include the

Code Replacements Report in the code generation report.
5 Generate the replacement code and a code generation report.
6 Review the code replacements. In the code generation report, view the generated

code for ex_replace.c.

void ex_replace_step(void)

{

 int32_T y;

 scalarFcnReplacement(ex_replace_U.In1, ex_replace_U.In2, &y);

 ex_replace_Y.Out1 = y;

 Replace MATLAB Functions Specified in MATLAB Function Blocks

22-153

}

Related Examples
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “Code You Can Replace From Simulink Models”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

22 Code Replacement Customization for Simulink Models

22-154

Reserved Identifiers and Code Replacement

The code generator and C programming language use, internally, reserved keywords for
code generation. Do not use reserved keywords as identifiers or function names. Reserved
keywords for code generation include many code replacement library identifiers, the
majority of which are function names, such as acos.

To view a list of reserved identifiers for the code replacement library that you
use to generate code, specify the name of the library in a call to the function
RTW.TargetRegistry.getInstance.getTflReservedIdentifiers. For example:
crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers('GNU99 (GNU)')

In a code replacement table, the code generator registers each function implementation
name defined by a table entry as a reserved identifier. You can register additional
reserved identifiers for the table on a per-header-file basis. Providing additional reserved
identifiers can help prevent duplicate symbols and other identifier-related compile and
link issues.

To register additional code replacement reserved identifiers, use the
setReservedIdentifiers function. This function registers specified reserved
identifiers to be associated with a code replacement table.

You can register up to four reserved identifier structures in a code replacement table.
You can associate one set of reserved identifiers with a code replacement library, while
the other three (if present) must be associated with ANSI C. The following example
shows a reserved identifier structure that specifies two identifiers and the associated
header file.
d{1}.LibraryName = 'ANSI_C';

d{1}.HeaderInfos{1}.HeaderName = 'math.h';

d{1}.HeaderInfos{1}.ReservedIds = {'y0', 'y1'};

The code generator adds the identifiers to the list of reserved identifiers and honors them
during the build procedure.

Related Examples
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”
• “Verify Code Replacements”
• “Develop a Code Replacement Library”

 Reserved Identifiers and Code Replacement

22-155

• “Quick Start Library Development”

More About
• “What Is Code Replacement Customization?”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

22 Code Replacement Customization for Simulink Models

22-156

Customize Matching and Replacement Process for Functions

During the build process, the code generator uses:

• Preset match criteria to identify functions and operators for which application-specific
implementations replace default implementations.

• Preset replacement function signatures.

However, preset match criteria and preset replacement function signatures might not
completely meet your function and operator replacement needs. For example,

• You want to replace an operator with a particular fixed-point implementation
function only when fraction lengths are within a particular range.

• When a match is made, you want to modify your replacement function signature
based on compile-time information, such as passing fraction-length values into the
function.

To add extra logic into the code replacement matching and replacement process, create
custom code replacement table entries. With custom entries, you can specify additional
match criteria and modify the replacement function signature to meet application needs.

To create a custom code replacement entry:

1 Create a custom code replacement entry class, derived from
RTW.TflCFunctionEntryML (for function replacement) or

RTW.TflCOperationEntryML (for operator replacement).
2 In your derived class, implement a do_match method with a fixed preset signature

as a MATLAB function. In your do_match method, provide either or both of the
following customizations that instantiate the class:

a Add additional match criteria that the base class does not provide. The base
class provides a match based on:

• Argument number
• Argument name
• Signedness
• Word size
• Slope (if not specified with wildcards)

 Customize Matching and Replacement Process for Functions

22-157

• Bias (if not specified with wildcards) Accept a match only when additional
size or range conditions are met.

• Math modes, such as saturation and rounding
• Operator or function key

b Modify the implementation signature by adding additional arguments or setting
constant input argument values. You can inject a constant value, such as an
input scaling value, as an additional argument to the replacement function.

3 Create code replacement entries that instantiate your custom entry class.
4 Register a library containing the code replacement table that includes your entries.

During code generation, the code replacement matching process first tries to match
function or operator call sites with the base class of your derived entry class. If the
process finds a match, the software calls your do_match method to execute your
additional match logic (if any) and your replacement function customizations (if any).

Customize Code Matching and Replacement for Functions

This example shows how to use custom code replacement table entries to refine the
matching and replacement logic for functions. Modify a sine function replacement only if
the integer size on the current target platform is 32 bits. Change the replacement such
that the implementation function passes in a degrees-versus-radians flag as an input
argument.

1 To exercise the table entries that you create in this example, create an ERT-based
model with a sine function block. For example:

In the import block parameters, set the signal Data type to double. If the target
platform selected for your model on the Hardware Implementation pane in the
Configuration Parameters dialog box supports an integer size other than 32, do one
of the following:

• Temporarily select a target platform with a 32-bit integer size.
• Modify the code to match the integer size of your target platform.

22 Code Replacement Customization for Simulink Models

22-158

2 Create a class folder using the name of your derived class, such as
@TflCustomFunctionEntry. Verify that the class folder is on the MATLAB search
path or in your current working folder.

3 In the class folder, create and save the following class definition
file, TflCustomFunctionEntry.m. This file defines the class
TflCustomFunctionEntry, which is derived from the base class
RTW.TflCFunctionEntryML.

The derived class defines a do_match method. In the do_match method signature:

• ent is the return handle, which is returned either as empty (indicating that the
match failed) or as a TflCFunctionEntry handle.

• hThis is the handle to this object.
• hCSO is a handle to an object created by the code generator for querying the

library for a replacement.
• The remaining arguments are the number of bits for various data types of the

current target.

The do_match method adds required additional match criteria not provided by the
base class and makes required modifications to the implementation signature. In
this case, the do_match method must match only targetBitPerInt, representing
the number of bits in the C int data type for the current target, to the value 32. If
the code generator finds a match, the method sets the return handle and creates
and adds an input argument. The input argument represents whether units are
expressed as degrees or radians, to the replacement function signature.

Note: Alternatively, create and add the additional implementation function
argument for passing a units flag in each code replacement table definition file that
instantiates this class. In that case, this class definition code does not create the
argument. That code only sets the argument value. For an example of creating and
adding additional implementation function arguments in a table definition file, see
“Customize Matching and Replacement Process for Operators” on page 22-192.

classdef TflCustomFunctionEntry < RTW.TflCFunctionEntryML

 methods

 function ent = do_match(hThis, ...

 hCSO, ... %#ok

 targetBitPerChar, ... %#ok

 targetBitPerShort, ... %#ok

 Customize Matching and Replacement Process for Functions

22-159

 targetBitPerInt, ... %#ok

 targetBitPerLong) %#ok

 % DO_MATCH - Create a custom match function. The base class

 % checks the types of the arguments prior to calling this

 % method. This will check additional data and perhaps modify

 % the implementation function.

 ent = []; % default the return to empty, indicating the match failed.

 % Match sine function only if the target int size is 32 bits

 if targetBitPerInt == 32

 % Need to modify the default implementation, starting from a copy

 % of the standard TflCFunctionEntry.

 ent = RTW.TflCFunctionEntry(hThis);

 % If the target int size is 32 bits, the implementation function

 % takes an additional input flag argument indicating degress vs.

 % radians. The additional argument can be created and added either

 % in the CRL table definition file that instantiates this class, or

 % here in the class definition, as follows:

 createAndAddImplementationArg(ent, 'RTW.TflArgNumericConstant', ...

 'Name', 'u2', ...

 'IsSigned', true, ...

 'WordLength', 32, ...

 'FractionLength', 0, ...

 'Value', 1);

 end

 end

 end

end

Exit the class folder and return to the previous working folder.
4 Create and save the following code replacement table definition file,

crl_table_custom_sinfcn_double.m. This file defines a code replacement table
containing a function table entry for sine with double input and output. This entry
instantiates the derived class from the previous step, TflCustomFunctionEntry.

function hTable = crl_table_custom_sinfcn_double

hTable = RTW.TflTable;

%% Add TflCustomFunctionEntry

fcn_entry = TflCustomFunctionEntry;

setTflCFunctionEntryParameters(fcn_entry, ...

 'Key', 'sin', ...

 'Priority', 30, ...

 'ImplementationName', 'mySin', ...

 'ImplementationHeaderFile', 'mySin.h', ...

 'ImplementationSourceFile', 'mySin.c');

createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

22 Code Replacement Customization for Simulink Models

22-160

 'DataTypeMode', 'double');

createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'DataTypeMode', 'double');

% TflCustomFunctionEntry class do_match method will create and add

% an implementation function argument during code generation if

% the supported integer size on the current target is 32 bits.

copyConceptualArgsToImplementation(fcn_entry);

addEntry(hTable, fcn_entry);

5 Optionally, perform a quick check of the validity of the function entry by:

• Invoking the table definition file at the command prompt (>> tbl =
crl_table_custom_sinfcn_double).

• Viewing it in the Code Replacement Viewer (>>
crviewer(crl_table_custom_sinfcn_double)).

For more information about validating code replacement tables, see “Verify Code
Replacements” on page 22-78.

Related Examples
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

 Scalar Operator Code Replacement

22-161

Scalar Operator Code Replacement

This example shows how to define a code replacement mapping for a scalar operator. The
example defines a mapping for the + (addition) operator programmatically. Alternatively,
you can use the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_add_uint8

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create an entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

% Create operation entry

op_entry = RTW.TflCOperationEntry;

4 Set function entry parameters with a call to the
setTflCOperationEntryParameters function.
% Define addition operation of built-in uint8 data type

% Saturation on, Rounding unspecified

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

 'ImplementationName', 'u8_add_u8_u8', ...

 'ImplementationHeaderFile', 'u8_add_u8_u8.h', ...

 'ImplementationSourceFile', 'u8_add_u8_u8.c');

5 Create conceptual arguments y1, u1, and u2. There are multiple ways to set up the
conceptual arguments. This example uses calls to the getTflArgFromString and
addConceptualArg functions to create and add the arguments.
arg = getTflArgFromString(hTable, 'y1', 'uint8');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u1', 'uint8');

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u2', 'uint8');

addConceptualArg(op_entry, arg);

6 Copy the conceptual arguments to the implementation arguments. There are
multiple ways to set up the implementation arguments. This example uses a call

22 Code Replacement Customization for Simulink Models

22-162

to the copyConceptualArgsToImplementation function to create and add
implementation arguments to the entry by copying matching conceptual arguments.
copyConceptualArgsToImplementation(op_entry);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example:

1 Register the code replacement mapping.
2 Create a model that includes an Add block, such as this model.

3 Configure the model with the following settings:

• On the Solver pane, select a fixed-step solver.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your addition operation entry.
4 Generate code and a code generation report.
5 Review the code replacements.

Related Examples
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”
• “Verify Code Replacements”
• “Addition and Subtraction Operator Code Replacement”
• “Data Alignment for Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”

 Scalar Operator Code Replacement

22-163

• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace From Simulink Models”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

22 Code Replacement Customization for Simulink Models

22-164

Addition and Subtraction Operator Code Replacement

In this section...

“Algorithm Options” on page 22-164
“Interactive Specification with Code Replacement Tool” on page 22-165
“Programmatic Specification” on page 22-165
“Algorithm Classification” on page 22-165
“Limitations” on page 22-167

Algorithm Options

When creating a code replacement table entry for an addition or subtraction operator,
first determine the type of algorithm that your library function implements.

• Cast-before-operation (CBO), default — Prior to performing the addition or
subtraction operation, the algorithm type casts input values to the output type. If
the output data type cannot exactly represent the input values, losses can occur as a
result of the cast to the output type. Additional loss can occur when the result of the
operation is cast to the final output type.

• Cast-after-operation (CAO) — The algorithm computes the ideal result of the addition
or subtraction operation of the two inputs. The algorithm then type casts the result
to the output data type. Loss occurs during the type cast. This algorithm behaves
similarly to the C language except when the signedness of the operands does not
match. For example, when you add a signed long operand to an unsigned long
operand, standard C language rules convert the signed long operand to an unsigned
long operand. The result is a value that is not ideal.

 Addition and Subtraction Operator Code Replacement

22-165

Interactive Specification with Code Replacement Tool

When you use the Code Replacement Tool to create a code replacement table entry for an
addition or subtraction operation, the tool displays an Algorithm menu. Use that menu
to specify the Cast before operation or Cast after operation algorithm for that
entry.

Programmatic Specification

Create a code replacement table file, as a MATLAB function, that describes
the addition or subtraction code replacement table entry. In the call to
setTflCOperationEntryParameters, set at least these parameters:

• Key to RTW_OP_ADD or RTW_OP_MINUS
• ImplementationName to the name of your replacement function
• EntryInfoAlgorithm to RTW_CAST_BFORE_OP (cast-before-operation) or

RTW_CAST_AFTER_OP (cast-after-operation)

This example sets parameters for a code replacement operator entry for a cast-after-
operation implementation of a uint8 addition.
op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'EntryInfoAlgorithm', 'RTW_CAST_AFTER_OP', ...

 'ImplementationName', 'u8_add_u8_u8');

For more information, see setTflCOperationEntryParameters.

Algorithm Classification

During code generation, the code generator examines addition and subtraction
operations, including adjacent type cast operations, to determine the type of algorithm
to compute the expression result. Based on the data types in the expression and the type
of the accumulator (type used to hold the result of the addition or subtraction operation),
the code generator uses these rules.

• Floating-point types only

Input 1 Data
Type

Input 2 Data
Type

Accumulator Data
Type

Output Data Type Classification

double double double double CBO, CAO

22 Code Replacement Customization for Simulink Models

22-166

Input 1 Data
Type

Input 2 Data
Type

Accumulator Data
Type

Output Data Type Classification

double double double single —
double double single double —
double double single single CBO
double single double double CBO, CAO
double single double single —
double single single double —
double single single single CBO
single single single single CBO, CAO
single single single double —
single single double single —
single single double double CBO, CAO

• Floating-point and fixed-point types on the immediate addition or subtraction
operation

Algorithm Conditions

CBO One of the following is true:

• Operation type is double.
• Operation type is single and input types are single or fixed-point.

CAO Operation type is a superset of input types—that is, output type can
represent values of input types without loss of data.

• Fixed-point types only

Algorithm Conditions

CBO At least one of the following is true:

• Accumulator type equals output type (Tacc == Tout).
• Output type is a superset of input types (Tacc >= {Tin1, Tin2})

and accumulator type is a superset of output type (Tacc >= Tout).
• Operation does not incur range or precision loss.

 Addition and Subtraction Operator Code Replacement

22-167

Algorithm Conditions

CAO Net bias is zero and the data types in the expression have equal slope
adjustment factors. For more information on net bias, see “Addition” or
“Subtraction” in “Fixed-Point Operator Code Replacement” (for MATLAB
code) or “Fixed-Point Operator Code Replacement” (for Simulink
models).

In many cases, the numerical result of a CBO operation is equal to that of a CAO
operation. For example, if the input and output types are such that the operation
produces the ideal result, as in the case of int8 + int8 —> int16. To maximize the
probability of code replacement occurring in such cases, set the algorithm to cast-after-
operation.

Limitations

• The code generator does not replace operations with nonzero net bias.
• When classifying an operation as a CAO operation, the code generator includes the

adjacent casts in the expression when the expression involves only fixed-point types.
Otherwise, the code generator classifies and replaces only the immediate addition or
subtraction operation. Casts that the code generator excludes from the classification
appear in the generated code.

• To enable the code generator to include multiple cast operations, which follow an
addition or subtraction of fixed-point data, in the classification of an expression, the
rounding mode must be simplest or floor. Consider the expression y=(cast A)
(cast B)(u1+u2). If the rounding mode of (cast A), (cast B), and the addition
operator (+) are set to simplest or floor, the code generator takes into account
(cast A) and (cast B) when classifying the expression and performing the
replacement only.

Related Examples
• “Define Code Replacement Mappings”
• “Fixed-Point Operator Code Replacement”
• “Data Alignment for Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”

22 Code Replacement Customization for Simulink Models

22-168

• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace From Simulink Models”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”
• rtwdemo_crl_cbo_cao

 Small Matrix Operation to Processor Code Replacement

22-169

Small Matrix Operation to Processor Code Replacement
This example shows how to define code replacement mappings that replace nonscalar
small matrix operations with processor-specific intrinsic functions. The example defines
a table containing two matrix operator replacement entries for the + (addition) operator
and the double data type. The example defines the function mapping programmatically.
Alternatively, you can use the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_matrix_add_double

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the first operator mapping with a call to the
RTW.TflCOperationEntry function.

% Create table entry for matrix_sum_2x2_double

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The code generator
ignores saturation and rounding modes for floating-point nonscalar addition
and subtraction. For code replacement entries for nonscalar addition and
subtraction operations that do not involve fixed-point data, in the call to
setTflCOperationEntryParameters, specify 'RTW_SATURATE_UNSPECIFIED'
for the SaturationMode property and {'RTW_ROUND_UNSPECIFIED'} for
RoundingModes.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 30, ...

 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

 'ImplementationName', 'matrix_sum_2x2_double', ...

 'ImplementationHeaderFile', 'MatrixMath.h', ...

 'ImplementationSourceFile', 'MatrixMath.c', ...

 'ImplementationHeaderPath', LibPath, ...

 'ImplementationSourcePath', LibPath, ...

 'AdditionalIncludePaths', {LibPath}, ...

 'GenCallback', 'RTW.copyFileToBuildDir', ...

 'SideEffects', true);

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. To specify a matrix argument in the function call, use the argument

22 Code Replacement Customization for Simulink Models

22-170

class RTW.TflArgMatrix. Specify the base type and the dimensions for which the
argument is valid. The first table entry specifies [2 2] and the second table entry
specifies [3 3].
% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [2 2]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [2 2]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [2 2]);

6 Create the implementation arguments. There are multiple ways to set up the
implementation arguments. This example uses calls to the getTflArgFromString
to create the arguments. The convenience methods setReturn and addArgument
specify whether an argument is a return value or argument and adds the argument
to the entry’s array of implementation arguments.
arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

8 Create the entry for the second operator mapping.

% Create table entry for matrix_sum_3x3_double

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 30, ...

 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

 'ImplementationName', 'matrix_sum_3x3_double', ...

 Small Matrix Operation to Processor Code Replacement

22-171

 'ImplementationHeaderFile', 'MatrixMath.h', ...

 'ImplementationSourceFile', 'MatrixMath.c', ...

 'ImplementationHeaderPath', LibPath, ...

 'ImplementationSourcePath', LibPath, ...

 'AdditionalIncludePaths', {LibPath}, ...

 'GenCallback', 'RTW.copyFileToBuildDir', ...

 'SideEffects', true);

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [3 3]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [3 3]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [3 3]);

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

9 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example:

1 Register the code replacement mapping.
2 Create a model that includes an Add block.

22 Code Replacement Customization for Simulink Models

22-172

3 Configure the model with the following settings:

• On the Solver pane, select a fixed-step, discrete solver with a fixed-step size such
as 0.1.

• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your addition operation entry.
4 In the Model Explorer, configure the Signal Attributes for the In1 and In2 source

blocks. For each source block, set Port dimensions to [3,3], and set Data type to
double. Apply the changes. Save the model.

5 Generate code and a code generation report.
6 Review the code replacements. The code generator replaces the + operator with

matrix_sum_3x3_double in the generated code.
7 Reconfigure Port dimensions for In1 and In2 to [2 2], regenerate code. Observe

that code containing the + operator is replaced with matrix_sum_2x2_double.

Related Examples
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”
• “Verify Code Replacements”
• “Matrix Multiplication Operation to MathWorks BLAS Code Replacement”
• “Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement”
• “Data Alignment for Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

 Small Matrix Operation to Processor Code Replacement

22-173

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace From Simulink Models”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

22 Code Replacement Customization for Simulink Models

22-174

Matrix Multiplication Operation to MathWorks BLAS Code
Replacement

This example shows how to define code replacement mappings that replace nonscalar
multiplication operations with Basic Linear Algebra Subroutine (BLAS) multiplication
functions xgemm and xgemv. The example defines code replacement entries that map
floating-point matrix/matrix and matrix/vector multiplication operations to MathWorks
BLAS library multiplication functions dgemm and dgemv. The example defines the
function mappings programmatically. Alternatively, you can use the Code Replacement
Tool to define the same mappings.

BLAS libraries support matrix/matrix multiplication in the form of
C = a(op(A) * op(B)) + bC . op(X) means X, transposition of X, or Hermitian
transposition of X. However, code replacement libraries support only the limited case of
C = op(A) * op(B) (a = 1.0, b = 0.0) . Correspondingly, although BLAS libraries support
matrix/vector multiplication in the form of y = a(op(A) * x) + by , code replacement
libraries support only the limited case of y = op(A) * x (a = 1.0, b = 0.0) .

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_tmwblas_mmult_double

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Define the path for the BLAS function library. If your replacement functions are on
the MATLAB search path or are in your working folder, you can skip this step.
% Define library path for Windows or UNIX

arch = computer('arch');

if ~ispc

 LibPath = fullfile('$(MATLAB_ROOT)', 'bin', arch);

else

 % Use Stateflow to get the compiler info

 compilerInfo = sf('Private','compilerman','get_compiler_info');

 compilerName = compilerInfo.compilerName;

 if strcmp(compilerName, 'msvc90') || ...

 strcmp(compilerName, 'msvc80') || ...

 strcmp(compilerName, 'msvc71') || ...

 strcmp(compilerName, 'msvc60'), ...

 compilerName = 'microsoft';

 end

 LibPath = fullfile('$(MATLAB_ROOT)', 'extern', 'lib', arch, compilerName);

end

 Matrix Multiplication Operation to MathWorks BLAS Code Replacement

22-175

4 Create an entry for the first mapping with a call to the
RTW.TflBlasEntryGenerator function.

% Create table entry for dgemm32

op_entry = RTW.TflBlasEntryGenerator;

5 Set operator entry parameters with a call to the
setTflCFunctionEntryParameters function. The function call sets matrix
multiplication operator entry properties. The code generator ignores saturation
and rounding modes for floating-point nonscalar addition and subtraction. For
code replacement entries for nonscalar addition and subtraction operations that do
not involve fixed-point data, in the call to setTflCFunctionEntryParameters,
specify 'RTW_SATURATE_UNSPECIFIED' for the SaturationMode property and
{'RTW_ROUND_UNSPECIFIED'} for RoundingModes.
if ispc

 libExt = 'lib';

elseif ismac

 libExt = 'dylib';

else

 libExt = 'so';

end

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

 'Priority', 100, ...

 'ImplementationName', 'dgemm32', ...

 'ImplementationHeaderFile', 'blascompat32_crl.h', ...

 'ImplementationHeaderPath', fullfile('$(MATLAB_ROOT)','extern','include'), ...

 'AdditionalLinkObjs', {['libmwblascompat32.' libExt]}, ...

 'AdditionalLinkObjsPaths', {LibPath}, ...

 'SideEffects', true);

6 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with
one function call. To specify a matrix argument in the function call, use the
argument class RTW.TflArgMatrix and specify the base type and the dimensions
for which the argument is valid. This type of table entry supports a range of
dimensions specified in the format [Dim1Min Dim2Min ... DimNMin; Dim1Max
Dim2Max ... DimNMax]. For example, [2 2; inf inf] means a two-dimensional
matrix of size 2x2 or larger. The conceptual output argument for the dgemm32 entry
for matrix/matrix multiplication replacement specifies dimensions [2 2; inf
inf], while the conceptual output argument for the dgemv32 entry for matrix/vector
multiplication replacement specifies dimensions [2 1; inf 1].
% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

22 Code Replacement Customization for Simulink Models

22-176

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [1 1; inf inf]);

7 Create the implementation arguments. There are multiple ways to set up the
implementation arguments. This example uses calls to the getTflArgFromString
and RTW.TflArgCharConstant functions to create the arguments. The example
code configures special implementation arguments that are required for dgemm
and dgemv function replacements. The convenience methods setReturn and
addArgument specify whether an argument is a return value or argument and adds
the argument to the entry’s array of implementation arguments.

% Using RTW.TflBlasEntryGenerator for xgemm requires the following

% implementation signature:

%

% void f(char* TRANSA, char* TRANSB, int* M, int* N, int* K,

% type* ALPHA, type* u1, int* LDA, type* u2, int* LDB,

% type* BETA, type* y, int* LDC)

%

% When a match occurs, the code generator computes the

% values for M, N, K, LDA, LDB, and LDC and inserts them into the

% generated code. TRANSA and TRANSB are set to 'N'.

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = RTW.TflArgCharConstant('TRANSA');

% Possible values for PassByType property are

% RTW_PASSBY_AUTO, RTW_PASSBY_POINTER,

% RTW_PASSBY_VOID_POINTER, RTW_PASSBY_BASE_POINTER

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = RTW.TflArgCharConstant('TRANSB');

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'M', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

 Matrix Multiplication Operation to MathWorks BLAS Code Replacement

22-177

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'K', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDB', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDC', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

8 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

9 Create the entry for the second mapping.

22 Code Replacement Customization for Simulink Models

22-178

% Create table entry for dgemv32

op_entry = RTW.TflBlasEntryGenerator;

if ispc

 libExt = 'lib';

elseif ismac

 libExt = 'dylib';

else

 libExt = 'so';

end

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

 'Priority', 100, ...

 'ImplementationName', 'dgemv32', ...

 'ImplementationHeaderFile', 'blascompat32_crl.h', ...

 'ImplementationHeaderPath', fullfile('$(MATLAB_ROOT)','extern','include'), ...

 'AdditionalLinkObjs', {['libmwblascompat32.' libExt]}, ...

 'AdditionalLinkObjsPaths', {LibPath},...

 'SideEffects', true);

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [2 1; inf 1]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [1 1; inf 1]);

% Using RTW.TflBlasEntryGenerator for xgemv requires the following

% implementation signature:

%

% void f(char* TRANS, int* M, int* N,

% type* ALPHA, type* u1, int* LDA, type* u2, int* INCX,

% type* BETA, type* y, int* INCY)

%

% Upon a match, the CRL entry will compute the

% values for M, N, LDA, INCX, and INCY, and insert them into the

% generated code. TRANS will be set to 'N'.

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = RTW.TflArgCharConstant('TRANS');

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

 Matrix Multiplication Operation to MathWorks BLAS Code Replacement

22-179

arg = getTflArgFromString(hTable, 'M', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCX','integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCY', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

10 Save the table definition file. Use the name of the table definition function to name
the file.

22 Code Replacement Customization for Simulink Models

22-180

To test this example:

1 Register the code replacement mapping.
2 Create a model that includes two Product blocks.

3 For each Product block, set the block parameter Multiplication to the value
Matrix(*).

4 Configure the model with the following settings:

• On the Solver pane, select a fixed-step, discrete solver with a fixed-step size such
as 0.1.

• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your addition operation entry.
5 In the Model Explorer, configure the Signal Attributes for the In1, In2, and In3

source blocks. For In1 and In2, set Port dimensions to [3 3] and set the Data
type to double. For In3, set Port dimensions to [3 1] and set the Data type to
double.

6 Generate code and a code generation report.
7 Review the code replacements.

Related Examples
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”
• “Verify Code Replacements”
• “Small Matrix Operation to Processor Code Replacement”
• “Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement”
• “Data Alignment for Code Replacement”

 Matrix Multiplication Operation to MathWorks BLAS Code Replacement

22-181

• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace From Simulink Models”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

22 Code Replacement Customization for Simulink Models

22-182

Matrix Multiplication Operation to ANSI/ISO C BLAS Code
Replacement

This example shows how to define code replacement mappings that replace nonscalar
multiplication operations with ANSI/ISO® C BLAS multiplication functions xgemm
and xgemv. The example defines code replacement entries that map floating-point
matrix/matrix and matrix/vector multiplication operations to ANSI/ISO C BLAS library
multiplication functions dgemm and dgemv. The example defines the function mappings
programmatically. Alternatively, you can use the Code Replacement Tool to define the
same mappings.

BLAS libraries support matrix/matrix multiplication in the form of
C = a(op(A) * op(B)) + bC . op(X) means X, transposition of X, or Hermitian
transposition of X. However, code replacement libraries support only the limited case of
C = op(A) * op(B) (a = 1.0, b = 0.0) . Correspondingly, although BLAS libraries support
matrix/vector multiplication in the form of y = a(op(A) * x) + by , code replacement
libraries support only the limited case of y = op(A) * x (a = 1.0, b = 0.0) .

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_cblas_mmult_double

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Define the path for the CBLAS function library. For example:
LibPath = fullfile(matlabroot, 'toolbox', 'rtw', 'rtwdemos', 'crl_demo');

4 Create an entry for the first mapping with a call to the
RTW.TflBlasEntryGenerator function.

% Create table entry for cblas_dgemm

op_entry = RTW.TflCBlasEntryGenerator;

5 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The function call sets matrix
multiplication operator entry properties. The code generator ignores saturation and
rounding modes for floating-point nonscalar addition and subtraction.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

 Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement

22-183

 'Priority', 100, ...

 'ImplementationName', 'cblas_dgemm', ...

 'ImplementationHeaderFile', 'cblas.h', ...

 'ImplementationHeaderPath', LibPath, ...

 'AdditionalIncludePaths', {LibPath}, ...

 'GenCallback', 'RTW.copyFileToBuildDir', ...

 'SideEffects', true);

6 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with
one function call. To specify a matrix argument in the function call, use the
argument class RTW.TflArgMatrix and specify the base type and the dimensions
for which the argument is valid. This type of table entry supports a range of
dimensions specified in the format [Dim1Min Dim2Min ... DimNMin; Dim1Max
Dim2Max ... DimNMax]. For example, [2 2; inf inf] means a two-dimensional
matrix of size 2x2 or larger. The conceptual output argument for the dgemm32 entry
for matrix/matrix multiplication replacement specifies dimensions [2 2; inf
inf]. The conceptual output argument for the dgemv32 entry for matrix/vector
multiplication replacement specifies dimensions [2 1; inf 1].

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [1 1; inf inf]);

7 Create the implementation arguments. There are multiple ways to set up the
implementation arguments. This example uses calls to the getTflArgFromString
function to create the arguments. The example code configures special
implementation arguments that are required for dgemm and dgemv function
replacements. The convenience methods setReturn and addArgument specify
whether an argument is a return value or argument and adds the argument to the
entry’s array of implementation arguments.

% Using RTW.TflCBlasEntryGenerator for xgemm requires the following

% implementation signature:

%

% void f(enum ORDER, enum TRANSA, enum TRANSB, int M, int N, int K,

% type ALPHA, type* u1, int LDA, type* u2, int LDB,

22 Code Replacement Customization for Simulink Models

22-184

% type BETA, type* y, int LDC)

%

% Since CRLs do not have the ability to specify enums, you must

% use integer. (This will cause problems with C++ code generation,

% so for C++, use a wrapper function to cast each int to the

% corresponding enumeration type.)

%

% When a match occurs, the code generator computes the

% values for M, N, K, LDA, LDB, and LDC and insert them into the

% generated code.

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'ORDER', 'integer', 102);

%arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'TRANSA', 'integer', 111);

%arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'TRANSB', 'integer', 111);

%arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'M', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'K', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 1);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDB', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

op_entry.Implementation.addArgument(arg);

 Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement

22-185

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDC', 'integer', 0);

op_entry.Implementation.addArgument(arg);

8 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

9 Create the entry for the second mapping.
% Create table entry for cblas_dgemv

op_entry = RTW.TflCBlasEntryGenerator;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

 'Priority', 100, ...

 'ImplementationName', 'cblas_dgemv', ...

 'ImplementationHeaderFile', 'cblas.h', ...

 'ImplementationHeaderPath', LibPath, ...

 'AdditionalIncludePaths', {LibPath}, ...

 'GenCallback', 'RTW.copyFileToBuildDir', ...

 'SideEffects', true);

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [2 1; inf 1]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [1 1; inf 1]);

% Using RTW.TflCBlasEntryGenerator for xgemv requires the following

% implementation signature:

%

% void f(enum ORDER, enum TRANSA, int M, int N,

% type ALPHA, type* u1, int LDA, type* u2, int INCX,

% type BETA, type* y, int INCY)

%

% Since CRLs do not have the ability to specify enums, you must

% use integer. (This will cause problems with C++ code generation,

% so for C++, use a wrapper function to cast each int to the

% corresponding enumeration type.)

%

% Upon a match, the CRL entry will compute the

% values for M, N, LDA, INCX, and INCY and insert them into the

% generated code.

22 Code Replacement Customization for Simulink Models

22-186

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'ORDER', 'integer', 102);

%arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'TRANSA', 'integer', 111);

%arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'M','integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 1);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCX', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCY', 'integer', 0);

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

10 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example:

1 Register the code replacement mapping.

 Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement

22-187

2 Create a model that includes two Product blocks.

3 Configure the model with the following settings:

• On the Solver pane, select a fixed-step, discrete solver with a fixed-step size such
as 0.1.

• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your addition operation entry.
4 For each Product block, set the block parameter Multiplication to the value

Matrix(*).
5 In the Model Explorer, configure the Signal Attributes for the In1, In2, and In3

source blocks. For In1 and In2, set Port dimensions to [3 3]. Set the Data type
to double. For In3, set Port dimensions to [3 1]. Set the Data type to double.

6 Generate code and a code generation report.
7 Review the code replacements.

Related Examples
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”
• “Verify Code Replacements”
• “Small Matrix Operation to Processor Code Replacement”
• “Matrix Multiplication Operation to MathWorks BLAS Code Replacement”
• “Data Alignment for Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”
• “Develop a Code Replacement Library”

22 Code Replacement Customization for Simulink Models

22-188

• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace From Simulink Models”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

 Remap Operator Output to Function Input

22-189

Remap Operator Output to Function Input

If your generated code must meet a specific coding pattern or you want more flexibility,
for example, to further improve performance, you can remap operator outputs to input
positions in an implementation function argument list.

Note: Remapping outputs to implementation function inputs is supported only for
operator replacement.

For example, for a sum operation, the code generator produces code similar to:

add8_Y.Out1 = u8_add_u8_u8(add8_U.In1, add8_U.In2);

If you remap the output to the first input, the code generator produces code similar to:

u8_add_u8_u8(&add8_Y.Out1;, add8_U.In1, add8_U.In2);

The following table definition file for a sum operation remaps operator output y1 as the
first function input argument.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_add_uint8

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create an entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

% Create operation entry

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. In the function call, set the
property SideEffects to true.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 90, ...

 'ImplementationName', 'u8_add_u8_u8', ...

 'ImplementationHeaderFile', 'u8_add_u8_u8.h', ...

 'ImplementationSourceFile', 'u8_add_u8_u8.c', ...

 'SideEffects', true);

22 Code Replacement Customization for Simulink Models

22-190

5 Create conceptual arguments y1, u1, and u2. There are multiple ways to set up the
conceptual arguments. This example uses calls to the getTflArgFromString and
addConceptualArg functions to create and add the arguments.
arg = getTflArgFromString(hTable, 'y1', 'uint8');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u1', 'uint8');

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u2', 'uint8');

addConceptualArg(op_entry, arg);

6 Create the implementation arguments. There are multiple ways to set up the
implementation arguments. This example uses calls to the getTflArgFromString
function to create the arguments. When defining the implementation function return
argument, create a new void output argument, for example, y2. When defining the
implementation function argument for the conceptual output argument (y1), set
the operator output argument as an additional input argument. Mark its IOType
as output. Make its type a pointer type. The convenience methods setReturn and
addArgument specify whether an argument is a return value or argument and adds
the argument to the entry’s array of implementation arguments.
% Create new void output y2

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

% Set y1 as first input arg, mark IOType as output, and use pointer type

arg=getTflArgFromString(hTable, 'y1', 'uint8*');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

arg=getTflArgFromString(hTable, 'u1', 'uint8');

op_entry.Implementation.addArgument(arg);

arg=getTflArgFromString(hTable, 'u2', 'uint8');

op_entry.Implementation.addArgument(arg);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example:

1 Register the code replacement mapping.

 Remap Operator Output to Function Input

22-191

2 Create a model that includes an Add block.

3 Configure the model with the following settings:

• On the Solver pane, select a fixed-step solver.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your addition operation entry.
• On the Optimization pane, set Signals and Parameters > Optimize global

data access to Use global to hold temporary results to reduce data
copies in the generated code.

4 Generate code and a code generation report.
5 Review the code replacements.

Related Examples
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”
• “Verify Code Replacements”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace From Simulink Models”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

22 Code Replacement Customization for Simulink Models

22-192

Customize Matching and Replacement Process for Operators

Create the Entry

This example shows how to create custom code replacement entries that add extra logic
to the code replacement matching and replacement process. Custom entries allow you to
specify additional match criteria or modify the replacement function signature to meet
your application needs.

• You might want to replace an operator with a particular fixed-point implementation
function only when fraction lengths are within a particular range.

• When a match occurs, you might want to modify your replacement function signature
based on compile-time information, such as passing fraction-length values into the
function.

The example modifies a fixed-point addition replacement such that the implementation
function passes in the fraction lengths of the input and output data types as arguments.

Create Class Folder for Entry

Create a class folder using the name of your derived class, such as
@TflCustomOperationEntry. Verify that the class folder is on the MATLAB search
path or in your current working folder.

Create Derived Class that Defines do_match Method

In the class folder, create and save the following class definition
file, TflCustomOperationEntry.m. This file defines the class
TflCustomOperationEntry, which is derived from the base class
RTW.TflCOperationEntryML.

The derived class defines a do_match method. In the do_match signature:

• ent is the return handle, which is returned either as empty (indicating that the
match failed) or as a TflCOperationEntry handle.

• hThis is the handle to this object.
• hCSO is a handle to an object created by the code generator for querying the library for

a replacement.
• The remaining arguments are the number of bits for various data types of the current

target.

 Customize Matching and Replacement Process for Operators

22-193

The do_match method adds required additional match criteria that the base class does
not provide. the method makes required modifications to the implementation signature.
In this case, the do_match method can rely on the base class for checking word size
and signedness. do_match must match only the number of conceptual arguments to the
value 3 (two inputs and one output) and the bias for each argument to the value 0. If the
code generator finds a match, do_match sets the return handle, removes slope and bias
wildcards from the conceptual arguments (the match is for specific slope and bias values),
and writes fraction-length values for the inputs and output into replacement function
arguments 3, 4, and 5.

You can create and add the three additional implementation function arguments
for passing fraction lengths in the class definition or in each code replacement entry
definition that instantiates this class. This example creates the arguments, adds them
to a code replacement table definition file, and sets them to specific values in the class
definition code.
classdef TflCustomOperationEntry < RTW.TflCOperationEntryML

 methods

 function ent = do_match(hThis, ...

 hCSO, ... %#ok

 targetBitPerChar, ... %#ok

 targetBitPerShort, ... %#ok

 targetBitPerInt, ... %#ok

 targetBitPerLong) %#ok

 % DO_MATCH - Create a custom match function. The base class

 % checks the types of the arguments prior to calling this

 % method. This will check additional data and perhaps modify

 % the implementation function.

 % The base class checks word size and signedness. Slopes and biases

 % have been wildcarded, so the only additional checking to do is

 % to check that the biases are zero and that there are only three

 % conceptual arguments (one output, two inputs)

 ent = []; % default the return to empty, indicating the match failed

 if length(hCSO.ConceptualArgs) == 3 && ...

 hCSO.ConceptualArgs(1).Type.Bias == 0 && ...

 hCSO.ConceptualArgs(2).Type.Bias == 0 && ...

 hCSO.ConceptualArgs(3).Type.Bias == 0

 % Modify the default implementation. Since this is a

 % generator entry, a concrete entry is created using this entry

 % as a template. The type of entry being created is a standard

 % TflCOperationEntry. Using the standard operation entry

 % provides required information, and you do not need

 % a custom match function.

 ent = RTW.TflCOperationEntry(hThis);

 % Since this entry is modifying the implementation for specific

22 Code Replacement Customization for Simulink Models

22-194

 % fraction-length values (arguments 3, 4, and 5), the conceptual argument

 % wildcards must be removed (the wildcards were inherited from the

 % generator when it was used as a template for the concrete entry).

 % This concrete entry is now for a specific slope and bias.

 % hCSO holds the slope and bias values (created by the code generator).

 for idx=1:3

 ent.ConceptualArgs(idx).CheckSlope = true;

 ent.ConceptualArgs(idx).CheckBias = true;

 % Set the specific Slope and Biases

 ent.ConceptualArgs(idx).Type.Slope = hCSO.ConceptualArgs(idx).Type.Slope;

 ent.ConceptualArgs(idx).Type.Bias = 0;

 end

 % Set the fraction-length values in the implementation function.

 ent.Implementation.Arguments(3).Value = ...

 -1.0*hCSO.ConceptualArgs(2).Type.FixedExponent;

 ent.Implementation.Arguments(4).Value = ...

 -1.0*hCSO.ConceptualArgs(3).Type.FixedExponent;

 ent.Implementation.Arguments(5).Value = ...

 -1.0*hCSO.ConceptualArgs(1).Type.FixedExponent;

 end

 end

 end

end

Create Code Replacement Entry

Create code replacement entries that instantiate your custom entry class. For this
example, create and save a code replacement table that contains a single operator entry,
an entry generator for unsigned 32-bit fixed-point addition operations, with arbitrary
fraction-length values on the inputs and the output. This entry instantiates the derived
class from the previous step.

If you want to replace all word sizes and signedness attributes (not just 32-bit and
unsigned), you can use the same derived class, but not the same entry, because you
cannot wildcard the WordLength and IsSigned arguments. For example, to support
uint8, int8, uint16, int16, and int32, you must add five other distinct entries.
Similarly, to use different implementation functions for saturation and rounding
modes other than overflow and round to floor, you must add entries for those match
permutations.

This table entry creates and adds three implementation arguments to hold the
fraction-length values for the inputs and output. Alternatively, the entry can omit
those argument definitions. Instead the do_match method of the derived class
TflCustomOperationEntry can create and add the three implementation arguments.
When the number of additional implementation arguments required can vary based on
compile-time information, use the alternative approach.

 Customize Matching and Replacement Process for Operators

22-195

1 In your working folder, create an entry definition file.
2 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_custom_add_ufix32

3 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

4 Create an entry for the custom operator mapping with a call to the
RTW.TflCustomOperationEntry function.

%% Add TflCustomOperationEntry

op_entry = TflCustomOperationEntry;

5 Set function entry parameters with a call to the
setTflCOperationEntryParameters function.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 30, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_FLOOR'}, ...

 'ImplementationName', 'myFixptAdd', ...

 'ImplementationHeaderFile', 'myFixptAdd.h', ...

 'ImplementationSourceFile', 'myFixptAdd.c');

6 Create conceptual arguments y1, u1, and u2. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call.
createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'Scaling', 'BinaryPoint', ...

 'IsSigned', false, ...

 'WordLength', 32);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'Scaling', 'BinaryPoint', ...

 'IsSigned', false, ...

 'WordLength', 32);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

22 Code Replacement Customization for Simulink Models

22-196

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'Scaling', 'BinaryPoint', ...

 'IsSigned', false, ...

 'WordLength', 32);

7 Create the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry.
% Specify replacement function signature

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', false, ...

 'WordLength', 32, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 32, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 32, ...

 'FractionLength', 0);

% Add 3 fraction-length args. Actual values are set during code generation.

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ...

 'Name', 'fl_in1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 32, ...

 'FractionLength', 0, ...

 'Value', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ...

 'Name', 'fl_in2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 32, ...

 'FractionLength', 0, ...

 'Value', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ...

 'Name', 'fl_out', ...

 'IOType', 'RTW_IO_INPUT', ...

 Customize Matching and Replacement Process for Operators

22-197

 'IsSigned', false, ...

 'WordLength', 32, ...

 'FractionLength', 0, ...

 'Value', 0);

8 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

9 Save the table definition file. Use the name of the table definition function to name
the file.

Test the Entry

To test the custom code replacement entry:

1 Register the code replacement mapping.
2 Create a model that includes one or more unsigned 32-bit fixed-point addition

operations.

3 In the block parameters for the Add blocks, set Integer rounding mode to Floor
and select Saturate on integer overflow.

4 Configure the model with the following settings:

• On the Solver pane, select a fixed-step, discrete solver.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your custom operation entry.

Apply the changes. Save the model.
5 Generate code and a code generation report.
6 Review the code replacements. myFixptAdd replaces the default implementation

code for the unsigned 32-bit fixed-point addition operation. The three additional
fraction-length arguments are present.

22 Code Replacement Customization for Simulink Models

22-198

/* Model step function */

void ufix32_add_step(void)

{

 /* Outport: '<Root>/Out1' incorporates:

 * Inport: '<Root>/In1'

 * Inport: '<Root>/In2'

 * Sum: '<Root>/Add'

 */

 ufix32_add_Y.Out1 = myFixptAdd(ufix32_add_U.In1, ufix32_add_U.In2, 9U, 7U, 6U);

 /* Outport: '<Root>/Out2' incorporates:

 * Inport: '<Root>/In3'

 * Inport: '<Root>/In4'

 * Sum: '<Root>/Add1'

 */

 ufix32_add_Y.Out2 = myFixptAdd(ufix32_add_U.In3, ufix32_add_U.In4, 10U, 9U, 7U);

}

Related Examples
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”
• “Verify Code Replacements”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “Code Replacement Match and Replacement Process”
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace From Simulink Models”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

 Fixed-Point Operator Code Replacement

22-199

Fixed-Point Operator Code Replacement

In this section...

“Fixed-Point Operator Entries” on page 22-199
“Fixed-Point Numbers and Arithmetic” on page 22-203
“Addition” on page 22-203
“Subtraction” on page 22-204
“Multiplication” on page 22-204
“Division” on page 22-205
“Data Type Conversion (Cast)” on page 22-206
“Shift” on page 22-206

Fixed-Point Operator Entries

If you have a Fixed-Point Designer license, you can define fixed-point operator code
replacement entries to match:

• A binary-point-only scaling combination on the operator inputs and output.
• A slope bias scaling combination on the operator inputs and output.
• Relative scaling or net slope between multiplication or division operator inputs

and output. Use one of these methods to map a range of slope and bias values to a
replacement function for multiplication or division.

• Equal slope and zero net bias across addition or subtraction operator inputs and
output. Use this method to disregard specific slope and bias values and map relative
slope and bias values to a replacement function for addition or subtraction.

The following table maps common ways to match fixed-point operator code replacement
entries with the associated fixed-point parameters that you specify in a code replacement
table definition file.

Match Create entry Minimally specify parameters

A specific binary-point-
only scaling combination
on the operator inputs and
output.

RTW.TflCOperationEntry createAndAddConceptualArg

function:

• CheckSlope: Specify the value
true.

22 Code Replacement Customization for Simulink Models

22-200

Match Create entry Minimally specify parameters

• CheckBias: Specify the value true.
• DataTypeMode (or

DataType/Scaling equivalent):
Specify fixed-point binary-point-only
scaling.

• FractionLength: Specify a
fraction length (for example, 3).

A specific slope bias
scaling combination on
the operator inputs and
output.

RTW.TflCOperationEntry createAndAddConceptualArg

function:

• CheckSlope: Specify the value
true.

• CheckBias: Specify the value true.
• DataTypeMode (or DataType/

Scaling equivalent): Specify fixed-
point [slope bias] scaling.

• Slope (or
SlopeAdjustmentFactor/
FixedExponent equivalent):
Specify a slope value (for example,
15).

• Bias: Specify a bias value (for
example, 2).

 Fixed-Point Operator Code Replacement

22-201

Match Create entry Minimally specify parameters

Net slope between
operator inputs and
output (multiplication and
division).

RTW.TflCOperationEntry-

Generator_NetSlope

setTflCOperationEntryParameters

function:

• NetSlopeAdjustmentFactor:
Specify the slope adjustment factor
(F) part of the net slope, F2E (for
example, 1.0).

• NetFixedExponent: Specify the
fixed exponent (E) part of the net
slope, F2E (for example, -3.0).

createAndAddConceptualArg

function:

• CheckSlope: Specify the value
false.

• CheckBias: Specify the value
false.

• DataType: Specify the value
'Fixed'.

22 Code Replacement Customization for Simulink Models

22-202

Match Create entry Minimally specify parameters

Relative scaling between
operator inputs and
output (multiplication and
division).

RTW.TflCOperationEntry-

Generator

setTflCOperationEntryParameters

function:

• RelativeScalingFactorF:
Specify the slope adjustment factor
(F) part of the relative scaling factor,
F2

E (for example, 1.0).
• RelativeScalingFactorE:

Specify the fixed exponent (E) part
of the relative scaling factor, F2E (for
example, -3.0).

createAndAddConceptualArg

function:

• CheckSlope: Specify the value
false.

• CheckBias: Specify the value
false.

• DataType: Specify the value
'Fixed'.

Equal slope and zero net
bias across operator inputs
and output (addition and
subtraction).

RTW.TflCOperationEntry-

Generator

setTflCOperationEntryParameters

function:

• SlopesMustBeTheSame: Specify
the value true.

• MustHaveZeroNetBias: Specify
the value true.

createAndAddConceptualArg

function:

• CheckSlope: Specify the value
false.

• CheckBias: Specify the value
false.

 Fixed-Point Operator Code Replacement

22-203

Fixed-Point Numbers and Arithmetic

Fixed-point numbers use integers and integer arithmetic to represent real numbers and
arithmetic with the following encoding scheme:

V V SQ B= = +%

• V is an arbitrarily precise real-world value.

• %V is the approximate real-world value that results from fixed-point representation.

• Q is an integer that encodes %V , referred to as the quantized integer.

•
S is a coefficient of Q , referred to as the slope.

• B is an additive correction, referred to as the bias.

The general equation for an operation between fixed-point operands is:

S Q B S Q B op S Q BO O O+() = +() < > +
1 1 1 2 2 2

()

The objective of fixed-point operator replacement is to replace an operator that accepts
and returns fixed-point or integer inputs and output with a function that accepts
and returns built-in C numeric data types. The following sections provide additional
programming information for each supported operator.

Addition

The operation V0 = V1 + V2 implies that

Q
S

S
Q

S

S
Q

B B B

S
0

1

0

1

2

0

2

1 2 0

0

=
Ê

Ë
Á

ˆ

¯
˜ +

Ê

Ë
Á

ˆ

¯
˜ +

+ -Ê

Ë
Á

ˆ

¯
˜

If an addition replacement function is defined such that the scaling on the operands and
sum are equal and the net bias

22 Code Replacement Customization for Simulink Models

22-204

B B B

S

1 2 0

0

+ -Ê

Ë
Á

ˆ

¯
˜

is zero (for example, a function s8_add_s8_s8 that adds two signed 8-bit
values and produces a signed 8-bit result), then the operator entry must set the
operator entry parameters SlopesMustBeTheSame and MustHaveZeroNetBias
to true. (For parameter descriptions, see the reference page for the function
setTflCOperationEntryParameters.)

Subtraction

The operation V0 = V1 − V2 implies that

Q
S

S
Q

S

S
Q

B B B

S
0

1

0

1

2

0

2

1 2 0

0

=
Ê

Ë
Á

ˆ

¯
˜ -

Ê

Ë
Á

ˆ

¯
˜ +

- -Ê

Ë
Á

ˆ

¯
˜

If a subtraction replacement function is defined such that the scaling on the operands
and difference are equal and the net bias

B B B

S

1 2 0

0

- -Ê

Ë
Á

ˆ

¯
˜

is zero (for example, a function s8_sub_s8_s8 that subtracts two signed 8-bit
values and produces a signed 8-bit result), then the operator entry must set the
operator entry parameters SlopesMustBeTheSame and MustHaveZeroNetBias
to true. (For parameter descriptions, see the reference page for the function
setTflCOperationEntryParameters.)

Multiplication

There are different ways to specify multiplication replacements. The most direct way is to
specify an exact match of the input and output types. This is feasible if a model contains
only a few (known) slope and bias combinations. Use the TflCOperationEntry class

 Fixed-Point Operator Code Replacement

22-205

and specify the exact values of slope and bias on each argument. For scenarios where
there are numerous slope/bias combinations, it is not feasible to specify each value with a
different entry. Use a net slope entry or create a custom entry.

The operation V0 = V1 * V2 implies, for binary-point-only scaling, that

S Q S Q S Q

Q
S S

S
Q Q

Q S Q Q
n

0 0 1 1 2 2

0

1 2

0

1 2

0 1 2

= () ()

=
Ê

Ë
Á

ˆ

¯
˜

=

where Sn is the net slope.

It is common to replace all multiplication operations that have a net slope of 1.0 with
a function that performs C-style multiplication. For example, to replace all signed 8-
bit multiplications that have a net scaling of 1.0 with the s8_mul_s8_u8_ replacement
function, the operator entry must define a net slope factor, F2E. You specify the values
for F and E using operator entry parameters NetSlopeAdjustmentFactor and
NetFixedExponent. (For parameter descriptions, see the reference page for the
function setTflCOperationEntryParameters.) For the s8_mul_s8_u8 function, set
NetSlopeAdjustmentFactor to 1 and NetFixedExponent to 0.0.

Note: When an operator entry specifies NetSlopeAdjustmentFactor and
NetFixedExponent, matching entries must have arguments with zero bias.

Division

There are different ways to specify division replacements. The most direct way is to
specify an exact match of the input and output types. This is feasible if a model contains
only a few (known) slope and bias combinations. For this, use the TflCOperationEntry
class and specify the exact values of slope and bias on each argument. For scenarios
where there are numerous slope/bias combinations, it is not feasible to specify each
value with a different entry. For this, use a net slope entry or create a custom entry (see
“Customize Matching and Replacement Process for Functions”).

The operation V0 = (V1 / V2) implies, for binary-point-only scaling, that

22 Code Replacement Customization for Simulink Models

22-206

S Q
S Q

S Q

Q S
Q

Q
n

0 0

1 1

2 2

0

1

2

=
Ê

Ë
Á

ˆ

¯
˜

=
Ê

Ë
Á

ˆ

¯
˜

where Sn is the net slope.

It is common to replace all division operations that have a net slope of 1.0 with
a function that performs C-style division. For example, to replace all signed 8-
bit divisions that have a net scaling of 1.0 with the s8_mul_s8_u8_ replacement
function, the operator entry must define a net slope factor, F2E. You specify the values
for F and E using operator entry parameters NetSlopeAdjustmentFactor and
NetFixedExponent. (For parameter descriptions, see the reference page for the function
setTflCOperationEntryParameters.) For the s16_netslope0p5_div_s16_s16
function, you would set NetSlopeAdjustmentFactor to 1 and NetFixedExponent to
0.0.

Note: When an operator entry specifies NetSlopeAdjustmentFactor and
NetFixedExponent, matching entries must have arguments with zero bias.

Data Type Conversion (Cast)

The data type conversion operation V0 = V1 implies, for binary-point-only scaling, that

Q
S

S
Q

Q S Q
n

0

1

0

1

0 1

=
Ê

Ë
Á

ˆ

¯
˜

=

where Sn is the net slope.

Shift

The shift left or shift right operation V0 = (V1 / 2n) implies, for binary-point-only scaling,
that

 Fixed-Point Operator Code Replacement

22-207

S Q
S Q

Q
S

S

Q

Q S
Q

n

n

n n

0 0

1 1

0

1

0

1

0

1

2

2

2

= Ê
Ë
Á

ˆ
¯
˜

=
Ê

Ë
Á

ˆ

¯
˜ + Ê

Ë
Á

ˆ
¯
˜

= Ê
Ë
Á

ˆ
¯
˜

where Sn is the net slope.

Related Examples
• “Define Code Replacement Mappings”
• “Binary-Point-Only Scaling Code Replacement”
• “Slope Bias Scaling Code Replacement”
• “Net Slope Scaling Code Replacement”
• “Equal Slope and Zero Net Bias Code Replacement”
• “Data Type Conversions (Casts) and Operator Code Replacement”
• “Shift Left Operations and Code Replacement”
• “Data Alignment for Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace From Simulink Models”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

22 Code Replacement Customization for Simulink Models

22-208

External Web Sites
• “Replacing Math Functions and Operators”

 Binary-Point-Only Scaling Code Replacement

22-209

Binary-Point-Only Scaling Code Replacement
You can define code replacement entries for operations on fixed-point data types such
that they match a binary-point-only scaling combination on operator inputs and output.
These binary-point-only scaling entries can map the specified binary-point-scaling
combination to a replacement function for addition, subtraction, multiplication, or
division.

This example creates a code replacement entry for multiplication of fixed-point data
types. You specify arguments using binary-point-only scaling. The example defines the
function mapping programmatically. Alternatively, you can use the Code Replacement
Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_fixed_binptscale

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the
type of operation as multiplication, the saturation mode as saturate on integer
overflow, rounding modes as unspecified, and the name of the replacement function
as s32_mul_s16_s16_binarypoint.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

 'ImplementationName', 's32_mul_s16_s16_binarypoint', ...

 'ImplementationHeaderFile', 's32_mul_s16_s16_binarypoint.h', ...

 'ImplementationSourceFile', 's32_mul_s16_s16_binarypoint.c');

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Each argument specifies that the data type is fixed-point, the mode is
binary-point-only scaling, and its derived slope and bias values must exactly match
the call-site slope and bias values. The output argument is 32 bits, signed, with a

22 Code Replacement Customization for Simulink Models

22-210

fraction length of 28. The input arguments are 16 bits, signed, with fraction lengths
of 15 and 13.

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', true, ...

 'WordLength', 32, ...

 'FractionLength', 28);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 15);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 13);

6 Create the implementation arguments. There are multiple
ways to set up the implemenation arguments. This example
uses calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types). In this case, the output argument is
32 bits and signed (int32). The input arguments are 16 bits and signed (int16).

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', true, ...

 'WordLength', 32, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 Binary-Point-Only Scaling Code Replacement

22-211

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example:

1 Register the code replacement mapping.
2 Create a model.

3 For this model:

• Set the Inport 1 Data type to fixdt(1,16,15).
• Set the Inport 2 Data type to fixdt(1,16,13).
• In the Product block:

• Set Output data type to fixdt(1,32,28).
• Select the option Saturate on integer overflow.

4 Configure the model with the following settings:

• On the Solver pane, select a fixed-step, discrete solver.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your addition operation entry.
5 Generate code and a code generation report.

22 Code Replacement Customization for Simulink Models

22-212

6 Review the code replacements.

Related Examples
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”
• “Verify Code Replacements”
• “Fixed-Point Operator Code Replacement”
• “Slope Bias Scaling Code Replacement”
• “Net Slope Scaling Code Replacement”
• “Equal Slope and Zero Net Bias Code Replacement”
• “Data Type Conversions (Casts) and Operator Code Replacement”
• “Shift Left Operations and Code Replacement”
• “Data Alignment for Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace From Simulink Models”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

 Slope Bias Scaling Code Replacement

22-213

Slope Bias Scaling Code Replacement
You can define code replacement for operations on fixed-point data types as matching
a slope bias scaling combination on the operator inputs and output. The slope bias
scaling entries can map the specified slope bias combination to a replacement function for
addition, subtraction, multiplication, or division.

This example creates a code replacement entry for division of fixed-point data types. You
specify arguments using slope bias scaling. The example defines the function mapping
programmatically. Alternatively, you can use the Code Replacement Tool to define the
same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_fixed_s16divslopebias

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the
type of operation as division, the saturation mode as saturate on integer overflow,
rounding modes as round to ceiling, and the name of the replacement function as
s16_div_s16_s16_slopebias.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_DIV', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_CEILING'}, ...

 'ImplementationName', 's16_div_s16_s16_slopebias', ...

 'ImplementationHeaderFile', 's16_div_s16_s16_slopebias.h', ...

 'ImplementationSourceFile', 's16_div_s16_s16_slopebias.c');

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Each argument specifies that the data type is fixed-point, the mode
is slope bias scaling, and its specified slope and bias values must exactly match the
call-site slope and bias values. The output argument and input arguments are 16
bits, signed, each with specific slope bias specifications.

22 Code Replacement Customization for Simulink Models

22-214

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: slope and bias scaling', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'Slope', 15, ...

 'Bias', 2);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: slope and bias scaling', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'Slope', 15, ...

 'Bias', 2);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: slope and bias scaling', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'Slope', 13, ...

 'Bias', 5);

6 Create the implementation arguments. There are multiple ways
to set up the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types). In this case, the output and input
arguments are 16 bits and signed (int16).
createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 Slope Bias Scaling Code Replacement

22-215

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example:

1 Register the code replacement mapping.
2 Create a model.

3 For this model:

• Set the Inport 1 Data type to fixdt(1,16,15,2).
• Set the Inport 2 Data type to fixdt(1,16,13,5).
• In the Divide block:

• Set Output data type to Inherit: Inherit via back propagation.
• Set Integer rounding mode to Ceiling.
• Select the option Saturate on integer overflow.

4 Configure the model with the following settings:

• On the Solver pane, select a fixed-step, discrete solver.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your addition operation entry.

22 Code Replacement Customization for Simulink Models

22-216

5 Generate code and a code generation report.
6 Review the code replacements.

Related Examples
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”
• “Verify Code Replacements”
• “Fixed-Point Operator Code Replacement”
• “Binary-Point-Only Scaling Code Replacement”
• “Net Slope Scaling Code Replacement”
• “Equal Slope and Zero Net Bias Code Replacement”
• “Data Type Conversions (Casts) and Operator Code Replacement”
• “Shift Left Operations and Code Replacement”
• “Data Alignment for Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace From Simulink Models”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

 Net Slope Scaling Code Replacement

22-217

Net Slope Scaling Code Replacement

In this section...

“Multiplication and Division with Saturation” on page 22-217
“Multiplication and Division with Rounding Mode and Additional Implementation
Arguments” on page 22-220

Multiplication and Division with Saturation

You can define code replacement entries for operations on fixed-point data types as
matching net slope between operator inputs and output. The net slope entries can map a
range of slope and bias values to a replacement function for multiplication or division.

This example creates a code replacement entry for division of fixed-point data types,
using wrap on overflow saturation mode and a net slope. The example defines the
function mapping programmatically. Alternatively, you can use the Code Replacement
Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_fixed_netslopesaturate

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntryGenerator_Netslope function, which provides
access to the fixed-point parameters NetSlopeAdjustmentFactor and
NetFixedExponent.
wv = [16,32];

for iy = 1:2

 for inum = 1:2

 for iden = 1:2

 hTable = getDivOpEntry(hTable, ...

 fixdt(1,wv(iy)),fixdt(1,wv(inum)),fixdt(1,wv(iden)));

 end

 end

end

%---

function hTable = getDivOpEntry(hTable,dty,dtnum,dtden)

%---

% Create an entry for division of fixed-point data types where

22 Code Replacement Customization for Simulink Models

22-218

% arguments are specified using Slope and Bias scaling

% Saturation on, Rounding unspecified

funcStr = sprintf('user_div_%s_%s_%s',...

 typeStrFunc(dty),...

 typeStrFunc(dtnum),...

 typeStrFunc(dtden));

op_entry = RTW.TflCOperationEntryGenerator_NetSlope;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the
type of operation as division, the saturation mode as wrap on overflow, rounding
modes as unspecified, and the name of the replacement function as user_div_*.
NetSlopeAdjustmentFactor and NetFixedExponent specify the F and E parts of
the net slope F2E.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_DIV', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW',...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'},...

 'NetSlopeAdjustmentFactor', 1.0, ...

 'NetFixedExponent', 0.0, ...

 'ImplementationName', funcStr, ...

 'ImplementationHeaderFile', [funcStr,'.h'], ...

 'ImplementationSourceFile', [funcStr,'.c']);

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with
one function call. Specify each argument as fixed-point and signed. Also, for each
argument, specify that code replacement request processing does not check for an
exact match to the call-site slope and bias values.
createAndAddConceptualArg(op_entry, ...

 'RTW.TflArgNumeric', ...

 'Name', 'y1',...

 'IOType', 'RTW_IO_OUTPUT',...

 'CheckSlope', false,...

 'CheckBias', false,...

 'DataTypeMode', 'Fixed-point: slope and bias scaling',...

 'IsSigned', dty.Signed,...

 'WordLength', dty.WordLength,...

 'Bias', 0);

createAndAddConceptualArg(op_entry, ...

 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT',...

 'CheckSlope', false,...

 'CheckBias', false,...

 Net Slope Scaling Code Replacement

22-219

 'DataTypeMode', 'Fixed-point: slope and bias scaling',...

 'IsSigned', dtnum.Signed,...

 'WordLength', dtnum.WordLength,...

 'Bias', 0);

createAndAddConceptualArg(op_entry, ...

 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT',...

 'CheckSlope', false,...

 'CheckBias', false,...

 'DataTypeMode', 'Fixed-point: slope and bias scaling',...

 'IsSigned', dtden.Signed,...

 'WordLength', dtden.WordLength,...

 'Bias', 0);

6 Create the implementation arguments. There are multiple ways to set up the
implemenation arguments. This example uses calls to the getTflArgFromString
function to create the arguments. Implementation arguments must describe
fundamental numeric data types (not fixed-point data types). The convenience
methods setReturn and addArgument specify whether an argument is a return
value or argument. These methods add the argument to the entry array of
implementation arguments.
arg = getTflArgFromString(hTable, 'y1', typeStrBase(dty));

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'u1', typeStrBase(dtnum));

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2',typeStrBase(dtden));

op_entry.Implementation.addArgument(arg);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

8 Define functions that determine the data type word length.
%---

function str = typeStrFunc(dt)

%---

if dt.Signed

 sstr = 's';

else

 sstr = 'u';

end

str = sprintf('%s%d',sstr,dt.WordLength);

%---

function str = typeStrBase(dt)

%---

22 Code Replacement Customization for Simulink Models

22-220

if dt.Signed

 sstr = ;

else

 sstr = 'u';

end

str = sprintf('%sint%d',sstr,dt.WordLength);

9 Save the table definition file. Use the name of the table definition function to name
the file.

Multiplication and Division with Rounding Mode and Additional
Implementation Arguments

You can define code replacement entries for multiplication and division operations on
fixed-point data types such that they match the net slope between operator inputs and
output. The net slope entries can map a range of slope and bias values to a replacement
function for multiplication or division.

This example creates a code replacement entry for division of fixed-point data types,
using the ceiling rounding mode and a net slope scaling factor. The example defines the
function mapping programmatically. Alternatively, you can use the Code Replacement
Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_fixed_netsloperound

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntryGenerator_Netslope function, which provides
access to the fixed-point parameters NetSlopeAdjustmentFactor and
NetFixedExponent.

op_entry = RTW.TflCOperationEntryGenerator_NetSlope;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the type
of operation as division, the saturation mode as saturation off, rounding modes as
round to ceiling, and the name of the replacement function as s16_div_s16_s16.
NetSlopeAdjustmentFactor and NetFixedExponent specify the F and E parts of
the relative scaling factor F2E.
setTflCOperationEntryParameters(op_entry, ...

 Net Slope Scaling Code Replacement

22-221

 'Key', 'RTW_OP_DIV', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_CEILING'}, ...

 'NetSlopeAdjustmentFactor', 1.0, ...

 'NetFixedExponent', 0.0, ...

 'ImplementationName', 's16_div_s16_s16', ...

 'ImplementationHeaderFile', 's16_div_s16_s16.h', ...

 'ImplementationSourceFile', 's16_div_s16_s16.c');

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Specify each argument as fixed-point, 16 bits, and signed. Also, for each
argument, specify that code replacement request processing does not check for an
exact match to the call-site slope and bias values.

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'IsSigned', true, ...

 'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'IsSigned', true, ...

 'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'IsSigned', true, ...

 'WordLength', 16);

6 Create the implementation arguments. There are multiple ways
to set up the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types). In this case, the output and input
arguments are 16 bits and signed (int16).

22 Code Replacement Customization for Simulink Models

22-222

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example:

1 Register the code replacement mapping.
2 Create a model.

3 For this model:

• Set the Inport 1 Data type to int16.
• Set the Inport 2 Data type to fixdt(1,16,-5).
• In the Divide block:

• Set Output data type to fixdt(1,16,-13).

 Net Slope Scaling Code Replacement

22-223

• Set Integer rounding mode to Ceiling.
4 Configure the model with the following settings:

• On the Solver pane, select a fixed-step, discrete solver.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your addition operation entry.
5 Generate code and a code generation report.
6 Review the code replacements.

Related Examples
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”
• “Verify Code Replacements”
• “Fixed-Point Operator Code Replacement”
• “Binary-Point-Only Scaling Code Replacement”
• “Slope Bias Scaling Code Replacement”
• “Equal Slope and Zero Net Bias Code Replacement”
• “Data Type Conversions (Casts) and Operator Code Replacement”
• “Shift Left Operations and Code Replacement”
• “Data Alignment for Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace From Simulink Models”
• “Code Replacement Match and Replacement Process”

22 Code Replacement Customization for Simulink Models

22-224

• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

 Equal Slope and Zero Net Bias Code Replacement

22-225

Equal Slope and Zero Net Bias Code Replacement

You can define code replacement entries for addition or subtraction of fixed-point data
types such that they match relative slope and bias values (equal slope and zero net bias)
across operator inputs and output. These entries allow you to disregard slope and bias
values. Map relative slope and bias values to a replacement function for addition or
subtraction.

This example creates a code replacement entry for addition of fixed-point data types.
Slopes must be equal and net bias must be zero across the operator inputs and output.
The example defines the function mapping programmatically. Alternatively, you can use
the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_fixed_slopeseq_netbiaszero

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntryGenerator function, which provides access to the fixed-
point parameters SlopesMustBeTheSame and MustHaveZeroNetBias.

op_entry = RTW.TflCOperationEntryGenerator;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify
the type of operation as addition, the saturation mode as saturation
off, rounding modes as unspecified, and the name of the replacement
function as u16_add_SameSlopeZeroBias. SlopesMustBeTheSame and
MustHaveZeroNetBias are set to true, indicating that slopes must be equal and
net bias must be zero across the addition inputs and output.

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

 'SlopesMustBeTheSame', true, ...

 'MustHaveZeroNetBias', true, ...

 'ImplementationName', 'u16_add_SameSlopeZeroBias', ...

 'ImplementationHeaderFile', 'u16_add_SameSlopeZeroBias.h', ...

 'ImplementationSourceFile', 'u16_add_SameSlopeZeroBias.c');

22 Code Replacement Customization for Simulink Models

22-226

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Each argument is specified as 16 bits and unsigned. Each argument
specifies that code replacement request processing does not check for an exact match
to the call-site slope and bias values.

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'IsSigned', false, ...

 'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'IsSigned', false, ...

 'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'IsSigned', false, ...

 'WordLength', 16);

6 Create the implementation arguments. There are multiple ways
to set up the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types). In this case, the output and input
arguments are 16 bits and unsigned (uint16).

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', false, ...

 'WordLength', 16, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 16, ...

 Equal Slope and Zero Net Bias Code Replacement

22-227

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 16, ...

 'FractionLength', 0);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example:

1 Register the code replacement mapping.
2 Create a model.

3 For this model:

• Set the Inport 1 Data type to fixdt(0,16,13).
• Set the Inport 2 Data type to fixdt(0,16,13).
• In the Add block:

• Verify that Output data type is set to its default, Inherit via internal
rule.

• Set Integer rounding mode to Zero.
4 Configure the model with the following settings:

• On the Solver pane, select a fixed-step, discrete solver.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your addition operation entry.
5 Generate code and a code generation report.

22 Code Replacement Customization for Simulink Models

22-228

6 Review the code replacements.

Related Examples
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”
• “Verify Code Replacements”
• “Fixed-Point Operator Code Replacement”
• “Binary-Point-Only Scaling Code Replacement”
• “Slope Bias Scaling Code Replacement”
• “Net Slope Scaling Code Replacement”
• “Data Type Conversions (Casts) and Operator Code Replacement”
• “Shift Left Operations and Code Replacement”
• “Data Alignment for Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace From Simulink Models”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

 Data Type Conversions (Casts) and Operator Code Replacement

22-229

Data Type Conversions (Casts) and Operator Code Replacement

In this section...

“Casts from int32 To int16” on page 22-229
“Casts Using Net Slope” on page 22-230

Casts from int32 To int16

You can use code replacement entries to replace code that the code generator produces for
data type conversion (cast) operations.

This example creates a code replacement entry that replaces int32 to int16
data type conversion (cast) operations. The example defines the function mapping
programmatically. Alternatively, you can use the Code Replacement Tool to define the
same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_cast_int32_to_int16

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the type
of operation as cast, the saturation mode as saturate on integer overflow, rounding
modes as toward negative infinity, and the name of the replacement function as
my_sat_cast.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_CAST', ...

 'Priority', 50, ...

 'ImplementationName', 'my_sat_cast', ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_FLOOR'}, ...

 'ImplementationHeaderFile', 'some_hdr.h', ...

 'ImplementationSourceFile', 'some_hdr.c');

22 Code Replacement Customization for Simulink Models

22-230

5 Create the int16 argument as conceptual argument y1 and the implementation
return value. There are multiple ways to set up the conceptual and implementation
arguments. This example uses calls to the getTflArgFromString and
addConceptualArg functions to create the conceptual argument and add it
to the entry. Convenience method setReturn specifies the argument as the
implementation return value.
arg = getTflArgFromString(hTable, 'y1', 'int16');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

op_entry.Implementation.setReturn(arg);

6 Create the int32 argument as conceptual and implementation argument u1.
This example uses calls to the getTflArgFromString and addConceptualArg
functions to create the conceptual argument and add it to the entry. Convenience
method addArgument specifies the argument as implementation input argument.
arg = getTflArgFromString(hTable, 'u1', 'int32');

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hLib, hEnt);

8 Save the table definition file. Use the name of the table definition function to name
the file.

Casts Using Net Slope

You can use code replacement entries to replace code that the code generator produces for
data type conversion (cast) operations.

This example creates a code replacement entry to replace data type conversions (casts)
of fixed-point data types by using a net slope. The example defines the function mapping
programmatically. Alternatively, you can use the Code Replacement Tool to define the
same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_cast_fixpt_net_slope

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntryGenerator_Netslope function, which provides

 Data Type Conversions (Casts) and Operator Code Replacement

22-231

access to the fixed-point parameters NetSlopeAdjustmentFactor and
NetFixedExponent

op_entry = RTW.TflCOperationEntryGenerator_NetSlope;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the type
of operation as cast, the saturation mode as saturate on integer overflow, rounding
modes as toward negative infinity, and the name of the replacement function as
my_fxp_cast. NetSlopeAdjustmentFactor and NetFixedExponent specify the
F and E parts of the net slope F2E.
InFL = 2;

InWL = 16;

InSgn = true;

OutFL = 4;

OutWL = 32;

OutSgn = true;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_CAST', ...

 'Priority', 50, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_FLOOR'}, ...

 'NetSlopeAdjustmentFactor', 1.0, ...

 'NetFixedExponent', (OutFL - InFL), ...

 'ImplementationName', 'my_fxp_cast', ...

 'ImplementationHeaderFile', 'some_hdr.h', ...

 'ImplementationSourceFile', 'some_hdr.c');

5 Create conceptual arguments y1 and u1. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Each argument is specified as fixed-point and signed. Each argument
specifies that code replacement request processing does not check for an exact match
to the call-site slope and bias values.
createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', OutSgn, ...

 'WordLength', OutWL, ...

 'FractionLength',OutFL);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

22 Code Replacement Customization for Simulink Models

22-232

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', InSgn, ...

 'WordLength', InWL, ...

 'FractionLength',InFL);

6 Create the implementation arguments. There are multiple ways
to set up the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types).
createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', OutSgn, ...

 'WordLength', OutWL, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', InSgn, ...

 'WordLength', InWL, ...

 'FractionLength', 0);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

Related Examples
• “Define Code Replacement Mappings”
• “Fixed-Point Operator Code Replacement”
• “Binary-Point-Only Scaling Code Replacement”
• “Slope Bias Scaling Code Replacement”
• “Net Slope Scaling Code Replacement”
• “Equal Slope and Zero Net Bias Code Replacement”
• “Shift Left Operations and Code Replacement”
• “Data Alignment for Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”

 Data Type Conversions (Casts) and Operator Code Replacement

22-233

• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace From Simulink Models”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

22 Code Replacement Customization for Simulink Models

22-234

Shift Left Operations and Code Replacement

In this section...

“Shift Lefts for int16 Data” on page 22-234
“Shift Lefts Using Net Slope” on page 22-235

Shift Lefts for int16 Data

You can use code replacement entries to replace code that the code generator produces for
shift (<<) operations.

This example creates a code replacement entry to replace shift left operations for int16
data. The example defines the function mapping programmatically. Alternatively, you
can use the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_shift_left_int16

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the type of
operation as shift left and the name of the replacement function as my_shift_left.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_SL', ...

 'Priority', 50, ...

 'ImplementationName', 'my_shift_left', ...

 'ImplementationHeaderFile', 'some_hdr.h', ...

 'ImplementationSourceFile', 'some_hdr.c');

5 Create the int16 argument as conceptual argument y1 and the implementation
return value. There are multiple ways to set up the conceptual and implementation
arguments. This example uses calls to the getTflArgFromString and
addConceptualArg functions to create the conceptual argument and add it
to the entry. Convenience method setReturn specifies the argument as the
implementation return value.

 Shift Left Operations and Code Replacement

22-235

arg = getTflArgFromString(hTable, 'y1', 'int16');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

op_entry.Implementation.setReturn(arg);

6 Create the int16 argument as conceptual and implementation argument u1.
This example uses calls to the getTflArgFromString and addConceptualArg
functions to create the conceptual argument and add it to the entry. Convenience
method addArgument specifies the argument as an implementation input argument.
arg = getTflArgFromString(hTable, 'u1', 'int16');

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

7 Create the int8 argument as conceptual and implementation argument u2. This
example uses calls to the getTflArgFromString and addConceptualArg
functions to create the conceptual argument and add it to the entry. This argument
specifies the number of bits to shift the previous input argument. Because the
argument type is not relevant, the example disables type checking by setting the
CheckType property to false. Convenience method addArgument specifies the
argument as implementation input argument.
arg = getTflArgFromString(hTable, 'u2', 'int8');

arg.CheckType = false;

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

• The function getTflArgFromString is called to create an int8 input argument.
This argument is added to the operator entry both as the third conceptual argument
and the second implementation input argument.

• Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

• Save the table definition file. Use the name of the table definition function to name
the file.

Shift Lefts Using Net Slope

You can use code replacement entries to replace code that the code generator produces for
shift (<<) operations.

This example creates a code replacement entry to replace shift left operations
for fixed-point data using a net slope. The example defines the function mapping
programmatically. Alternatively, you can use the Code Replacement Tool to define the
same mapping.

22 Code Replacement Customization for Simulink Models

22-236

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_shift_left_fixpt_net_slope

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntryGenerator_Netslope function. This function
provides access to the fixed-point parameters NetSlopeAdjustmentFactor and
NetFixedExponent.

op_entry = RTW.TflCOperationEntryGenerator_NetSlope;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the type of
operation as shift left, the saturation mode as saturate on integer overflow, rounding
modes as toward negative infinity, and the name of the replacement function as
my_fxp_shift_left. NetSlopeAdjustmentFactor and NetFixedExponent
specify the F and E parts of the net slope F2E.
InFL = 2;

InWL = 16;

InSgn = true;

OutFL = 4;

OutWL = 32;

OutSgn = true;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_SL', ...

 'Priority', 50, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_FLOOR'}, ...

 'NetSlopeAdjustmentFactor', 1.0, ...

 'NetFixedExponent', (OutFL - InFL),...

 'ImplementationName', 'my_fxp_shift_left', ...

 'ImplementationHeaderFile', 'some_hdr.h', ...

 'ImplementationSourceFile', 'some_hdr.c');

5 Create conceptual arguments y1 and u1. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Each argument is specified as fixed-point and signed. Each argument
specifies that code replacement request processing does not check for an exact match
to the call-site slope and bias values.
createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', false, ...

 Shift Left Operations and Code Replacement

22-237

 'CheckBias', false, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', OutSgn, ...

 'WordLength', OutWL, ...

 'FractionLength',OutFL);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', InSgn, ...

 'WordLength', InWL, ...

 'FractionLength',InFL);

6 Create the implementation arguments. There are multiple ways
to set up the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types).

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', OutSgn, ...

 'WordLength', OutWL, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', InSgn, ...

 'WordLength', InWL, ...

 'FractionLength', 0);

7 Create the int8 argument as conceptual and implementation argument u2. This
example uses calls to the getTflArgFromString and addConceptualArg
functions to create the conceptual argument and add it to the entry. This argument
specifies the number of bits to shift the previous input argument. Because the
argument type is not relevant, type checking is disabled by setting the CheckType
property to false. Convenience method addArgument specifies the argument as
implementation input argument.

arg = getTflArgFromString(hTable, 'u2', 'uint8');

arg.CheckType = false;

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

8 Add the entry to a code replacement table with a call to the addEntryfunction.

22 Code Replacement Customization for Simulink Models

22-238

addEntry(hTable, op_entry);

9 Save the table definition file. Use the name of the table definition function to name
the file.

Related Examples
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”
• “Fixed-Point Operator Code Replacement”
• “Binary-Point-Only Scaling Code Replacement”
• “Slope Bias Scaling Code Replacement”
• “Net Slope Scaling Code Replacement”
• “Equal Slope and Zero Net Bias Code Replacement”
• “Data Type Conversions (Casts) and Operator Code Replacement”
• “Data Alignment for Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace From Simulink Models”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

23

Code Replacement Customization for
MATLAB Code

• “What Is Code Replacement Customization?” on page 23-3
• “Code You Can Replace from MATLAB Code” on page 23-4
• “Code Replacement Match and Replacement Process” on page 23-14
• “Code Replacement Customization Limitations” on page 23-15
• “Develop a Code Replacement Library” on page 23-16
• “Quick Start Library Development” on page 23-17
• “Identify Code Replacement Requirements” on page 23-27
• “Prepare for Code Replacement Library Development” on page 23-30
• “Define Code Replacement Mappings” on page 23-31
• “Specify Build Information for Replacement Code” on page 23-48
• “Register Code Replacement Mappings” on page 23-57
• “Troubleshoot Code Replacement Library Registration” on page 23-65
• “Code Replacement Hits and Misses” on page 23-66
• “Verify Code Replacements” on page 23-67
• “Troubleshoot Code Replacement Misses” on page 23-76
• “Deploy Code Replacement Library” on page 23-82
• “Math Function Code Replacement” on page 23-83
• “Memory Function Code Replacement” on page 23-85
• “Specify In-Place Code Replacement” on page 23-87
• “Replace MATLAB Functions with Custom Code Using coder.replace” on page

23-94
• “Replace coder.ceval Calls to External Functions” on page 23-96
• “Reserved Identifiers and Code Replacement” on page 23-102

23 Code Replacement Customization for MATLAB Code

23-2

• “Customize Matching and Replacement Process for Functions” on page 23-104
• “Scalar Operator Code Replacement” on page 23-106
• “Addition and Subtraction Operator Code Replacement” on page 23-108
• “Small Matrix Operation to Processor Code Replacement” on page 23-113
• “Matrix Multiplication Operation to MathWorks BLAS Code Replacement” on page

23-117
• “Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement” on page

23-124
• “Remap Operator Output to Function Input” on page 23-131
• “Customize Matching and Replacement Process for Operators” on page 23-134
• “Fixed-Point Operator Code Replacement” on page 23-140
• “Binary-Point-Only Scaling Code Replacement” on page 23-150
• “Slope Bias Scaling Code Replacement” on page 23-154
• “Net Slope Scaling Code Replacement” on page 23-158
• “Equal Slope and Zero Net Bias Code Replacement” on page 23-165
• “Data Type Conversions (Casts) and Operator Code Replacement” on page 23-169
• “Shift Left Operations and Code Replacement” on page 23-174

 What Is Code Replacement Customization?

23-3

What Is Code Replacement Customization?

Customize how and when the code generator replaces C/C++ code that it generates by
default for functions and operators by developing a custom code replacement library. You
can develop libraries interactively with the Code Replacement Tool or programmatically.

• Develop libraries tailored to specific application requirements
• Add identifiers to the list of reserved keywords the code generator considers during

code replacement
• Customize the code generator’s matching and replacement process for functions

To get started, “Quick Start Library Development”.

Related Examples
• “Quick Start Library Development”
• “Develop a Code Replacement Library”

More About
• “What Is Code Replacement?”
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Customization Limitations”

23 Code Replacement Customization for MATLAB Code

23-4

Code You Can Replace from MATLAB Code

In this section...

“About Code You Can Replace” on page 23-4
“Math Functions” on page 23-4
“Memory Functions” on page 23-9
“Operators” on page 23-10

About Code You Can Replace

Code that the code generator replaces depends on the code replacement library (CRL)
that you use. By default, the code generator does not apply a code replacement library.
Your choice of libraries is dependent on product licensing and whether you have access to
custom libraries.

Math Functions

When generating C/C++ code from MATLAB code, depending on code replacement
libraries available in your development environment, you can configure the code
generator to replace instances of the following math functions with application-specific
implementations.

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

abs1 Floating point Scalar Real

acos Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

acosd Floating point Scalar
Vector
Matrix

Real
Complex

acot Floating point Scalar
Vector
Matrix

Real
Complex

acotd Floating point Scalar Real

 Code You Can Replace from MATLAB Code

23-5

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

Vector
Matrix

Complex

acoth Floating point Scalar
Vector
Matrix

Real
Complex

acsc Floating point Scalar
Vector
Matrix

Real
Complex

acscd Floating point Scalar
Vector
Matrix

Real
Complex

acsch Floating point Scalar
Vector
Matrix

Real
Complex

asec Floating point Scalar
Vector
Matrix

Real
Complex

asecd Floating point Scalar
Vector
Matrix

Real
Complex

asech Floating point Scalar
Vector
Matrix

Real
Complex

asin Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

asind Floating point Scalar
Vector
Matrix

Real
Complex

23 Code Replacement Customization for MATLAB Code

23-6

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

atan Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

atan2 Floating point Scalar
Vector
Matrix

Real

atan2d Floating point Scalar
Vector
Matrix

Real

atand Floating point Scalar
Vector
Matrix

Real
Complex

cos Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

ceil • Floating-point
• Scalar

• Floating-point
• Scalar

• Floating-point
• Scalar

cosd Floating point Scalar
Vector
Matrix

Real
Complex

cosh Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

cot Floating point Scalar
Vector
Matrix

Real
Complex

cotd Floating point Scalar
Vector
Matrix

Real
Complex

 Code You Can Replace from MATLAB Code

23-7

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

coth Floating point Scalar
Vector
Matrix

Real
Complex

csc Floating point Scalar
Vector
Matrix

Real
Complex

cscd Floating point Scalar
Vector
Matrix

Real
Complex

csch Floating point Scalar
Vector
Matrix

Real
Complex

exp Floating point Scalar Real
fix Floating point Scalar Real
floor • Floating-point

• Scalar
• Floating-point
• Scalar

• Floating-point
• Scalar

hypot Floating point Scalar
Vector
Matrix

Real

ldexp Floating point Scalar Real
log Floating point Scalar

Vector
Matrix

Real
Complex

log10 Floating point Scalar
Vector
Matrix

Real
Complex

log2 Floating point Scalar
Vector
Matrix

Real
Complex

max Integer
Floating point

Scalar Real

23 Code Replacement Customization for MATLAB Code

23-8

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

min Integer
Floating point

Scalar Real

pow Floating point Scalar Real
rem Floating point Scalar Real
round Floating point Scalar Real
sec Floating point Scalar

Vector
Matrix

Real
Complex

secd Floating point Scalar
Vector
Matrix

Real
Complex

sech Floating point Scalar
Vector
Matrix

Real
Complex

sign Floating point Scalar Real
sin Floating point Scalar

Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

sind Floating point Scalar
Vector
Matrix

Real
Complex

sinh Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

sqrt Floating point Scalar Real
tan Floating point Scalar

Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

 Code You Can Replace from MATLAB Code

23-9

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

tand Floating point Scalar
Vector
Matrix

Real
Complex

tanh Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

1 Wrap on integer overflow only

Memory Functions

Depending on code replacement libraries available in your development environment,
you can configure the code generator to replace instances of the following memory
functions with application-specific implementations.

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

memcmp Void pointer (void*) Scalar
Vector
Matrix

Real
Complex

memcpy Void pointer (void*) Scalar
Vector
Matrix

Real
Complex

memset Void pointer (void*) Scalar
Vector
Matrix

Real
Complex

memset2zero Void pointer (void*) Scalar
Vector
Matrix

Real
Complex

Some target processors provide optimized functions to set memory to zero. Use the code
replacement library programming interface to replace the memset2zero function with
more efficient target-specific functions.

23 Code Replacement Customization for MATLAB Code

23-10

Operators

When generating C/C++ code from MATLAB code, depending on code replacement
libraries available in your development environment, you can configure the code
generator to replace instances of the following operators with application-specific
implementations.

Mixed data type support indicates you can specify different data types of different inputs.

Operator Key Data Type
Support

Scalar, Vector,
Matrix Support

Real,
Complex
Support

Addition (+) RTW_OP_ADD Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Subtraction (-) RTW_OP_MINUS Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Multiplication
(*)1

RTW_OP_MUL Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Division (/) RTW_OP_DIV Integer
Floating point
Fixed-point
Mixed

Scalar Real
Complex

Data type
conversion (cast)

RTW_OP_CAST Integer
Floating
point2

Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Shift left (<<) RTW_OP_SL Integer
Fixed-point
Mixed

Scalar
Vector
Matrix

Real

 Code You Can Replace from MATLAB Code

23-11

Operator Key Data Type
Support

Scalar, Vector,
Matrix Support

Real,
Complex
Support

Shift right
arithmetic (>>)3

RTW_OP_SRA Integer
Fixed-point
Mixed

Scalar
Vector
Matrix

Real

Shift right logical
(>>)

RTW_OP_SRL Integer
Fixed-point
Mixed

Scalar
Vector
Matrix

Real

Element-
wise matrix
multiplication
(.*)4

RTW_OP_ELEM_MUL Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Complex
conjugation

RTW_OP_CONJUGATE Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Transposition
(.')

RTW_OP_TRANS Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Hermitian
(complex
conjugate)
transposition (')

RTW_OP_HERMITIAN Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Multiplication
with
transposition1

RTW_OP_TRMUL Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Multiplication
with Hermitian
transposition1

RTW_OP_HMMUL Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

23 Code Replacement Customization for MATLAB Code

23-12

Operator Key Data Type
Support

Scalar, Vector,
Matrix Support

Real,
Complex
Support

Greater than (>) RTW_OP_GREATER_

THAN

Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Greater than or
equal(>=)

RTW_OP_GREATER_

THAN_OR_EQUAL

Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Less than (<) RTW_OP_LESS_THAN Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Less than or
equal (<=)

RTW_OP_LESS_THAN_

OR_EUQAL

Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Equal (==) RTW_OP_EUQAL Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Not equal (!=) RTW_OP_NOT_EUQAL Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

1 Can map to Basic Linear Algebra Subroutine (BLAS) multiplication functions.

2 Scaled floating point is not supported.

3 Code replacement libraries that provide arithmetic shift right implementations should
also provide logical shift right implementations, because some arithmetic shift rights
are converted to logical shift rights during code generation.

4 Use the multiplication (*) operator (RTW_OP_MUL) for scalar multiplication.

 Code You Can Replace from MATLAB Code

23-13

Related Examples
• “Quick Start Library Development”
• “Develop a Code Replacement Library”
• “Choose a Code Replacement Library”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Customization Limitations”

23 Code Replacement Customization for MATLAB Code

23-14

Code Replacement Match and Replacement Process

When the code generator encounters a call site for a function or operator, it:

1 Creates and partially populates a code replacement entry object with the function or
operator name or key and conceptual arguments.

2 Uses the entry object to query the configured code replacement library for a
conceptual representation match. The code generator searches the tables in a code
replacement library for a match in the order that the tables appear in the library.
When searching for a match, the code generator takes into account:

• Conceptual name or key
• Arguments, including quantity, type, type qualifiers, and complexity
• Algorithm (computation method)
• Fixed-point saturation and rounding modes
• Priority

3 When a match exists, the code generator returns a code replacement object, fully
populated with the conceptual representation, implementation representation,
and priority. If the code generator finds multiple matches within a table, the entry
priority determines the match. The priority can range from 0 to 100. The highest
priority is 0. The code generator uses a higher-priority entry over a similar entry
with a lower priority.

4 Uses the C or C++ replacement function prototype in the code replacement object to
generate code.

Related Examples
• “Customize Matching and Replacement Process for Functions”
• “Customize Matching and Replacement Process for Operators”

More About
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

 Code Replacement Customization Limitations

23-15

Code Replacement Customization Limitations

• Code replacement verification — It is possible that code replacement behaves
differently than you expect. For example, data types that you observe in code
generator input might not match what the code generator uses as intermediate data
types during an operation. Verify code replacements by examining generated code.
See “Verify Code Replacements”.

• Tokens in file paths—You can include tokens in file paths when specifying build
information for a code replacement entry by using the programming interface only.
The ability to include tokens is not available from the Code Replacement Tool. See
“Specify Build Information for Replacement Code”.

• Addition and subtraction operation replacements—See “Addition and Subtraction
Operator Code Replacement”for relevant limitations.

• coder.replace function — See coder.replace for relevant limitations.

Related Examples
• “Verify Code Replacements”
• “Specify Build Information for Replacement Code”
• “Replace MATLAB Functions with Custom Code Using coder.replace”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “Code Replacement Libraries”
• “Code Replacement Terminology”

23 Code Replacement Customization for MATLAB Code

23-16

Develop a Code Replacement Library

1 “Identify Code Replacement Requirements”
2 “Prepare for Code Replacement Library Development”
3 “Define Code Replacement Mappings”
4 “Specify Build Information for Replacement Code”
5 “Register Code Replacement Mappings”
6 “Verify Code Replacements”
7 “Deploy Code Replacement Library”

Related Examples
• “Replace MATLAB Functions with Custom Code Using coder.replace”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Customization Limitations”

External Web Sites
• “Replacing Math Functions and Operators”

 Quick Start Library Development

23-17

Quick Start Library Development

This example shows how to develop a code replacement library that includes an entry for
generating replacement code for the math function sin. You use the Code Replacement
Tool.

Prerequisites

To complete this example, install the following software:

• MATLAB
• MATLAB Coder
• Embedded Coder
• C compiler

For instructions on installing MathWorks products, see “Installation and Activation”.
If you have installed MATLAB and want to see what other MathWorks products are
installed, in the Command Window, enter ver.

For a list of supported compilers, see http://www.mathworks.com/support/compilers/
current_release/.

Open the Code Replacement Tool

1 Start a new MATLAB session.
2 Create or navigate (cd) to an empty folder.
3 At the command prompt, enter the crtool command. The Code Replacement Tool

window opens.

Create Code Replacement Table

1 In the Code Replacement Tool window, select File > New table.
2 In the right pane, name the table crl_table_sinfcn and click Apply. Later, when

you save the table, the tool saves it with the file name crl_table_sinfcn.m.

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

23 Code Replacement Customization for MATLAB Code

23-18

Create Table Entry

Create a table entry that maps a sin function with double input and double output to
a custom implementation function.

1 In the left pane, select table crl_table_sinfcn. Then, select File > New entry >
Function. The new entry appears in the middle pane, initially without a name.

2 In the middle pane, select the new entry.
3 In the right pane, on the Mapping Information tab, from the Function menu,

select sin.
4 Leave Algorithm set to Unspecified, and leave parameters in the Conceptual

function group set to default values.
5 In the Replacement function group, name the replacement function sin_dbl.
6 Leave the remaining parameters in the Replacement function group set to default

values.

 Quick Start Library Development

23-19

7 Click Apply. The tool updates the Function signature preview to reflect the
specified replacement function name.

8 Scroll to the bottom of the Mapping Information tab and click Validate entry.
The tool validates your entry.

The following figure shows the completed mapping information.

23 Code Replacement Customization for MATLAB Code

23-20

 Quick Start Library Development

23-21

Specify Build Information for Replacement Code

1 On the Build Information tab, for the Implementation header file parameter,
enter sin_dbl.h.

2 Leave the remaining parameters set to default values.
3 Click Apply.

4 Optionally, you can revalidate the entry. Return to the Mapping Information tab
and click Validate entry.

Create Another Table Entry

Create an entry that maps a sin function with single input and double output to
a custom implementation function named sin_sgl. Create the entry by copying and
pasting the sin_dbl entry.

1 In the middle pane, select the sin_dbl entry.
2 Select Edit > Copy
3 Select Edit > Paste
4 On the Mapping Information tab, in the Conceptual function section, set the

data type of input argument u1 to single.
5 In the Replacement function section, name the function sin_sgl. Set the data

type of input argument u1 to single.
6 Click Apply. Note the changes that appear for the Function signature preview.
7 On the Build Information tab, for the Implementation header file parameter,

enter sin_sgl.h. Leave the remaining parameters set to default values and click
Apply.

Validate the Code Replacement Table

1 Select Actions > Validate table.

23 Code Replacement Customization for MATLAB Code

23-22

2 If the tool reports errors, fix them, and rerun the validation. Repeat fixing and
validating errors until the tool does not report errors. The following figure shows a
validation report.

Save the Code Replacement Table

Save the code replacement table to a MATLAB file in your working folder. Select File >
Save table. By default, the tool uses the table name to name the file. For this example,
the tool saves the table in the file crl_table_sinfcn.m.

Review the Code Replacement Table Definition

Consider reviewing the MATLAB code for your code replacement table definition. After
using the tool to create an initial version of a table definition file, you can update,
enhance, or copy the file in a text editor.

To review it, in MATLAB or another text editor, open the file crl_table_sinfcn.m.

Generate a Registration File

Before you can use your code replacement table, you must register it as part of a code
replacement library. Use the Code Replacement Tool to generate a registration file.

1 In the Code Replacement Tool, select File > Generate registration file.
2 In the Generate registration file dialog box, edit the dialog box fields to match the

following figure, and then click OK.

 Quick Start Library Development

23-23

3 In the Select location dialog box, specify a location for the registration file. The
location must be on the MATLAB path or in the current working folder. Save the file.
The tool saves the file as rtwTargetInfo.m.

Register the Code Replacement Table

At the command prompt, enter:

RTW.TargetRegistry.getInstance('reset');

Review and Test Code Replacements

Apply your code replacement library. Verify that the code generator makes code
replacements that you expect.

1 Check for errors. At the command line, invoke the table definition file . For example:

tbl = crl_table_sinfcn

tbl =

 TflTable with properties:

 Version: '1.0'

 ReservedSymbols: []

 StringResolutionMap: []

 AllEntries: [2x1 RTW.TflCFunctionEntry]

 EnableTrace: 1

If an error exists in the definition file, the invocation triggers a message to appear.
Fix the error and try again.

2 Use the Code Replacement Viewer to check your code replacement entries. For
example:

crviewer('Sin Function Example')

In the viewer, select entries in your table and verify that the content is what you
expect. The viewer can help you detect issues such as:

• Incorrect argument order.
• Conceptual argument names that do not match what is expected by the code

generator.

23 Code Replacement Customization for MATLAB Code

23-24

• Incorrect priority settings.
3 Identify existing or create new MATLAB code that calls the sin function. For

example:

function y = my_sin_fnc(x)

 y = sin(x);

end

4 Open the MATLAB Coder app.
5 Add the function that includes a call to the sin function as an entry-point file. For

example, add my_sin_func.m. The app creates a project named my_sin_func.prj.
6 Click Next to go to the Define Input Type step. Define the types for the entry-point

function inputs.
7 Click Next to go to the Check for Run-Time Issues step. This step is optional.

However, it is a best practice to perform this step. Provide a test file that calls your
entry-point function. The app generates a MEX function from your entry-point
function. Then, the app runs the test file, replacing calls to the MATLAB function
with calls to the generated MEX function.

8 Click Next to go to the Generate Code step. To open the Generate dialog box, click

the Generate arrow .
9 Set Build type to generate a library or executable.
10 Click More Settings.
11 Configure the code generator to use your code replacement library. On the

Hardware tab, set the Code replacement library parameter to the name of your
library. For example, Sin Function Example.

12 Configure the code generation report. On the Debugging tab, set the Always
create a code generation report, Code replacements, and Automatically
launch a report if one is generated parameters.

13 Configure the code generator to generate code only. On the Generate dialog
box, select the Generate code only check box. You want to review your code
replacements in the generated code before building an executable.

14 Click Generate to generate C code and a report.
15 Review code replacement results in the Code Replacements Report section of the

code generation report.

 Quick Start Library Development

23-25

The report indicates that the code generator found a match and applied the
replacement code for the function sin_dbl.

16 Review the code replacements. In the report, under Function replacements,
click the MATLAB function that triggered the replacement, my_sin_func.m.
The MATLAB Editor opens and highlights the function call that triggers the code
replacement.

23 Code Replacement Customization for MATLAB Code

23-26

Related Examples
• “Develop a Code Replacement Library”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Customization Limitations”

External Web Sites
• “Replacing Math Functions and Operators”

 Identify Code Replacement Requirements

23-27

Identify Code Replacement Requirements

In this section...

“Mapping Information Requirements” on page 23-37
“Build Information Requirements” on page 23-38
“Registration Information Requirements” on page 23-38

Mapping Information Requirements

• Are you defining a code replacement mapping for the first time?
• Are you updating code replacement entries in an existing library? Or, are you creating

a new library?
• Are you rapid prototyping code replacements?
• Can you base your mappings on existing mappings?
• What type of code do you want to replace? Options include:

• Math operation
• Function
• BLAS operation
• CBLAS operation
• Net slope fixed-point operation
• Semaphore or mutex functions

• Do you want to change the inline or nonfinite behavior for functions?
• What specific functions and operations do you want to replace?
• What input and output arguments does the function or operator that you are

replacing take? For each argument, what is the data type, complexity, and
dimensionality?

• What does the prototype for your replacement code look like?

• What is the replacement function name?
• What are the input and output arguments?
• Are there return values?

23 Code Replacement Customization for MATLAB Code

23-28

• What is the data type, complexity, and dimensionality of each argument and
return value?

Build Information Requirements

• Does your replacement function implementation require a header file? If yes, specify
the header file.

• If the replacement function implementation requires a header file, what is the path
for that file?

• Is the source file for the replacement function in your working folder? If not, you
can explicitly specify the source file name and extension. For example, if the file is
required in the generated makefile or specified in a build information object, specify
the source file.

• Does the replacement function use additional include files? If yes, what are they and
what are the paths for those files?

• Does the replacement function use additional source files? If yes, what are they and
what are the paths for those files?

• What compiler flags are required for compiling code that includes the replacement
code?

• What linker flags are required for building an executable that includes the
replacement code?

• Are the required header, source, and object files for building an executable that
includes your replacement code in the working folder for your project? If not, before
starting the build process, do you want the code generator to copy required files to the
build folder?

Registration Information Requirements

• What do you want to name your code replacement library?
• What code replacement tables do you want to include in the library? What are the file

names and paths for the tables?
• What is the purpose of the library? You can document the purpose as the library

description.
• Does the library apply to specific hardware devices? If yes, what devices?
• Are you developing a hierarchy of code replacement libraries? Is the library that you

are developing based (dependent) on another library? For example, you can specify a

 Identify Code Replacement Requirements

23-29

general TI device library as the base library for a more specific TI C28x device
library.

• Do you need to specify data alignment for the library? What data alignments are
required? For each specification, what type of alignment is required and for what
programming language?

Related Examples
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Customization Limitations”

23 Code Replacement Customization for MATLAB Code

23-30

Prepare for Code Replacement Library Development

After you identify your code replacement requirements, prepare for library development
by reviewing this checklist:

• Get familiar with the library development process.
• Decide whether to define code replacement mappings and produce a registration file

interactively with the Code Replacement Tool or programmatically.
• Identify or develop MATLAB code and Simulink models to test your code replacement

library.
• Consider the hierarchy and organization of your library. A library can consist

of multiple tables and each table can include multiple entries. How do you want
to organize the library to optimize reuse of tables and entries? For example, a
registration file can define code replacement tables organized in a hierarchy of code
replacement libraries based on entries that increase in specificity:

• Common entries
• Entries for TI devices
• Entries for TI C6xx devices
• Entries specific to the TI C67x device

• If support files, such as header files, additional source files, and dynamically linked
libraries are not in your current working folder, note their location. You need to
specify the paths for such files.

Related Examples
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

 Define Code Replacement Mappings

23-31

Define Code Replacement Mappings

In this section...

“Defining Code Replacement Mappings” on page 23-42
“Define Mappings Interactively with the Code Replacement Tool” on page 23-43
“Define Mappings Programmatically” on page 23-46

Defining Code Replacement Mappings

A code replacement mapping associates a conceptual representation of a function
or operator that is familiar to the code generator with a custom implementation
representation that specifies a C or C++ replacement function prototype. You capture a
mapping as an entry in a code replacement table:

• Interactively, by using the Code Replacement Tool.
• Programmatically, by using a MATLAB programming interface.

The following table lists situations to help you decide when to use each approach.

Situation Approach

Defining mappings for the first
time.

Code Replacement Tool.

Rapid prototyping mappings. Code Replacement Tool to quickly generate, register,
and test mappings.

Developing a mapping as a
template or starting point for
defining similar mappings.

Code Replacement Tool to generate definition code
that you can copy and modify.

Modifying a registration file,
including copying and pasting
content.

MATLAB Editor to update the programming interface
directly.

Defining mappings that specify
attributes not available from
the Code Replacement Tool
(for example, sets of algorithm
parameters).

Programming interface.

23 Code Replacement Customization for MATLAB Code

23-32

Situation Approach

Reusing existing code for new
mappings by copying, pasting,
and editing existing mappings.

Programming interface.

Define Mappings Interactively with the Code Replacement Tool

This example shows how to use the Code Replacement Tool to develop code replacement
mappings. The tool is ideal for getting started with developing mappings, rapid
prototyping, and developing a mapping to use as a starting point for defining similar
mappings.

Open the Code Replacement Tool

Do one of the following:

• In the Command Window, enter the command crtool.
• In the Simulink Editor, open the Configuration Parameters dialog box and navigate

to the Code Generation > Interface pane. To the right of the Code replacement
library parameter, click the Custom.

The Custom button is available only for ERT-based targets. An Embedded Coder
license is not required to create a custom code replacement library. However, you
must have an Embedded Coder license to use a such a library.

By default, the tool displays, left to right, a root pane, a list pane, and a dialog pane. You
can manipulate the display:

• Drag boundaries to widen, narrow, shorten, or lengthen panes, and to resize table
columns.

• Select View > Show dialog pane to hide or display the right-most pane.
• Click a table column heading to sort the table based on contents of the selected

column.
• Right-click a table column heading and select Hide to remove the column from the

display. (You cannot hide the Name column.)

 Define Code Replacement Mappings

23-33

Create a Code Replacement Table

1 In the Code Replacement Tool window, select File > New table.
2 In the right pane, name the table and click Apply. Later, when you save the table,

the tool uses the table name that you specify to name the file. For example, if you
enter the name my_sinfcn, the tool names the file my_sinfcn.m.

Create Table Entries

Create one or more table entries. Each entry maps the conceptual representation of a
function or operator to your implementation representation. The information that you
enter depends on the type of entry you create. Enter the following information:

1 In the left pane, select the table to which you want to add the entry.
2 Select File > New entry > entry-type, where entry-type is one of:

• Math Operation
• Function
• BLAS Operation
• CBLAS Operation
• Net Slope Fixed-Point Operation
• Semaphore entry
• Customization entry

The new entry appears in the middle pane, initially without a name.
3 In the middle pane, select the new entry.
4 In the right pane, on the Mapping Information tab, from the Function or

Operation menu, select the function or operation that you want the code generator
to replace. Regardless of the entry type, make a selection from this menu. Your
selection determines what other information you specify.

Except for customization entries, you also specify information for your replacement
function prototype. You can also specify implementation attributes, such as the
rounding modes to apply.

5 If prompted, specify additional entry information that you want the code generator
to use when searching for a match. For example, when you select an addition or
subtraction operation, the tool prompts you to specify an algorithm (Cast before
operation or Cast after operation).

23 Code Replacement Customization for MATLAB Code

23-34

6 Review the conceptual argument information that the tool populates for the function
or operation. Conceptual input and output arguments represent arguments for
the function or operator being replaced. Conceptual arguments observe naming
conventions ('y1', 'u1', 'u2', ...) and data types familiar to the code generator.

If you do not want the data types for your implementation to be the same as the
conceptual argument types, clear the Make the conceptual and implementation
argument types the same check box. For example, most ANSI-C functions
operate on and return double data. Clear the check box if want to map a conceptual
representation of the function to an implementation representation that specifies an
argument and return value. For example, clear the check box to map the conceptual
representation of the function sin to an implementation representation that
specifies an argument and return value of type single (single sin(single)), of
type double (double sin(double). In this case, the code generator produces the
following code:

y = (single) sin(u1);

If you select Custom for a function entry, specify only conceptual argument
information.

7 Specify the name and argument information for your replacement function. As you
enter the information and click Apply, the tool updates the Function signature
preview.

8 Specify additional implementation attributes that apply. For example, depending on
the type and name of the entry that you specify, the tool prompts you to specify:

• Integer saturation mode
• Rounding modes
• Whether to allow inputs that include expressions
• Whether a function modifies internal or global state

9 Click Apply.

Validate Tables and Entries

The Code Replacement Tool provides a way to validate the syntax of code replacement
tables and table entries as you define them. If the tool finds validation errors, you can
address them and retry the validation. Repeat the process until the tool does not report
errors.

 Define Code Replacement Mappings

23-35

To Do

Validate table entries Select an entry, scroll to the bottom of the Mapping
Information tab, and click Validate entry.
Alternatively, select one or more entries, right-click,
and select Validate entries.

Validate a table Select the table. Then, select Actions > Validate
table.

Save a Table

When you save a table, the tool validates unvalidated content.

1 Select File > Save table.
2 In the Browse For Folder dialog box, specify a location and name for the file.

Typically, you select a location on the MATLAB path. By default, the tool names the
file using the name that you specify for the table with the extension .m.

3 Click Save.

Open and Modify Tables

After saving a code replacement table, to make changes in the table:

1 Select File > Open table.
2 In the Import file dialog box, browse to the MATLAB file that contains the table.

Repeat the sequence to open and work on multiple tables.

If you open multiple tables, you can manage the tables together. For example, use the
tool to:

• Create new table entries.
• Delete entries.
• Copy and paste or cut and paste information between tables.

Define Mappings Programmatically

This example shows how to define a code replacement mapping programmatically. The
programming interface for defining code replacement table mappings is ideal for

23 Code Replacement Customization for MATLAB Code

23-36

• Modifying tables that you create with the Code Replacement Tool.
• Defining mappings for specialized entries that you cannot create with the Code

Replacement Tool.
• Replicating and modifying similar entries and tables.

Steps for defining a mapping programmatically are:

Create Code Replacement Table

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_sinfcn()

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

Create Table Entry

For each function or operator that you want the code generator to replace, map
a conceptual representation of the function or operator to an implementation
representation as a table entry.

1 Within the body of a table definition file, create a code replacement entry object. Call
one of the following functions.

Entry Type Function

Math operation RTW.TflCOperationEntry

Function RTW.TflCFunctionEntry

BLAS operation RTW.TflBlasEntryGenerator

CBLAS operation RTW.TflCBlasEntryGenerator

Fixed-point addition
and subtraction
operations (support for
SlopesMustBeTheSame and
ZeroNetBias parameters)

RTW.TflCOperationEntryGenerator

Net slope fixed-point
operation

RTW.TflCOperationEntryGenerator_NetSlope

Semaphore or mutex entry RTW.TflCSemaphoreEntry

 Define Code Replacement Mappings

23-37

Entry Type Function

Custom function entry MyCustomFunctionEntry (where
MyCustomFunctionEntry is a class derived from
RTW.TflCFunctionEntryML)

Custom operation entry MyCustomOperationEntry (where
MyCustomOperationEntry is a class derived from
RTW.TflCOperationEntryML)

For example:

hEnt = RTW.TflCFunctionEntry;

You can combine steps of creating the entry, setting entry parameters, creating
conceptual and implementation arguments, and adding the entry to a table with a
single function call to registerCFunctionEntry, registerCPPFunctionEntry, or
registerCPromotableMacroEntry if you are creating an entry for a function and the
function implementation meets the following criteria:

• Implementation argument names and order match the names and order of
corresponding conceptual arguments.

• Input arguments are of the same type.
• The return and input argument names follow the code generator’s default naming

conventions:

• Return argument is y1.
• Input arguments are u1, u2, ..., un.

For example:

registerCFunctionEntry(hTable, 100, 1, 'sin', 'double', ...

 'sin_dbl', 'double', 'sin_dbl.h','','');

As another alternative, you can significantly reduce the amount of code that you write by
combining the steps of creating the entry and conceptual and implementation arguments
with a call to the createCRLEntry function. In this case, you specify the conceptual and
implementation information as detailed string specifications.

For example:

hEnt = createCRLEntry(hTable, ...

 'double y1 = sin(double u1)', ...

23 Code Replacement Customization for MATLAB Code

23-38

 'mySin');

This approach does not support:

• C++ implementations
• Data alignment
• Operator replacement with net slope arguments
• Entry parameter specifications (for example, priority, algorithm, building

information)
• Semaphore and mutex function replacements

Set Entry Parameters

Set entry parameters, such as the priority, algorithm information, and implementation
(replacement) function name. Call the function listed in the following table for the entry
type that you created.

Entry Type Function

Math operation setTflCOperationEntryParameters

Function setTflCFunctionEntryParameters

BLAS operation setTflCOperationEntryParameters

CBLAS operation setTflCOperationEntryParameters

Fixed-point addition and subtraction
operations where there is a many-
to-one mapping, such as a mapping
for a range of fixed-point types to the
same replacement function (support
for SlopesMustBeTheSame and
ZeroNetBias parameters)

setTflCOperationEntryParameters

Net slope fixed-point operation setTflCOperationEntryParameters

Semaphore or mutex entry setTflCSemaphoreEntryParameters

Custom function entry setTflCFunctionEntryParameters

Custom operation entry setTflCOperationEntryParameters

To see a list of the parameters that you can set, at the command line, create a new entry
and omit the semicolon at the end of the command. For example:

 Define Code Replacement Mappings

23-39

hEnt = RTW.TflCFunctionEntry

hEnt =

 TflCFunctionEntry with properties:

 Implementation: [1x1 RTW.CImplementation]

 SlopesMustBeTheSame: 0

 BiasMustBeTheSame: 0

 AlgorithmParams: []

 ImplType: 'FCN_IMPL_FUNCT'

 AdditionalHeaderFiles: {0x1 cell}

 AdditionalSourceFiles: {0x1 cell}

 AdditionalIncludePaths: {0x1 cell}

 AdditionalSourcePaths: {0x1 cell}

 AdditionalLinkObjs: {0x1 cell}

 AdditionalLinkObjsPaths: {0x1 cell}

 AdditionalLinkFlags: {0x1 cell}

 AdditionalCompileFlags: {0x1 cell}

 SearchPaths: {0x1 cell}

 Key: ''

 Priority: 100

 ConceptualArgs: [0x1 handle]

 EntryInfo: []

 GenCallback: ''

 GenFileName: ''

 SaturationMode: 'RTW_SATURATE_UNSPECIFIED'

 RoundingModes: {'RTW_ROUND_UNSPECIFIED'}

 TypeConversionMode: 'RTW_EXPLICIT_CONVERSION'

 AcceptExprInput: 1

 SideEffects: 0

 UsageCount: 0

 RecordedUsageCount: 0

 Description: ''

 StoreFcnReturnInLocalVar: 0

 TraceManager: [1x1 RTW.TflTraceManager]

To see the implementation parameters, enter:

hEnt.Implemenation

ans =

 CImplementation with properties:

23 Code Replacement Customization for MATLAB Code

23-40

 HeaderFile: ''

 SourceFile: ''

 HeaderPath: ''

 SourcePath: ''

 Return: []

 StructFieldMap: []

 Name: ''

 Arguments: [0x1 handle]

 ArgumentDescriptor: []

For example, to set entry parameters for the sin function and name your replacement
function sin_dbl, use the following function call:

setTflCFunctionEntryParameters(hEnt, ...

 'Key', 'sin', ...

 'ImplementationName', 'sin_dbl');

Create Conceptual Arguments

Create conceptual arguments and add them to the entry’s array of conceptual arguments.

• Specify output arguments before input arguments.
• Specify argument names that comply with code generator argument naming

conventions:

• y1 for a return argument
• u1, u2, ..., un for input arguments

• Specify data types that are familiar to the code generator.
• The function signature, including argument naming, order, and attributes, must

fulfill the signature match sought by function or operator callers.
• The code generator determines the size of the value for an argument with an unsized

type, such as integer, based on hardware implementation configuration settings.

For each argument:

1 Identify whether the argument is for input or output, the name, and data type. If you
do not know what arguments to specify for a supported function or operation, use the
Code Replacement Tool to find them. For example, to find the conceptual arguments
for the sin function, open the tool, create a table, create a function entry, and in the
Function menu select sin.

2 Create and add the conceptual argument to an entry. You can choose a method from
the methods listed in this table.

 Define Code Replacement Mappings

23-41

If Then

You want simpler code or
want to explicitly specify
whether the argument
is scalar or nonscalar
(vector or matrix).

Call the function createAndAddConceptualArg. For
example:

createAndAddConceptualArg(hEnt, ...

 'RTW.TflArgNumeric', ...

 'Name', 'y1',...

 'IOType', 'RTW_IO_OUTPUT',...

 'DataTypeMode', 'double');

The second argument specifies whether the argument is
scalar (RTW.TflArgNumeric orRTW.TflArgMatrix) .

You want to create an
argument based on
a built-in argument
definition (for example,
scalar or nonscalar).

Call getTflArgFromString to create the argument.
Then, call addConceptualArg to add the argument to
the entry.

arg = getTflArgFromString(hEnt, 'y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(hEnt, arg);

You need to define
several similar
mappings, you want to
minimize the code to
write, and the entries
do not require data
alignment, use net slope
arguments, or involve
semaphore or mutex
replacements.

Call createCRLEntry to create the entry and specify
conceptual and implementation arguments in a single
function call.

hEnt = createCRLEntry(hTable, ...

 'double y1 = sin(double u1)', ...

 'mySin');

The following code shows the second approach listed in the table for specifying the
conceptual output and input argument definitions for the sin function.

% Conceptual Args

arg = getTflArgFromString(hEnt, 'y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(hEnt, arg);

arg = getTflArgFromString(hEnt, 'u1','double');

23 Code Replacement Customization for MATLAB Code

23-42

addConceptualArg(hEnt, arg);

Create Implementation Arguments

Create implementation arguments for the C or C++ replacement function and add them
to the entry.

• When replacing code, the code generator uses the argument names to determine how
it passes data to the implementation function.

• For function replacements, the order of implementation argument names must match
the order of the conceptual argument names.

• For operator replacements, the order of implementation argument names do not
have to match the order of the conceptual argument names. For example, for an
operator replacement for addition, y1=u1+u2, the conceptual arguments are y1, u1,
and u2, in that order. If the signature of your implementation function is t myAdd(t
u2, t u1), where t is a valid C type, based on the argument name matches, the
code generator passes the value of the first conceptual argument, u1, to the second
implementation argument of myAdd. The code generator passes the value of the
second conceptual argument, u2, to the first implementation argument of myAdd.

• For operator replacements, you can remap operator output arguments to
implementation function input arguments.

For each argument:

1 Identify whether the argument is for input or output, the name, and the data type.
2 Create and add the implementation argument to an entry. You can choose a method

from the methods listed in this table.

If Then

You want to populate
implementation
arguments as copies
of previously created
matching conceptual
arguments

Call the function
copyConceptualArgsToImplementation. For example:

copyConceptualArgsToImplementation(hEnt);

You want to create and
add implementation
arguments individually,
or vary argument

Call functions createAndSetCImplementationReturn
andcreateAndAddImplementationArg . For example:

createAndSetCImplementationReturn(hEnt,

 'RTW.TflArgNumeric', ...

 Define Code Replacement Mappings

23-43

If Then

attributes, while
maintaining conceptual
argument order

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', true, ...

 'WordLength', 32, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry,

 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT',...

 'IsSigned', true,...

 'WordLength', 32, ...

 'FractionLength', 0);

23 Code Replacement Customization for MATLAB Code

23-44

If Then

You want to minimize
the amount of code,
or specify constant
arguments to pass to
the implementation
function

Create the argument with a call to the function
getTflArgFromString. Then, use the convenience
method setReturn or addArgument to specify whether
an argument is a return value or argument and to add
the argument to the entry’s array of implementation
arguments. For example:

arg = getTflArgFromString(hEnt, 'y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setReturn(arg);

arg = getTflArgFromString(hEnt, 'u1','double');

hEnt.Implementation.addArgument(arg);

The following call to getTflArgFromString passes the
constant 0 to argument u2:

arg = getTflArgFromString(hEnt, 'u2', 'int16', 0)

hEnt.Implementation.addArgument(arg);

For semaphore and mutex entries, use the functions
getTflDWorkFromString and addDWorkArg to
create and add a DWork argument to the entry. Then
create implementation arguments as shown above with
getTflArgFromString and the convenience methods
setReturn and addArgument. For example:

arg = getTflDWorkFromString('d1', 'void*')

hEnt.addDWorkArg(arg);

arg = hEnt.getTflArgFromString('y1', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setRetrurn(arg);

arg = hEnt.getTflArgFromString('u1', 'integer');

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('d1', 'void**');

hEnt.Implementation.addArgument(arg);

 Define Code Replacement Mappings

23-45

If Then

You need to define
several similar
mappings, you want to
minimize the code to
write, and the entries
do not require data
alignment, use net slope
arguments, or involve
semaphore or mutex
replacements.

Call createCRLEntry to create the entry and specify
conceptual and implementation arguments in a single
function call.

hEnt = createCRLEntry(hTable, ...

 'double y1 = sin(double u1)', ...

 'mySin');

The following code shows the third approach listed in the table for specifying the
implementation output and input argument definitions for the sin function:

% Implementation Args

arg = hEnt.getTflArgFromString('y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setReturn(arg);

arg = hEnt.getTflArgFromString('u1','double');

hEnt.Implementation.addArgument(arg);

Add Entry to Table

Add an entry to a code replacement table by calling the function addEntry.

addEntry(hTable, hEnt);

Validate Entry

After you create or modify a code replacement table entry, validate it by invoking it at
the MATLAB command line. For example:

hTbl = crl_table_sinfcn

hTbl =

RTW.TflTable

 Version: '1.0'

 AllEntries: [2x1 RTW.TflCFunctionEntry]

 ReservedSymbols: []

23 Code Replacement Customization for MATLAB Code

23-46

 StringResolutionMap: []

If the table includes errors, MATLAB reports them. The following examples shows how
MATLAB reports a typo in a data type name:
hTbl = crl_table_sinfcn

??? RTW_CORE:tfl:TflTable: Unsupported data type, 'dooble'.

Error in ==> crl_table_sinfcn at 7

hTable.registerCFunctionEntry(100, 1, 'sin', 'dooble', 'sin_dbl', ...

Save Table

Save the table definition file. Use the name of the table definition function to name the
file, for example, crl_table_sinfcn.m.

Related Examples
• “Identify Code Replacement Requirements”
• “Prepare for Code Replacement Library Development”
• “Specify Build Information for Replacement Code”
• “Register Code Replacement Mappings”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”
• “Math Function Code Replacement”
• “Memory Function Code Replacement”
• “Specify In-Place Code Replacement”
• “Replace MATLAB Functions with Custom Code Using coder.replace”
• “Reserved Identifiers and Code Replacement”
• “Customize Matching and Replacement Process for Functions”
• “Scalar Operator Code Replacement”
• “Addition and Subtraction Operator Code Replacement”
• “Small Matrix Operation to Processor Code Replacement”
• “Matrix Multiplication Operation to MathWorks BLAS Code Replacement”
• “Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”

 Define Code Replacement Mappings

23-47

• “Fixed-Point Operator Code Replacement”
• “Binary-Point-Only Scaling Code Replacement”
• “Slope Bias Scaling Code Replacement”
• “Net Slope Scaling Code Replacement”
• “Equal Slope and Zero Net Bias Code Replacement”
• “Data Type Conversions (Casts) and Operator Code Replacement”
• “Shift Left Operations and Code Replacement”

More About
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Customization Limitations”

External Web Sites
• “Replacing Math Functions and Operators”

23 Code Replacement Customization for MATLAB Code

23-48

Specify Build Information for Replacement Code

In this section...

“Build Information” on page 23-59
“Specify Build Information Interactively with the Code Replacement Tool” on page 23-60
“Specify Build Information Programmatically” on page 23-62

Build Information

A code replacement table entry can specify build information for the code generator
to use when replacing code for a match. For example, specify files for implementation
replacement code if you are using a generated makefile and the code generation software
compiles the code.

The build information can include:

• Paths and file names for header files
• Paths and file names for source files
• Paths and file names for object files
• Compile flags
• Link flags

Add build information to an entry:

• Interactively, by using the Build Information tab in the Code Replacement Tool.
• Programmatically, by using a MATLAB programming interface.

The following table lists situations to help you decide when to use each approach.

Situation Approach

Creating code replacement
entries for the first time.

Code Replacement Tool.

You used the Code Replacement
Tool to create the entries for

Code Replacement Tool to quickly specify the build
information.

 Specify Build Information for Replacement Code

23-49

Situation Approach

which the build information
applies.
Rapid prototyping entries. Code Replacement Tool to quickly generate, register,

and test entries.
Developing an entry to use as
a template or starting point for
defining similar entries.

Code Replacement Tool to generate entry code that
you can copy and modify.

Modifying existing mappings. MATLAB Editor to update the programming interface
directly.

• If an entry uses header, source, or object files, consider whether you need to make the
files accessible to the code generator. You can copy files to the build folder or you can
specify individual file names and paths explicitly.

• If you specify additional header files/include paths or source files/paths and you copy
files, the compiler and utilities such as packNGo might find duplicate instances of
files (an instance in the build folder and an instance in the original folder).

• If you choose to copy files to the build folder and you are using the packNGo function
to relocate static and generated code files to another development environment, do
not collocate files that you copy with files that you do not copy. The packNGo function
produces an error if it finds multiple instances of the same file.

• If you use the programming interface, paths that you specify can include tokens.
A token is a variable defined as a string or cell array of strings in the MATLAB
workspace that you enclose with dollar signs ($variable$). The code generator
evaluates and replaces a token with the defined value. For example, consider the
path $myfolder$\folder1, where myfolder is a string variable defined in the
MATLAB workspace as 'd:\work\source\module1'. The code generator generates
the custom path as d:\work\source\module1\folder1.

Specify Build Information Interactively with the Code Replacement Tool

The Code Replacement Tool provides a quick, easy way for you to specify build
information for code replacement table entries. It is ideal for getting started with
defining a table entry, rapid prototyping, and developing table entries to use as a starting
point for defining similar mappings.

1 Determine the information that you must specify.

23 Code Replacement Customization for MATLAB Code

23-50

2 Open the Code Replacement Tool.
3 Select the code replacement table entry for which you want to specify the build

information. In the left pane, select the table that contains the entry. In the middle
pane, select the entry that you want to modify.

4 In the right pane, select the Build Information tab.
5 On the Build Information tab, specify your build information.

Parameter Specify

Implementation header file File name and extension for the header file
the code generator needs to generate the
replacement code. For example, sin_dbl.h.

Implementation source file File name and extension for the C or C++ source
file the code generator needs to generate the
replacement code. For example, sin_dbl.c.

Additional header files/include
paths

Paths and file names for additional header
files the code generator needs to generate
the replacement code. For example, C:\libs
\headerFiles and C:\libs\headerFiles
\common.h. This parameter adds -I to the
compile line in the generated makefile.

Additional source files/ paths Paths and file names for additional source
files the code generator needs to generate
the replacement code. For example, C:
\libs\srcFiles and C:\libs\srcFiles
\common.c. This parameter adds -I to the
compile line in the generated makefile.

Additional object files/ paths Paths and file names for additional object files
the linker needs to build the replacement code.
For example, C:\libs\objFiles and C:
\libs\objFiles\common.obj.

Additional link flags Flags the linker needs to generate an executable
file for the replacement code.

Additional compile flags Flags the compiler needs to generate object code
for the replacement code.

Copy files to build directory Whether to copy header, source, or object files,
which are required to generate replacement

 Specify Build Information for Replacement Code

23-51

Parameter Specify

code, to the build folder before code generation.
If you specify files with Additional header
files/include paths or Additional source
files/ paths and you copy files, the compiler
and utilities such as packNGo might find
duplicate instances of files.

6 Click Apply.
7 Select the Mapping Information tab. Scroll to the bottom of that table and click

Validate entry. The tool validates the changes that you made to the entry.
8 Save the table that includes the entry that you just modified.

Specify Build Information Programmatically

The programming interface for specifying build information for a code replacement entry
is ideal for:

• Modifying entries created with the Code Replacement Tool.
• Replicating and then modifying similar entries and tables.

The basic workflow for specifying build information programmatically is:

1 Identify or create the code replacement entry that you want to specify the build
information.

2 Determine what information to specify.
3 Specify your build information.

Specify Action

Implementation
header file

Use one of the following:

• Set properties ImplementationHeaderFile
and ImplementationHeaderPath in a call
to setTflCFunctionEntryParameters,
setTflCOperationEntryParameters, or
setTflCSemaphoreEntryParameters. For example:

setTflCFunctionEntryParameters(hEnt, ...

23 Code Replacement Customization for MATLAB Code

23-52

Specify Action
 'ImplementationHeaderFile', 'sin_dbl.h', ...

 'ImplementationHeaderPath', 'D:/lib/headerFiles'

 'Key', 'sin', ...

 'ImplementationName', 'sin_dbl');

• Set argument headerFile in a call to
registerCFunctionEntry, registerCPPFunctionEntry, or
registerCPromotableMacroEntry

Implementation
source file

Set properties ImplementationSourceFile
and ImplementationSourcePath in a call
to setTflCFunctionEntryParameters,
setTflCOperationEntryParameters, or
setTflCSemaphoreEntryParameters. For example:

setTflCFunctionEntryParameters(hEnt, ...

 'ImplementationHeaderFile', 'sin_dbl.c', ...

 'ImplementationHeaderPath', 'D:/lib/sourceFiles'

 'Key', 'sin', ...

 'ImplementationName', 'sin_dbl');

Additional header
files/include paths

For each file, specify the file name and path in calls to the functions
addAdditionalHeaderFile and addAdditionalIncludePath. For
example:

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

hEnt = RTW.TflCFunctionEntry;

addAdditionalHeaderFile(hEnt, 'common.h');

addAdditionalIncludePath(hEnt, fullfile(libdir, 'include'));

These functions add -I to the compile line in the generated makefile.

 Specify Build Information for Replacement Code

23-53

Specify Action

Additional source
files/paths

For each file, specify the file name and path in calls to the functions
addAdditionalSourceFile and addAdditionalSourcePath. For
example:

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

hEnt = RTW.TflCFunctionEntry;

addAdditionalSourceFile(hEnt, 'common.c');

addAdditionalSourcePath(hEnt, fullfile(libdir, 'src'));

These functions add -I to the compile line in the generated makefile.
Additional object
files/paths

For each file, specify the file name and path in calls to the functions
addAdditionalLinkObj and addAdditionalLinkObjPath. For
example:

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

hEnt = RTW.TflCFunctionEntry;

addAdditionalLinkObj(hEnt, 'sin.o');

addAdditionalLinkObjPath(hEnt, fullfile(libdir, 'bin'));

Compile flags Set the entry property AdditionalCompileFlags to a cell array of strings
representing the required compile flags. For example:

hEnt = RTW.TflCFunctionEntry;

hEnt.AdditionalCompileFlags = {'-Zi -Wall', '-03'};

Link flags Set the entry property AdditionalLinkFlags to a cell array of strings
representing the required link flags. For example:

hEnt = RTW.TflCFunctionEntry;

hEnt.AdditionalCompileFlags = {'-MD -Gy', '-T'};

23 Code Replacement Customization for MATLAB Code

23-54

Specify Action

Whether to copy
header, source, or
object files, which
are required to
generate replacement
code, to the build
folder before code
generation

Use one of the following:

• Set property GenCallback to 'RTW.copyFileToBuildDir'
in a call to setTflCFunctionEntryParameters,
setTflCOperationEntryParameters, or
setTflCSemaphoreEntryParameters. For example:

setTflCFunctionEntryParameters(hEnt, ...

 'ImplementationHeaderFile', 'sin_dbl.h', ...

 'ImplementationHeaderPath', 'D:/lib/headerFiles'

 'Key', 'sin', ...

 'ImplementationName', 'sin_dbl'

 'GenCallback', 'RTW.copyFileToBuildDir');

• Set argument genCallback in a call to
registerCFunctionEntry, registerCPPFunctionEntry,
or registerCPromotableMacroEntry to
'RTW.copyFileToBuildDir'.

If a match occurs for a table entry, a call to the function
RTW.copyFileToBuildDir copies required files to the build folder.

If you specify additional header files/include paths or additional source
files/paths and you copy files, the compiler and utilities such as packNGo
might find duplicate instances of files.

4 Save the table that includes the entry that you added or modified.

The following example defines a table entry for an optimized multiplication function that
takes signed 32-bit integers and returns a signed 32-bit integer, taking saturation into
account. Multiplications in the generated code are replaced with calls to the optimized
function. The optimized function does not reside in the build folder. For the code
generator to access the files, copy them into the build folder to be compiled and linked
into the application.

The table entry specifies the source and header file names and paths. To
request the copy operation, the table entry sets the genCallback property to
'RTW.copyFileToBuildDir' in the call to the setTflCOperationEntryParameters
function. In this example, the header file s32_mul.h contains an inlined function that
invokes assembly functions contained in s32_mul.s. If a match occurs for the table

 Specify Build Information for Replacement Code

23-55

entry, the function RTW.copyFileToBuildDir copies the specified source and header
files to the build folder for use during the remainder of the build process.
function hTable = make_my_crl_table

hTable = RTW.TflTable;

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

 'Priority', 100, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

 'ImplementationName', 's32_mul_s32_s32_sat', ...

 'ImplementationHeaderFile', 's32_mul.h', ...

 'ImplementationSourceFile', 's32_mul.s', ...

 'ImplementationHeaderPath', {fullfile('$(MATLAB_ROOT)','crl')}, ...

 'ImplementationSourcePath', {fullfile('$(MATLAB_ROOT)','crl')}, ...

 'GenCallback', 'RTW.copyFileToBuildDir');

.

.

.

addEntry(hTable, op_entry);

The following example uses the functions addAdditionalHeaderFile,
addAdditionalIncludePath, addAdditionalSourceFile,
addAdditionalSourcePath, addAdditionalLinkObj, and
addAdditionalLinkObjPath in addition to the code generation callback function
RTW.copyFileToBuildDir.
hTable = RTW.TflTable;

% Path to external source, header, and object files

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_SATURATE_UNSPECIFIED', ...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

 'ImplementationName', 's32_add_s32_s32', ...

 'ImplementationHeaderFile', 's32_add_s32_s32.h', ...

 'ImplementationSourceFile', 's32_add_s32_s32.c'...

 'GenCallback', 'RTW.copyFileToBuildDir');

addAdditionalHeaderFile(op_entry, 'all_additions.h');

addAdditionalIncludePath(op_entry, fullfile(libdir, 'include'));

addAdditionalSourceFile(op_entry, 'all_additions.c');

addAdditionalSourcePath(op_entry, fullfile(libdir, 'src'));

addAdditionalLinkObj(op_entry, 'addition.o');

addAdditionalLinkObjPath(op_entry, fullfile(libdir, 'bin'));

.

23 Code Replacement Customization for MATLAB Code

23-56

.

.

addEntry(hTable, op_entry);

Related Examples
• “Identify Code Replacement Requirements”
• “Prepare for Code Replacement Library Development”
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”
• “Develop a Code Replacement Library”
• “Customize the Post-Code-Generation Build Process”

More About
• “What Is Code Replacement Customization?”
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Customization Limitations”

External Web Sites
• “Replacing Math Functions and Operators”

 Register Code Replacement Mappings

23-57

Register Code Replacement Mappings
In this section...

“Code Replacement Library Registration” on page 23-57
“Create Registration File Interactively with the Code Replacement Tool” on page
23-58
“Create Registration File Programmatically” on page 23-60
“Register a Code Replacement Library” on page 23-62
“Registration Files That Define Multiple Code Replacement Libraries” on page 23-62
“Registration Files That Define Code Replacement Library Hierarchies” on page
23-63

Code Replacement Library Registration

After you define code replacement entries in a code replacement table, you can include
the table in a code replacement library that you register with the code generator. When
registered, a library appears in the list of available code replacement libraries that you
can choose from when configuring the code generator.

Register a code replacement table as a code replacement library:

• Interactively, by using the Code Replacement Tool
• Programmatically, by using a MATLAB programming interface

The following table lists situations when you might consider one approach over the other.

If... Then...

Registering a code replacement
table for the first time

Use the Code Replacement Tool.

You used the Code Replacement
Tool to create the table

Use the Code Replacement Tool to quickly register the
table.

Rapid prototyping code
replacement

Use the Code Replacement Tool to quickly generate,
register, and test entries.

Creating registration file to use
as a template or starting point
for defining similar registration
files

Use the Code Replacement Tool to generate code that
you can copy and modify.

23 Code Replacement Customization for MATLAB Code

23-58

If... Then...

Modifying existing registration
files

Use the MATLAB Editor to update the registration
file.

Defining multiple code
replacement libraries in one
registration file

Use the MATLAB Editor to create a new or extend an
existing registration file.

Defining code replacement
library hierarchy in a
registration file

Use the MATLAB Editor to create a new or extend an
existing registration file.

Create Registration File Interactively with the Code Replacement Tool

The Code Replacement tool provides a quick, easy way for you to create a registration
file for a code replacement table. It is ideal for getting started, rapid prototyping,
and generating a registration file that you want to use as a starting point for similar
registrations.

1 After you validate and save a code replacement table, select File > Generate
registration file to open the Generate registration file dialog box.

2 Enter the registration information. Minimally, specify:

 Register Code Replacement Mappings

23-59

For... Specify...

Registry name String naming the code replacement library. For example,
Sin Function Example.

Table list Strings naming one or more code replacement tables to
include in the library. Specify each table as one of the
following:

• Name of a table file on the MATLAB search path
• Absolute path to a table file
• Path to a table file relative to $(MATLAB_ROOT)

You can specify multiple tables. If you do, separate the table
specifications with a comma. For example:

crl_table_sinfcn, c:/work_crl/crl_table_muldiv

See “Registration Files That Define Multiple Code
Replacement Libraries” for examples of each type of table
specification.

Optionally, you can specify:

For... Specify...

Description Text string that describes the purpose and content of the
library.

Target HW device Strings naming one or more hardware devices the code
replacement library supports. Separate names with a
comma. To support all device types, enter an asterisk (*). For
example, TI C28x, TI C62x.

Base CRL String naming a code replacement library that you want to
serve as a base library for the library you are registering.
Use this field to specify library hierarchies. For example,
you can specify a general TI device library as the base
library for a more specific TI C28x device library.

23 Code Replacement Customization for MATLAB Code

23-60

For... Specify...

Generate data
alignment
specification

Flag that enables data alignment specification.

Create Registration File Programmatically

The programming interface for creating a registration file for a code replacement table is
ideal for:

• Modifying registration files created with the Code Replacement Tool
• Replicating and modifying similar registration files
• Defining multiple code replacement libraries in one registration file

The basic workflow for creating a registration file programmatically consists of the
following steps:

1 Define an rtwTargetInfo function. The code generator recognizes this function
as a customization file. The function definition must include at least the following
content:

function rtwTargetInfo(cm)

cm.registerTargetInfo(@loc_register_crl);

function this = loc_register_crl

this(1) = RTW.TflRegistry;

this(1).Name = 'crl-name';

this(1).TableList = {'table',...};

For... Replace...

this(1).Name = 'crl-name'; crl-name with a string naming the code
replacement library. For example, Sin
Function Example.

this(1).TableList =

{'table',...};

table with a string that identifies the code
replacement table that contains your code
replacement entries. Specify a table as one of
the following:

 Register Code Replacement Mappings

23-61

For... Replace...

• Name of a table file on the MATLAB search
path

• Absolute path to a table file
• Path to a table file relative to

$(MATLAB_ROOT)

You can specify multiple tables. If you do,
separate the table specifications with commas.

Optionally, you can specify:

For... Replace...

this(1).Description =

'text'

text with a string that describes the purpose
and content of the library.

this(1).TargetHWDeviceType

= {'device-type',...}

device-type with a string that names a
hardware device the code replacement library
supports. You can specify multiple device
types. Separate device types with a comma. For
example, TI C28x, TI C62x. To support all
device types, enter an asterisk (*).

this(1).BaseTfl = 'base-

lib'

base-lib with a string that names a code
replacement library that you want to serve as a
base library for the library you are registering.
Use this field to specify library hierarchies.
For example, you can specify a general TI
device library as the base library for a TI
C28x device library.

See “Registration Files That Define Code
Replacement Library Hierarchies” for an
example.

For example:

function rtwTargetInfo(cm)

23 Code Replacement Customization for MATLAB Code

23-62

cm.registerTargetInfo(@loc_register_crl);

function this = loc_register_crl

this(1) = RTW.TflRegistry;

this(1).Name = 'Sin Function Example';

this(1).TableList = {'crl_table_sinfcn'};

this(1).TargetHWDeviceType = {'*'};

this(1).Description = 'Example - sin function replacement';

2 Save the file with the name rtwTargetInfo.m.
3 Place the file on the MATLAB path. When the file is on the MATLAB path, the code

generator reads the file after starting and applies the customizations during the
current MATLAB session.

Register a Code Replacement Library

Before you can use the code replacement tables defined in a registration file, you must
refresh Simulink customizations within the current MATLAB session. To initiate a
refresh, enter the following command:

sl_refresh_customizations

Registration Files That Define Multiple Code Replacement Libraries

Use the programming interface to create a registration file that defines multiple code
replacement libraries. The following example defines multiple code replacement libraries.
The TableList fields specify code replacement tables that reside at different locations.
The tables reside on the MATLAB search path or at locations specified using path
strings.
function rtwTargetInfo(cm)

cm.registerTargetInfo(@locCrlRegFcn);

function thisCrl = locCrlRegFcn

 % Register a code replacement library for use with model: rtwdemo_crladdsub

 thisCrl(1) = RTW.TflRegistry;

 thisCrl(1).Name = 'Addition & Subtraction Examples';

 thisCrl(1).Description = 'Example of addition/subtraction op replacement';

 thisCrl(1).TableList = {'crl_table_addsub'};

 thisCrl(1).TargetHWDeviceType = {'*'};

 % Register a code replacement library for use with model: rtwdemo_crlmuldiv

 Register Code Replacement Mappings

23-63

 thisCrl(2) = RTW.TflRegistry;

 thisCrl(2).Name = 'Multiplication & Division Examples';

 thisCrl(2).Description = 'Example of mult/div op repl for built-in integers';

 thisCrl(2).TableList = {'c:/work_crl/crl_table_muldiv'};

 thisCrl(2).TargetHWDeviceType = {'*'};

 % Register a code replacement library for use with model: rtwdemo_crlfixpt

 thisCrl(3) = RTW.TflRegistry;

 thisCrl(3).Name = 'Fixed-Point Examples';

 thisCrl(3).Description = 'Example of fixed-point operator replacement';

 thisCrl(3).TableList = {fullfile('$(MATLAB_ROOT)', ...

 'toolbox','rtw','rtwdemos','crl_demo','crl_table_fixpt')};

 thisCrl(3).TargetHWDeviceType = {'*'};

Registration Files That Define Code Replacement Library Hierarchies

Using the programming interface, you can organize multiple code replacement libraries
in a hierarchy. The following example shows a registration file that defines four code
replacement tables organized in a hierarchy of four code replacement libraries. The
tables include entries that increase in specificity: common entries, entries for TI devices,
entries for TI C6xx devices, and entries specific to the TI C67x device.
function rtwTargetInfo(cm)

cm.registerTargetInfo(@locCrlRegFcn);

function thisCrl = locCrlRegFcn

 % Register a code replacement library that includes common entries

 thisCrl(1) = RTW.TflRegistry;

 thisCrl(1).Name = 'Common Replacements';

 thisCrl(1).Description = 'Common code replacement entries shared by other libraries';

 thisCrl(1).TableList = {'crl_table_general'};

 thisCrl(1).TargetHWDeviceType = {'*'};

 % Register a code replacement library for TI devices

 thisCrl(2) = RTW.TflRegistry;

 thisCrl(2).Name = 'TI Device Replacements';

 thisCrl(2).Description = 'Code replacement entries shared across TI devices';

 thisCrl(2).TableList = {'crl_table_TI_devices'};

 thisCrl(2).TargetHWDeviceType = {'TI C28x', 'TI C55x', 'TI C62x', 'TI C64x', 'TI 67x'};

 thisCrl(1).BaseTfl = 'Common Replacements'

 % Register a code replacement library for TI c6xx devices

 thisCrl(3) = RTW.TflRegistry;

 thisCrl(3).Name = 'TI c6xx Device Replacements';

 thisCrl(3).Description = 'Code replacement entries shared across TI C6xx devices';

 thisCrl(3).TableList = {'crl_table_TIC6xx_devices'};

 thisCrl(3).TargetHWDeviceType = {'TI C62x', 'TI C64x', 'TI 67x'};

 % Register a code replacement library for the TI c67x device

 thisCrl(3) = RTW.TflRegistry;

 thisCrl(3).Name = 'TI c67x Device Replacements';

 thisCrl(3).Description = 'Code replacement entries for the TI C67x device';

 thisCrl(3).TableList = {'crl_table_TIC67x_device'};

 thisCrl(3).TargetHWDeviceType = {'TI 67x'};

23 Code Replacement Customization for MATLAB Code

23-64

Related Examples
• “Define Code Replacement Mappings”
• “Specify Build Information for Replacement Code”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”
• “Deploy Code Replacement Library”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

 Troubleshoot Code Replacement Library Registration

23-65

Troubleshoot Code Replacement Library Registration

If a code replacement library is not listed as a configuration option or does not appear in
the Code Replacement Viewer:

• Refresh the library registration information within the current MATLAB
session (RTW.TargetRegistry.getInstance('reset'); or for the Simulink
environment,sl_refresh_customizations).

• See whether the registration file, rtwTargetInfo.m, contains an error.

Related Examples
• “Register Code Replacement Mappings”

23 Code Replacement Customization for MATLAB Code

23-66

Code Replacement Hits and Misses

The code generator logs code replacement table entries for which it finds and does not
find matches in the hit cache and miss cache, respectively. When a code replacement
entry match fails and code is not replaced, the code generator logs the call site object
(CSO) for the miss in the miss cache. When an entry match succeeds, the code generator
logs the matched entry in the hit cache.

The code generator overwrites the hit and miss cache data each time it produces code.
The cache data reflects hits and misses for only the last application component (MATLAB
code or Simulink model) for which you generate code.

You can use the Code Replacement Viewer to review trace information based on logged
hit and miss trace data. The hit cache provides trace information that helps to verify code
replacements.

The miss cache and related miss data collected and stored in code replacement tables
provide trace information for misses. Use this information for misses to troubleshoot
expected code replacements that do not occur. Trace information for a miss:

• Identifies the call site object.
• Provides a link to the relevant source location for the miss.
• Includes information about the reason for the miss.

Related Examples
• “Verify Code Replacements”
• “Troubleshoot Code Replacement Misses”

 Verify Code Replacements

23-67

Verify Code Replacements

In this section...

“Code Replacement Table Validation” on page 23-67
“Validate a Table Definition File” on page 23-67
“Review Library Content” on page 23-68
“Review Table Content” on page 23-69
“Review Code Replacements” on page 23-71

Code Replacement Table Validation

After you create or modify a code replacement table, use the following techniques to
examine and validate the table and its entries.

• Invoke the table definition file at the command prompt.
• Use the Code Replacement Viewer to examine libraries, tables, and entries.
• Trace code replacements from the source where you applied the code replacement

library.
• Examine code replacement hits and misses logged during code generation.

Validate a Table Definition File

After you create or modify a code replacement table definition file, validate it. At the
command prompt, specify the name of the table in a call to the isvalid function. For
example:
isvalid(crl_table_sinfcn)

ans =

 1

MATLAB displays errors that occur. In the following example, MATLAB detects a typo in
a data type name.
isvalid(crl_table_sinfcn)

??? RTW_CORE:tfl:TflTable: Unsupported data type, 'dooble'.

23 Code Replacement Customization for MATLAB Code

23-68

Error in ==> crl_table_sinfcn at 7

hTable.registerCFunctionEntry(100, 1, 'sin', 'dooble', 'sin_dbl', ...

Review Library Content

After you create or modify a code replacement library, use the Code Replacement Viewer
to review and verify the list of tables in the library and the entries in each table.

1 Open the viewer to display the contents of your library. At the command prompt,
enter the following command:

crviewer('library')

For example:

crviewer('Addition & Subtraction Examples')

2 Review the list of tables in the left pane. Are tables missing? Are the tables listed in
the correct relative order? By default, the viewer displays tables in search order.

3 In the left pane, click each table and review the list of entries in the center pane. Are
entries missing? Does the list include extraneous or unexpected entries?

 Verify Code Replacements

23-69

Review Table Content

After you create or modify a code replacement table, use the Code Replacement Viewer to
review and verify table entries.

1 Open the viewer to display the contents of your table. At the command prompt, enter
the following command. table is a MATLAB file that defines code replacement
tables. The file must be in the current folder or on the MATLAB path.

crviewer(table)

For example:

crviewer(crl_table_addsub)

23 Code Replacement Customization for MATLAB Code

23-70

2 Review the list of entries in the center pane. Are entries missing? Does the list
include extraneous or unexpected entries? By default, the viewer displays entries in
search order.

3 In the center pane, click each entry and verify the entry information in the right
pane.

 Verify Code Replacements

23-71

• Argument order is correct.
• Conceptual argument names match code generator naming conventions.
• Implementation argument names are correct.
• Algorithm properties (for example, saturation and rounding mode) are set

correctly.
• Header or source file specification is not missing.
• I/O types are correct.
• Relative priority of entries is correct.

Review Code Replacements

After you review the content of your code replacement library and tables, generate code
and a code generation report. Verify that the code generator replaces code as you expect.

23 Code Replacement Customization for MATLAB Code

23-72

The Code Replacements Report details the code replacement library functions that the
code generator uses for code replacements. The report provides a mapping between each
replacement instance and the line of MATLAB code that triggered the replacement. The
Code Replacements report is not available for generated MEX functions.

The following example illustrates two complementary approaches for reviewing code
replacements:

• Check the Code Replacements Report section of the code generation report for
expected replacements.

• Trace code replacements.

1 Identify the MATLAB function where you anticipate that a function or operator
replacement occurs. This example uses the function matlabroot/toolbox/rtw/
rtwdemos/crl_demo/addsub_two_int16.m.

function [y1, y2] = addsub_two_int16(u1, u2)

y1 = int16(u1 + u2);

y2 = int16(u1 - u2);

2 Identify or create code or a script to exercise the function. For example, consider test
file addsub_to_int16_test.m, which includes the following code:

disp('Input')

u1 = int16(10)

u2 = int16(10)

[y1, y2] = addsub_two_int16(u1, u2);

disp('Output')

disp('y1 =')

disp(y1);

disp('y2 =')

disp(y2);

3 Open the MATLAB Coder app.
4 On the Select Source Files page, add your function to the project. For this

example, add function addsub_two_int16. Click Next.
5 On the Define Input Types page, use the test file addsub_to_int16_test to

automatically define the input types. Click Next.
6 On the Check for Run-Time Issues page, specify the test file

addsub_to_int16_test. The app runs the test file, replacing calls to

 Verify Code Replacements

23-73

addsub_to_int16_test with calls to a MEX version of addsub_to_int16_test.
Click Next.

7 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
8 Set Build type to generate source code. Before you build an executable, you want to

review your code replacements in the generated code.
9 In the Generate dialog box, click More Settings.
10 Configure the code generator to use your code replacement library. On the

Hardware tab, set the Code replacement library parameter to the name of your
library. For this example, set the library to Addition & Subtraction Examples.

11 Configure the code generation report to include the Code Replacements Report. On
the Debugging tab, select:

• Always create a code generation report
• Code replacements
• Automatically launch a report if one is generated

12 To generate code and a report, click Generate.
13 Open the Code Replacements Report section of the code generation report.

23 Code Replacement Customization for MATLAB Code

23-74

That report lists the replacement functions that the code generator used. The report
provides a mapping between each replacement instance and the MATLAB code that
triggered the replacement.

Review the report:

• Check whether expected function and operator code replacements occurred.
• In the replacements sections, click each code link to see the source that triggered

the reported code replacement.

If a function or operator is not replaced as expected, the code generator used a higher-
priority (lower-priority value) match or did not find a match.

To analyze and troubleshoot code replacement misses, use the trace information that the
Code Replacement Viewer provides. See “Troubleshoot Code Replacement Misses”.

 Verify Code Replacements

23-75

Related Examples
• “Replace Code Generated from MATLAB Code”
• “Code Verification Through Software-in-the-Loop and Processor-in-the-Loop

Execution”
• “C/C++ Code Generation”
• “Replace Code Generated from MATLAB Code”
• “Develop a Code Replacement Library”

More About
• “Code Replacement Hits and Misses”
• “Code Generation Reports”
• “Generation of Traceable Code”
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Limitations”

External Web Sites
• “Replacing Math Functions and Operators”

23 Code Replacement Customization for MATLAB Code

23-76

Troubleshoot Code Replacement Misses

In this section...

“Miss Reason Messages” on page 23-76
“Analyze and Correct Code Replacement Misses” on page 23-77

Miss Reason Messages

The Code Replacement Viewer displays miss reason messages in trace information for
code replacement misses. A legend listing each message that appears in the miss report
precedes the report details. A message consists of:

• Numeric identifier, which identifies the message in the report details.
• Message text, which in some cases includes placeholders for names of arguments, call

site object values, table entry values, and property names.

For example:

1. Mismatched data types (argument name, CSO value, table entry value)

The parenthetical information represents placeholders for actual values that appear in
the report details.

In the Miss Source Locations table that lists the miss details, the Reason column
includes:

• The message identifier, as listed in the legend.
• The placeholder values for that instance of the miss reason message.

The following Reason details indicate a data type mismatch because the call site object
specifies data type int8 for arguments y1, u1, and u2, while the code replacement table
entry specifies uint32.

1. y1, int8, uint32

 u1, int8, uint32

 u2, int8, uint32

Depending on your situation and the reported miss reason, troubleshoot reported misses
by looking for instances of the following:

 Troubleshoot Code Replacement Misses

23-77

• A typo in the code replacement table entry definition or a source parameter setting.
• Information missing from the code replacement table entry or a source parameter

setting.
• Invalid or incorrect information in the code replacement table entry definition or a

source parameter setting.
• Arguments incorrectly ordered in the code replacement table entry definition or the

source being replaced with replacement code.
• Failed algorithm classification for an addition or subtraction operation due to:

• An ideal accumulator not being calculated because the type of an input argument
is not fixed-point or the slope adjustment factors of the input arguments are not
equal.

• Input or output casts with a floating-point cast type.
• Input or output casts with cast types that have different slope adjustment factors

or biases.
• Output casts not being convertible to a single output cast.
• Input casts resulting in loss of bits.

Analyze and Correct Code Replacement Misses

The following example shows how to use Code Replacement Viewer trace information to
troubleshoot code replacement misses. You must have already reviewed and tested code
replacements for your MATLAB code.

1 Review the code generated for a specific code element, looking for expected
code replacement. Regenerate or reopen the code generation report for your
MATLAB code. If you already generated the code generation report that includes
the Code Replacements Report for matlabroot/toolbox/rtw/rtwdemos/crl_demo/
addsub_two_int16.m, open the file codegen/lib/addsub_two_int16/html/
index.html. For information on how to regenerate the report, see “Verify Code
Replacements”.

To examine the code generated for function, from the code generation report, open
the generated file addsub_two_int16.c.

23 Code Replacement Customization for MATLAB Code

23-78

The code generator replaced code, but the replacement is for the signed version of
the 16-bit addition and subtraction operations. You expected code replacements for
operations on unsigned data.

2 Open the Code Replacements Report for the MATLAB code.
3 Click the link to open the Code Replacement Viewer.
4 In the viewer left pane, select your code replacement table. The following display

shows entries for code replacement table crl_table_addsub.

5 In the middle pane, select table entry RTW_OP_ADD with implementation function
u16_add_u16_u16.

6 In the right pane, select the Trace Information tab.

 Troubleshoot Code Replacement Misses

23-79

The Trace Information is a table that lists the following information for each miss:

• Call site object preview. The call site object is the conceptual representation
of addition operator. The code generator uses this object to query the code
replacement library for a match.

• A link to the source location in the MATLAB function where the code generator
considered replacing code.

• The reasons that the miss occurred. See “Miss Reason Messages”.

For this example, the report shows misses for function addsub_two_int16.m.
7 Find that source in the trace information. Depending on your situation and the

reported miss reason, consider looking for a condition such as a typo in the code
replacement table entry definition or a source parameter setting. For a list of
conditions to consider, see“Miss Reason Messages”.

23 Code Replacement Customization for MATLAB Code

23-80

For this example, determine why code for function addsub_two_int16 is not
replaced with code for an unsigned 16-bit addition operation. The miss reasons for
the function indicate data type and algorithm mismatches. For the three arguments:

• The data type in the call site object is a signed 16-bit integer. The code
replacement entry specifies an unsigned 16-bit integer.

• The algorithm property in the call site object is RTW_SATURATE_ON_OVERFLOW
while the code replacement entry specifies RTW_WRAP_ON_OVERFLOW.

8 Correct the specified MATLAB code and relevant specifications or code replacement
table entry. If the issue concerns the MATLAB code, use the source location in the
trace information to find the code to correct. For this example, you expected an
unsigned addition operation to occur for the addsub_two_int16 function.

To fix the mismatches, in the test file addsub_to_int16_test, change the data
types definitions for u1 and u2 as follows:

u1 = uint16(10)

u2 = uint16(10)

In the MATLAB Coder app:

• Open the project that contains the addsub_to_int16 function.
• Use the updated test file addsub_to_int16_test to automatically redefine the

input types.
• Run the test file.
• In the project settings dialog box, on the Speed tab, clear the check box for the

Saturate on integer overflow parameter.
• Regenerate code and a report.

9 From the Code Replacements Report, open the Code Replacement Viewer. Use the
Code Replacement Viewer trace information to verify that your MATLAB code or
code replacement table entry corrects the code replacement issue. In the following
display, the trace information shows a hit for function addsub_two_int16.

 Troubleshoot Code Replacement Misses

23-81

Related Examples
• “Verify Code Replacements”
• “Addition and Subtraction Operator Code Replacement”

More About
• “Code Replacement Hits and Misses”

23 Code Replacement Customization for MATLAB Code

23-82

Deploy Code Replacement Library

When you are ready to package and deploy a custom code replacement library for others
to use,

1 Move your code replacement table files to an area that is on the MATLAB search
path and that is accessible to and shared by other users.

2 Move the rtwTargetInfo.m registration file, to an area that is on the MATLAB
search path and that is accessible to and shared by other users. If you are deploying
a library to a folder in a development environment that already contains a
rtwTargetInfo.m file, copy the registration code from your code replacement
library version of rtwTargetInfo.m and paste it into the shared version of that file.

3 Register the library customizations or restart MATLAB.
4 Verify that the libraries are available for configuring the code generator and that

code replacements occur as expected.
5 Inform users that the libraries are available and provide direction on when and how

to apply them.

Related Examples
• “Verify Code Replacements”
• “Develop a Code Replacement Library”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

 Math Function Code Replacement

23-83

Math Function Code Replacement
This example shows how to define a code replacement mapping for a math function. The
example defines a mapping for the sin function programmatically. Alternatively, you can
use the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_sinfcn2()

%CRL_TABLE_SINFCN2 - Define function entry for code replacement table.

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create an entry for the function mapping with a call to the
RTW.TflCFunctionEntry function.

% Create entry for sin function replacement

fcn_entry = RTW.TflCFunctionEntry;

4 Set function entry parameters with a call to the
setTflCFunctionEntryParameters function.
setTflCFunctionEntryParameters(fcn_entry, ...

 'Key', 'sin', ...

 'Priority', 30, ...

 'ImplementationName', 'mySin', ...

 'ImplementationHeaderFile', 'basicMath.h',...

 'ImplementationSourceFile', 'basicMath.c');

5 Create conceptual arguments y1 and u1. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call.
createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1',...

 'IOType', 'RTW_IO_OUTPUT',...

 'DataTypeMode', 'double');

createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT',...

 'DataTypeMode', 'double');

6 Copy the conceptual arguments to the implementation arguments. There are
multiple ways to set up the implementation arguments. This example uses a call
to the copyConceptualArgsToImplementation function to create and add
implementation arguments to the entry by copying matching conceptual arguments.

23 Code Replacement Customization for MATLAB Code

23-84

copyConceptualArgsToImplementation(fcn_entry);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, fcn_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

Related Examples
• “Define Code Replacement Mappings”
• “Specify In-Place Code Replacement”
• “Reserved Identifiers and Code Replacement”
• “Customize Matching and Replacement Process for Functions”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

 Memory Function Code Replacement

23-85

Memory Function Code Replacement

This example shows how to define a code replacement mapping for a memory
function. The example defines a mapping for the memcpy function programmatically.
Alternatively, you can use the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_memcpy()

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create an entry for the function mapping with a call to the
RTW.TflCFunctionEntry function.

% Create entry for void* memcpy(void*, void*, size_t)

fcn_entry = RTW.TflCFunctionEntry;

4 Set function entry parameters with a call to the
setTflCFunctionEntryParameters function.
% Set SideEffects to 'true' for function returning void to prevent it from

% being optimized away.

setTflCFunctionEntryParameters(fcn_entry, ...

 'Key', 'memcpy', ...

 'Priority', 90, ...

 'ImplementationName', 'memcpy_int', ...

 'ImplementationHeaderFile', 'memcpy_int.h',...

 'SideEffects', true);

5 Create conceptual arguments y1, u1, u2, and u3. There are multiple ways to set up
the conceptual arguments. This example uses calls to the getTflArgFromString
and addConceptualArg functions to create and add the arguments.
arg = getTflArgFromString(hTable, 'y1', 'void*');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(fcn_entry, arg);

arg = getTflArgFromString(hTable, 'u1', 'void*');

addConceptualArg(fcn_entry, arg);

arg = getTflArgFromString(hTable, 'u2', 'void*');

addConceptualArg(fcn_entry, arg);

arg = getTflArgFromString(hTable, 'u3', 'size_t');

addConceptualArg(fcn_entry, arg);

6 Copy the conceptual arguments to the implementation arguments. There are
multiple ways to set up the implementation arguments. This example uses a call

23 Code Replacement Customization for MATLAB Code

23-86

to the copyConceptualArgsToImplementation function to create and add
implementation arguments to the entry by copying matching conceptual arguments.
copyConceptualArgsToImplementation(fcn_entry);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, fcn_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

Related Examples
• “Define Code Replacement Mappings”
• “Specify In-Place Code Replacement”
• “Reserved Identifiers and Code Replacement”
• “Customize Matching and Replacement Process for Functions”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

 Specify In-Place Code Replacement

23-87

Specify In-Place Code Replacement

In this section...

“In-Place Code Replacement” on page 23-87
“Argument Specification Requirements” on page 23-87
“Interactive Argument Replacement Specification with Code Replacement Tool” on page
23-87
“Programmatic Argument Replacement Specification” on page 23-91

In-Place Code Replacement

In-place code replacement is an optimization technique that uses a single buffer, that is,
the same memory, to store function input and output data, as in x=foo(x).

When you generate C or C++ code from MATLAB code, the code generator supports
in-place function argument code replacement. When you interactively create a code
replacement table entry with the Code Replacement Tool, you can specify in-place
function argument replacement. You can also specify in-place function argument
replacement programmatically with the Code Replacement Library API.

Argument Specification Requirements

• The argument must be a pointer.
• An argument can be in-place with only one other argument.
• Specify an input argument as in-place (shares memory) with an output argument or

an output argument as in-place with an input argument.

Interactive Argument Replacement Specification with Code Replacement
Tool

This example shows how to specify in-place function argument replacement when
replacing code for a MATLAB function with the Code Replacement Tool. The tool
enforces in-place argument specification requirements as you add arguments and modify
argument properties.

23 Code Replacement Customization for MATLAB Code

23-88

1 Create the following MATLAB function, customFunction.m.

function x = customFunction(x)

% Function that updates the input and returns it as an output

coder.replace('-errorifnoreplacement');

x = sin(x);

2 In the Code Replacement Tool, add a new table, select that table, and add a new
function entry. For more information, see “Define Code Replacement Mappings”.

3 On the Mapping Information tab, select Custom for the Function parameter.
4 In the function-name text box, name the custom function. For this example, type

the name customFunction.
5 Under the Conceptual arguments list box, click + to add two arguments. By

default, the tool creates an output argument y1 and an input argument u1, both of
type double.

6 In the Replacement function > Function prototype section, type the name
custom_function_inplace_impl in the Name text box.

7 Under the Function arguments list box, click + to add two function
implementation arguments. By default, the tool creates an output argument y1 and
an input argument u1, both of type double.

8 For each input argument that you want to specify as in-place with a corresponding
output argument, in the Argument properties box, select the Pointer check box.
The Argument properties section of the dialog box expands to include an In-place
argument drop-down list. For this example, in the Function arguments list, select
input argument u1, and then select the Pointer check box.

 Specify In-Place Code Replacement

23-89

9 From the In-place argument list, select y1, the output argument for the code
replacement mapping. The Function arguments list box is updated to show
possible in-place argument mappings.

23 Code Replacement Customization for MATLAB Code

23-90

10 Select and delete one of the two possible argument mappings. For this example,
delete the mapping y1<-->u1.

11 In the Function signature preview box, if the function signature appears as
expected, click Apply. Otherwise, make adjustments, and then click Apply. The
function signature for this example, appears as

void custom_function_inplace_impl(double* u1);

12 Click Validate entry.
13 Save the code replacement table in the same folder as customFunction.m. Name

the file htfl_inplace_table.m.

To test the example:

1 Register the table that contains the entry in a code replacement library.
2 Configure the code generator to use a code replacement library and to include the

Code Replacements Report in the code generation report.
3 Generate the replacement code and a code generation report.
4 Review the code replacements.

 Specify In-Place Code Replacement

23-91

Programmatic Argument Replacement Specification

This example shows how to specify in-place function argument replacement when
replacing code for a MATLAB function programmatically. For the input implementation
argument that shares the memory buffer, the example:

• Sets the name of the implementation argument to the same name as the
corresponding conceptual argument.

• Associates the corresponding implementation argument with the argument property
ArgumentForInPlaceUse.

1 Create the following MATLAB function, customFunction.m.

function y = customFunction(x)

% Function that updates the input and returns it as an output

coder.replace('-errorifnoreplacement');

x = sin(x);

2 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_inplace()

3 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

4 Create an entry for the function mapping with a call to the
RTW.TflCFunctionEntry function.

hEnt = RTW.TflCFunctionEntry;

5 Set function entry parameters with a call to the
setTflCFunctionEntryParameters function.
setTflCFunctionEntryParameters(hEnt, ...

 'Key', 'customFunction', ...

 'Priority', 100, ...

 'ImplementationName', 'custom_function_inplace_impl', ...

 'SideEffects', true);

6 Create conceptual arguments y1 and u1. This example uses calls to the
getTflArgFromString and addConceptualArg functions to create and add the
arguments.
arg = getTflArgFromString(hEnt, 'y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(hEnt, arg);

23 Code Replacement Customization for MATLAB Code

23-92

arg = getTflArgFromString(hEnt, 'u1','double');

addConceptualArg(hEnt, arg);

7 Create the implementation arguments and add them to the entry. This example uses
calls to the getTflArgFromString function to create implementation arguments
that map to arguments in the replacement function prototype: output argument
y1 and input argument u1. For each argument, the example uses the convenience
method setReturn or addArgument to specify whether an argument is a return
value or argument. For each argument, this example adds the argument to the entry
array of implementation arguments.

arg = getTflArgFromString(hEnt, 'y2','void');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setReturn(arg);

arg = getTflArgFromString(hEnt, 'u1','double*');

arg.ArgumentForInPlaceUse = 'y1';

hEnt.Implementation.addArgument(arg);

8 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hLib, hEnt);

9 Save the table definition file. Use the name of the table definition function to name
the file.

To test the example:

1 Register the table that contains the entry in a code replacement library.
2 Configure the code generator to use a code replacement library and to include the

Code Replacements Report in the code generation report.
3 Generate the replacement code and a code generation report.
4 Review the code replacements.

Related Examples
• “Define Code Replacement Mappings”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “Code You Can Replace from MATLAB Code”

 Specify In-Place Code Replacement

23-93

• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

23 Code Replacement Customization for MATLAB Code

23-94

Replace MATLAB Functions with Custom Code Using
coder.replace

The coder.replace function provides the ability to replace a specified MATLAB
function with a code replacement function in generated code. Use coder.replace in
MATLAB code from which you want to generate C code using:

• MATLAB Coder
• MATLAB code in a Simulink MATLAB Function block

You can replace MATLAB functions that have:

• Single or multiple inputs
• Single or multiple outputs
• Scalar and matrix inputs and outputs

Supported types include:

• single, double (complex and noncomplex)
• int8, uint8 (complex and noncomplex)
• int16, uint16 (complex and noncomplex)
• int32, uint32 (complex and noncomplex)
• Fixed-point integers
• Mixed types (different type on each input)

Related Examples
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Terminology”

 Replace MATLAB Functions with Custom Code Using coder.replace

23-95

External Web Sites
• “Replacing Math Functions and Operators”

23 Code Replacement Customization for MATLAB Code

23-96

Replace coder.ceval Calls to External Functions

In this section...

“External Function Calls and coder.ceval” on page 23-96
“Example Files” on page 23-96
“Interactive External Function Call Replacement Specification with Code Replacement
Tool” on page 23-98
“Programmatic External Function Call Replacement Specification” on page 23-99

External Function Calls and coder.ceval

The coder.ceval function calls external C/C++ functions from code generated from
MATLAB code. The code replacement software supports replacement of the function
that you specify in a call to coder.ceval. An application of this code replacement
scenario is to write generic MATLAB code that you can customize for different platforms
with code replacements. A code replacement library can define hardware-specific code
replacements for the function call. Use coder.ceval in MATLAB code from which you
want to generate C code using:

• MATLAB Coder
• MATLAB code in a Simulink MATLAB Function block

Example Files

For the examples in “Interactive External Function Call Replacement Specification
with Code Replacement Tool” and “Programmatic External Function Call Replacement
Specification” you must have set up the following:

• Custom C function my_add.c.

/* my_add.c */

#include "my_add.h"

double my_add(double in1, double in2)

{

 return in1 + in2;

 Replace coder.ceval Calls to External Functions

23-97

}

• Custom C header file my_add.h.

/* my_add.h */

double my_add(double in1, double in2);

• MATLAB function call_my_add.m, which uses coder.ceval to invoke my_add.c.

function y = call_my_add(in1, in2) %#codegen

y=0.0;

if ~coder.target('Rtw')

% Executing in MATLAB, call MATLAB equivalent of C function my_add

 y= in1+in2;

else

% Executing in generated code, call C function my_add

 y = coder.ceval('my_add', in1, in2);

end

• MATLAB test function call_my_add_test.m, which calls call_my_add.m.

in1=10;

in2=20;

y = call_my_add(in1, in2);

disp('Output')

disp('y =')

disp(y);

• Replacement C function my_add_replacement.c.

/* my_add_replacement.c */

#include "my_add_replacement.h"

double my_add_replacement(double in1, double in2)

{

 return in1 + in2;

}

• Replacement C header file my_add_replacement.h.

/* my_add_replacement.h */

23 Code Replacement Customization for MATLAB Code

23-98

double my_add_replacement(double in1, double in2);

Interactive External Function Call Replacement Specification with Code
Replacement Tool

This example shows how to define a code replacement table entry for a MATLAB function
that calls coder.ceval to invoke an external C function. The example shows how to
define the entry interactively with the Code Replacement Tool.

1 Identify or create the C/C++ code and relevant header files, the MATLAB function
that calls coder.ceval, a MATLAB test function, and the source and header
files for your replacement code. To follow along with this example, set up the files
identified in “Example Files”.

2 In the Code Replacement Tool, add a table, select that table, and add a function
entry. For more information, see “Define Code Replacement Mappings”.

3 On the Mapping Information tab, select Custom for the Function parameter.
4 In the function-name text box, type the custom function name. For this example,

type the name my_add.
5 Under the Conceptual arguments list box, click + to add three arguments. By

default, the tool creates an output argument y1 and input arguments u1 and u2 of
type double.

6 In the Replacement function > Function prototype section, type the name
my_add_replacement in the Name text box.

7 Under the Function arguments list box, click + to add three function
implementation arguments. By default, the tool creates an output argument y1 and
input arguments u1 and u2 of type double. Use the default settings.

8 In the Function signature preview box, if you see the expected function
signature, click Apply. The function signature for this example, appears as:

double my_add_replacement(double u1, double u2);

9 On the Build Information tab, specify my_add_replacement.h for the
Implementation header file parameter and my_add_replacement.c for the
Implementation source file.

10 Click Validate entry.
11 Save the code replacement table in the same folder as my_add_replacement.c.

Name the file crl_table_my_add.m.

To test the example:

 Replace coder.ceval Calls to External Functions

23-99

1 Register the table that contains the entry in a code replacement library.
2 Configure the code generator to use the code replacement library and to include the

Code Replacements Report in the code generation report.
3 Generate code and the report.
4 Review the code replacements.

Programmatic External Function Call Replacement Specification

This example shows how to define a code replacement table entry for a MATLAB function
that calls coder.ceval to invoke an external C function. The example shows how to
define the entry programmatically.

1 Identify or create the C/C++ code and relevant header files, the MATLAB function
that calls coder.ceval to invoke the C/C++ function, a MATLAB test function,
and the source and header files for your replacement code. To follow along with this
example, set up the files identified in “Example Files”.

2 Create a table definition file that contains a function definition. For example:

function hLib = crl_table_my_add

3 Within the function body, create the table by calling the function RTW.TflTable.
4 Create an entry for the function mapping with a call to the

RTW.TflCFunctionEntry function.

hEnt = RTW.TflCFunctionEntry;

5 Set function entry parameters with a call to the
setTflCFunctionEntryParameters function.

hEnt.setTflCFunctionEntryParameters(...

 'Key', 'my_add', ...

 'Priority', 100, ...

 'ImplementationName', 'my_add_replacement', ...

 'ImplementationHeaderFile', 'my_add_replacement.h', ...

 'ImplementationSourceFile', 'my_add_replacement.c');

6 Create conceptual arguments y1, u1, and u1. This example uses calls to the
getTflArgFromString and addConceptualArg functions to create and add the
arguments.

arg = hEnt.getTflArgFromString('y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

23 Code Replacement Customization for MATLAB Code

23-100

hEnt.addConceptualArg(arg);

arg = hEnt.getTflArgFromString('u1','double');

hEnt.addConceptualArg(arg);

arg = hEnt.getTflArgFromString('u2','double');

hEnt.addConceptualArg(arg);

7 Create the implementation arguments and add them to the entry. This example uses
calls to the getTflArgFromString function to create implementation arguments.
These functions map to arguments in the replacement function prototype: output
argument y1 and input arguments u1 and u2. For each argument, the example
uses the convenience method setReturn or addArgument to specify whether an
argument is a return value or argument. For each argument, this example adds the
argument to the entry array of implementation arguments.

arg = hEnt.getTflArgFromString('y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setReturn(arg);

arg = hEnt.getTflArgFromString('u1','double');

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u2','double');

hEnt.Implementation.addArgument(arg);

8 Add the entry to a code replacement table with a call to the addEntry function.

hLib.addEntry(hEnt);

9 Save the table definition file. Use the name of the table definition function to name
the file.

To test the example:

1 Register the table that contains the entry in a code replacement library.
2 Configure the code generator to use the code replacement library and to include the

Code Replacements Report in the code generation report.
3 Generate code and the report.
4 Review the code replacements.

Related Examples
• “Define Code Replacement Mappings”

 Replace coder.ceval Calls to External Functions

23-101

• “Develop a Code Replacement Library”
• Replacing Math Functions and Operators
• “Quick Start Library Development”

More About
• “Code Replacement Match and Replacement Process”
• “Code Replacement Terminology”

23 Code Replacement Customization for MATLAB Code

23-102

Reserved Identifiers and Code Replacement

The code generator and C programming language use, internally, reserved keywords for
code generation. Do not use reserved keywords as identifiers or function names. Reserved
keywords for code generation include many code replacement library identifiers, the
majority of which are function names, such as acos.

To view a list of reserved identifiers for the code replacement library that you
use to generate code, specify the name of the library in a call to the function
RTW.TargetRegistry.getInstance.getTflReservedIdentifiers. For example:
crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers('GNU99 (GNU)')

In a code replacement table, the code generator registers each function implementation
name defined by a table entry as a reserved identifier. You can register additional
reserved identifiers for the table on a per-header-file basis. Providing additional reserved
identifiers can help prevent duplicate symbols and other identifier-related compile and
link issues.

To register additional code replacement reserved identifiers, use the
setReservedIdentifiers function. This function registers specified reserved
identifiers to be associated with a code replacement table.

You can register up to four reserved identifier structures in a code replacement table.
You can associate one set of reserved identifiers with a code replacement library, while
the other three (if present) must be associated with ANSI C. The following example
shows a reserved identifier structure that specifies two identifiers and the associated
header file.
d{1}.LibraryName = 'ANSI_C';

d{1}.HeaderInfos{1}.HeaderName = 'math.h';

d{1}.HeaderInfos{1}.ReservedIds = {'y0', 'y1'};

The code generator adds the identifiers to the list of reserved identifiers and honors them
during the build procedure.

Related Examples
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

 Reserved Identifiers and Code Replacement

23-103

More About
• “What Is Code Replacement Customization?”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

23 Code Replacement Customization for MATLAB Code

23-104

Customize Matching and Replacement Process for Functions

During the build process, the code generator uses:

• Preset match criteria to identify functions and operators for which application-specific
implementations should replace default implementations

• Preset replacement function signatures

However, preset match criteria and preset replacement function signatures might not
completely meet your function and operator replacement needs. For example,

• You might want to replace an operator with a particular fixed-point implementation
function only when fraction lengths are within a particular range.

• When a match is made, you might want to modify your replacement function
signature based on compile-time information, such as passing fraction-length values
into the function.

When you need to add extra logic into the code replacement matching and replacement
process, you can create custom code replacement table entries. Custom entries allow you
to specify additional match criteria and/or modify the replacement function signature to
meet application needs.

To create a custom code replacement entry:

1 Create a custom code replacement entry class, derived from
RTW.TflCFunctionEntryML (for function replacement) or

RTW.TflCOperationEntryML (for operator replacement).
2 In your derived class, implement a do_match method with a fixed preset signature

as a MATLAB function. In your do_match method, provide either or both of the
following customizations for use by code replacement entries that instantiate the
class:

a Add additional match criteria not provided by the base class. The base class
provides a match based on argument number, argument name, signedness, word
size, slope (if not specified with wildcards), bias (if not specified with wildcards),
math modes such as saturation and rounding, and operator or function key. For
example, you can accept a match only when additional size or range conditions
are met.

b Modify the implementation signature by adding additional arguments or setting
constant input argument values. For example, you can inject a constant value,

 Customize Matching and Replacement Process for Functions

23-105

such as an input's scaling value, as an additional argument to the replacement
function.

3 Create code replacement entries that instantiate your custom entry class.
4 Register a library containing the code replacement table that includes your entries.

During code generation, the code replacement matching process first tries to match
function or operator call sites with the base class of your derived entry class. If a match is
found, the software calls your do_match method to execute your additional match logic
(if any) and your replacement function customizations (if any).

Related Examples
• “Define Code Replacement Mappings”
• “Register Code Replacement Mappings”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

23 Code Replacement Customization for MATLAB Code

23-106

Scalar Operator Code Replacement

This example shows how to define a code replacement mapping for a scalar operator. The
example defines a mapping for the + (addition) operator programmatically. Alternatively,
you can use the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_add_uint8

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create an entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

% Create operation entry

op_entry = RTW.TflCOperationEntry;

4 Set function entry parameters with a call to the
setTflCOperationEntryParameters function.
% Define addition operation of built-in uint8 data type

% Saturation on, Rounding unspecified

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

 'ImplementationName', 'u8_add_u8_u8', ...

 'ImplementationHeaderFile', 'u8_add_u8_u8.h', ...

 'ImplementationSourceFile', 'u8_add_u8_u8.c');

5 Create conceptual arguments y1, u1, and u2. There are multiple ways to set up the
conceptual arguments. This example uses calls to the getTflArgFromString and
addConceptualArg functions to create and add the arguments.
arg = getTflArgFromString(hTable, 'y1', 'uint8');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u1', 'uint8');

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u2', 'uint8');

addConceptualArg(op_entry, arg);

6 Copy the conceptual arguments to the implementation arguments. There are
multiple ways to set up the implementation arguments. This example uses a call

 Scalar Operator Code Replacement

23-107

to the copyConceptualArgsToImplementation function to create and add
implementation arguments to the entry by copying matching conceptual arguments.
copyConceptualArgsToImplementation(op_entry);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

Related Examples
• “Define Code Replacement Mappings”
• “Addition and Subtraction Operator Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

23 Code Replacement Customization for MATLAB Code

23-108

Addition and Subtraction Operator Code Replacement

In this section...

“Algorithm Options” on page 23-108
“Interactive Specification with Code Replacement Tool” on page 23-109
“Programmatic Specification” on page 23-109
“Algorithm Classification” on page 23-109
“Limitations” on page 23-111

Algorithm Options

When creating a code replacement table entry for an addition or subtraction operator,
first determine the type of algorithm that your library function implements.

• Cast-before-operation (CBO), default — Prior to performing the addition or
subtraction operation, the algorithm type casts input values to the output type. If
the output data type cannot exactly represent the input values, losses can occur as a
result of the cast to the output type. Additional loss can occur when the result of the
operation is cast to the final output type.

• Cast-after-operation (CAO) — The algorithm computes the ideal result of the addition
or subtraction operation of the two inputs. The algorithm then type casts the result
to the output data type. Loss occurs during the type cast. This algorithm behaves
similarly to the C language except when the signedness of the operands does not
match. For example, when you add a signed long operand to an unsigned long
operand, standard C language rules convert the signed long operand to an unsigned
long operand. The result is a value that is not ideal.

 Addition and Subtraction Operator Code Replacement

23-109

Interactive Specification with Code Replacement Tool

When you use the Code Replacement Tool to create a code replacement table entry for an
addition or subtraction operation, the tool displays an Algorithm menu. Use that menu
to specify the Cast before operation or Cast after operation algorithm for that
entry.

Programmatic Specification

Create a code replacement table file, as a MATLAB function, that describes
the addition or subtraction code replacement table entry. In the call to
setTflCOperationEntryParameters, set at least these parameters:

• Key to RTW_OP_ADD or RTW_OP_MINUS
• ImplementationName to the name of your replacement function
• EntryInfoAlgorithm to RTW_CAST_BFORE_OP (cast-before-operation) or

RTW_CAST_AFTER_OP (cast-after-operation)

This example sets parameters for a code replacement operator entry for a cast-after-
operation implementation of a uint8 addition.
op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'EntryInfoAlgorithm', 'RTW_CAST_AFTER_OP', ...

 'ImplementationName', 'u8_add_u8_u8');

For more information, see setTflCOperationEntryParameters.

Algorithm Classification

During code generation, the code generator examines addition and subtraction
operations, including adjacent type cast operations, to determine the type of algorithm
to compute the expression result. Based on the data types in the expression and the type
of the accumulator (type used to hold the result of the addition or subtraction operation),
the code generator uses these rules.

• Floating-point types only

Input 1 Data
Type

Input 2 Data
Type

Accumulator Data
Type

Output Data Type Classification

double double double double CBO, CAO

23 Code Replacement Customization for MATLAB Code

23-110

Input 1 Data
Type

Input 2 Data
Type

Accumulator Data
Type

Output Data Type Classification

double double double single —
double double single double —
double double single single CBO
double single double double CBO, CAO
double single double single —
double single single double —
double single single single CBO
single single single single CBO, CAO
single single single double —
single single double single —
single single double double CBO, CAO

• Floating-point and fixed-point types on the immediate addition or subtraction
operation

Algorithm Conditions

CBO One of the following is true:

• Operation type is double.
• Operation type is single and input types are single or fixed-point.

CAO Operation type is a superset of input types—that is, output type can
represent values of input types without loss of data.

• Fixed-point types only

Algorithm Conditions

CBO At least one of the following is true:

• Accumulator type equals output type (Tacc == Tout).
• Output type is a superset of input types (Tacc >= {Tin1, Tin2})

and accumulator type is a superset of output type (Tacc >= Tout).
• Operation does not incur range or precision loss.

 Addition and Subtraction Operator Code Replacement

23-111

Algorithm Conditions

CAO Net bias is zero and the data types in the expression have equal slope
adjustment factors. For more information on net bias, see “Addition” or
“Subtraction” in “Fixed-Point Operator Code Replacement” (for MATLAB
code) or “Fixed-Point Operator Code Replacement” (for Simulink
models).

In many cases, the numerical result of a CBO operation is equal to that of a CAO
operation. For example, if the input and output types are such that the operation
produces the ideal result, as in the case of int8 + int8 —> int16. To maximize the
probability of code replacement occurring in such cases, set the algorithm to cast-after-
operation.

Limitations

• The code generator does not replace operations with nonzero net bias.
• When classifying an operation as a CAO operation, the code generator includes the

adjacent casts in the expression when the expression involves only fixed-point types.
Otherwise, the code generator classifies and replaces only the immediate addition or
subtraction operation. Casts that the code generator excludes from the classification
appear in the generated code.

• To enable the code generator to include multiple cast operations, which follow an
addition or subtraction of fixed-point data, in the classification of an expression, the
rounding mode must be simplest or floor. Consider the expression y=(cast A)
(cast B)(u1+u2). If the rounding mode of (cast A), (cast B), and the addition
operator (+) are set to simplest or floor, the code generator takes into account
(cast A) and (cast B) when classifying the expression and performing the
replacement only.

Related Examples
• “Define Code Replacement Mappings”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

23 Code Replacement Customization for MATLAB Code

23-112

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”
• rtwdemo_crl_cbo_cao

 Small Matrix Operation to Processor Code Replacement

23-113

Small Matrix Operation to Processor Code Replacement
This example shows how to define code replacement mappings that replace nonscalar
small matrix operations with processor-specific intrinsic functions. The example defines
a table containing two matrix operator replacement entries for the + (addition) operator
and the double data type. The example defines the function mapping programmatically.
Alternatively, you can use the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_matrix_add_double

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the first operator mapping with a call to the
RTW.TflCOperationEntry function.

% Create table entry for matrix_sum_2x2_double

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The code generator
ignores saturation and rounding modes for floating-point nonscalar addition
and subtraction. For code replacement entries for nonscalar addition and
subtraction operations that do not involve fixed-point data, in the call to
setTflCOperationEntryParameters, specify 'RTW_SATURATE_UNSPECIFIED'
for the SaturationMode property and {'RTW_ROUND_UNSPECIFIED'} for
RoundingModes.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 30, ...

 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

 'ImplementationName', 'matrix_sum_2x2_double', ...

 'ImplementationHeaderFile', 'MatrixMath.h', ...

 'ImplementationSourceFile', 'MatrixMath.c', ...

 'ImplementationHeaderPath', LibPath, ...

 'ImplementationSourcePath', LibPath, ...

 'AdditionalIncludePaths', {LibPath}, ...

 'GenCallback', 'RTW.copyFileToBuildDir', ...

 'SideEffects', true);

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. To specify a matrix argument in the function call, use the argument

23 Code Replacement Customization for MATLAB Code

23-114

class RTW.TflArgMatrix. Specify the base type and the dimensions for which the
argument is valid. The first table entry specifies [2 2] and the second table entry
specifies [3 3].
% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [2 2]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [2 2]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [2 2]);

6 Create the implementation arguments. There are multiple ways to set up the
implementation arguments. This example uses calls to the getTflArgFromString
to create the arguments. The convenience methods setReturn and addArgument
specify whether an argument is a return value or argument and adds the argument
to the entry’s array of implementation arguments.
arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

8 Create the entry for the second operator mapping.

% Create table entry for matrix_sum_3x3_double

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 30, ...

 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

 'ImplementationName', 'matrix_sum_3x3_double', ...

 Small Matrix Operation to Processor Code Replacement

23-115

 'ImplementationHeaderFile', 'MatrixMath.h', ...

 'ImplementationSourceFile', 'MatrixMath.c', ...

 'ImplementationHeaderPath', LibPath, ...

 'ImplementationSourcePath', LibPath, ...

 'AdditionalIncludePaths', {LibPath}, ...

 'GenCallback', 'RTW.copyFileToBuildDir', ...

 'SideEffects', true);

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [3 3]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [3 3]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [3 3]);

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

9 Save the table definition file. Use the name of the table definition function to name
the file.

Related Examples
• “Define Code Replacement Mappings”
• “Matrix Multiplication Operation to MathWorks BLAS Code Replacement”

23 Code Replacement Customization for MATLAB Code

23-116

• “Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

 Matrix Multiplication Operation to MathWorks BLAS Code Replacement

23-117

Matrix Multiplication Operation to MathWorks BLAS Code
Replacement

This example shows how to define code replacement mappings that replace nonscalar
multiplication operations with Basic Linear Algebra Subroutine (BLAS) multiplication
functions xgemm and xgemv. The example defines code replacement entries that map
floating-point matrix/matrix and matrix/vector multiplication operations to MathWorks
BLAS library multiplication functions dgemm and dgemv. The example defines the
function mappings programmatically. Alternatively, you can use the Code Replacement
Tool to define the same mappings.

BLAS libraries support matrix/matrix multiplication in the form of
C = a(op(A) * op(B)) + bC . op(X) means X, transposition of X, or Hermitian
transposition of X. However, code replacement libraries support only the limited case of
C = op(A) * op(B) (a = 1.0, b = 0.0) . Correspondingly, although BLAS libraries support
matrix/vector multiplication in the form of y = a(op(A) * x) + by , code replacement
libraries support only the limited case of y = op(A) * x (a = 1.0, b = 0.0) .

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_tmwblas_mmult_double

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Define the path for the BLAS function library. If your replacement functions are on
the MATLAB search path or are in your working folder, you can skip this step.
% Define library path for Windows or UNIX

arch = computer('arch');

if ~ispc

 LibPath = fullfile('$(MATLAB_ROOT)', 'bin', arch);

else

 % Use Stateflow to get the compiler info

 compilerInfo = sf('Private','compilerman','get_compiler_info');

 compilerName = compilerInfo.compilerName;

 if strcmp(compilerName, 'msvc90') || ...

 strcmp(compilerName, 'msvc80') || ...

 strcmp(compilerName, 'msvc71') || ...

 strcmp(compilerName, 'msvc60'), ...

 compilerName = 'microsoft';

 end

 LibPath = fullfile('$(MATLAB_ROOT)', 'extern', 'lib', arch, compilerName);

end

23 Code Replacement Customization for MATLAB Code

23-118

4 Create an entry for the first mapping with a call to the
RTW.TflBlasEntryGenerator function.

% Create table entry for dgemm32

op_entry = RTW.TflBlasEntryGenerator;

5 Set operator entry parameters with a call to the
setTflCFunctionEntryParameters function. The function call sets matrix
multiplication operator entry properties. The code generator ignores saturation
and rounding modes for floating-point nonscalar addition and subtraction. For
code replacement entries for nonscalar addition and subtraction operations that do
not involve fixed-point data, in the call to setTflCFunctionEntryParameters,
specify 'RTW_SATURATE_UNSPECIFIED' for the SaturationMode property and
{'RTW_ROUND_UNSPECIFIED'} for RoundingModes.
if ispc

 libExt = 'lib';

elseif ismac

 libExt = 'dylib';

else

 libExt = 'so';

end

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

 'Priority', 100, ...

 'ImplementationName', 'dgemm32', ...

 'ImplementationHeaderFile', 'blascompat32_crl.h', ...

 'ImplementationHeaderPath', fullfile('$(MATLAB_ROOT)','extern','include'), ...

 'AdditionalLinkObjs', {['libmwblascompat32.' libExt]}, ...

 'AdditionalLinkObjsPaths', {LibPath}, ...

 'SideEffects', true);

6 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with
one function call. To specify a matrix argument in the function call, use the
argument class RTW.TflArgMatrix and specify the base type and the dimensions
for which the argument is valid. This type of table entry supports a range of
dimensions specified in the format [Dim1Min Dim2Min ... DimNMin; Dim1Max
Dim2Max ... DimNMax]. For example, [2 2; inf inf] means a two-dimensional
matrix of size 2x2 or larger. The conceptual output argument for the dgemm32 entry
for matrix/matrix multiplication replacement specifies dimensions [2 2; inf
inf], while the conceptual output argument for the dgemv32 entry for matrix/vector
multiplication replacement specifies dimensions [2 1; inf 1].
% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

 Matrix Multiplication Operation to MathWorks BLAS Code Replacement

23-119

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [1 1; inf inf]);

7 Create the implementation arguments. There are multiple ways to set up the
implementation arguments. This example uses calls to the getTflArgFromString
and RTW.TflArgCharConstant functions to create the arguments. The example
code configures special implementation arguments that are required for dgemm
and dgemv function replacements. The convenience methods setReturn and
addArgument specify whether an argument is a return value or argument and adds
the argument to the entry’s array of implementation arguments.

% Using RTW.TflBlasEntryGenerator for xgemm requires the following

% implementation signature:

%

% void f(char* TRANSA, char* TRANSB, int* M, int* N, int* K,

% type* ALPHA, type* u1, int* LDA, type* u2, int* LDB,

% type* BETA, type* y, int* LDC)

%

% When a match occurs, the code generator computes the

% values for M, N, K, LDA, LDB, and LDC and inserts them into the

% generated code. TRANSA and TRANSB are set to 'N'.

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = RTW.TflArgCharConstant('TRANSA');

% Possible values for PassByType property are

% RTW_PASSBY_AUTO, RTW_PASSBY_POINTER,

% RTW_PASSBY_VOID_POINTER, RTW_PASSBY_BASE_POINTER

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = RTW.TflArgCharConstant('TRANSB');

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'M', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

23 Code Replacement Customization for MATLAB Code

23-120

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'K', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDB', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDC', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

8 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

9 Create the entry for the second mapping.

 Matrix Multiplication Operation to MathWorks BLAS Code Replacement

23-121

% Create table entry for dgemv32

op_entry = RTW.TflBlasEntryGenerator;

if ispc

 libExt = 'lib';

elseif ismac

 libExt = 'dylib';

else

 libExt = 'so';

end

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

 'Priority', 100, ...

 'ImplementationName', 'dgemv32', ...

 'ImplementationHeaderFile', 'blascompat32_crl.h', ...

 'ImplementationHeaderPath', fullfile('$(MATLAB_ROOT)','extern','include'), ...

 'AdditionalLinkObjs', {['libmwblascompat32.' libExt]}, ...

 'AdditionalLinkObjsPaths', {LibPath},...

 'SideEffects', true);

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [2 1; inf 1]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [1 1; inf 1]);

% Using RTW.TflBlasEntryGenerator for xgemv requires the following

% implementation signature:

%

% void f(char* TRANS, int* M, int* N,

% type* ALPHA, type* u1, int* LDA, type* u2, int* INCX,

% type* BETA, type* y, int* INCY)

%

% Upon a match, the CRL entry will compute the

% values for M, N, LDA, INCX, and INCY, and insert them into the

% generated code. TRANS will be set to 'N'.

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = RTW.TflArgCharConstant('TRANS');

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

23 Code Replacement Customization for MATLAB Code

23-122

arg = getTflArgFromString(hTable, 'M', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCX','integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCY', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

10 Save the table definition file. Use the name of the table definition function to name
the file.

 Matrix Multiplication Operation to MathWorks BLAS Code Replacement

23-123

Related Examples
• “Define Code Replacement Mappings”
• “Small Matrix Operation to Processor Code Replacement”
• “Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

23 Code Replacement Customization for MATLAB Code

23-124

Matrix Multiplication Operation to ANSI/ISO C BLAS Code
Replacement

This example shows how to define code replacement mappings that replace nonscalar
multiplication operations with ANSI/ISO C BLAS multiplication functions xgemm
and xgemv. The example defines code replacement entries that map floating-point
matrix/matrix and matrix/vector multiplication operations to ANSI/ISO C BLAS library
multiplication functions dgemm and dgemv. The example defines the function mappings
programmatically. Alternatively, you can use the Code Replacement Tool to define the
same mappings.

BLAS libraries support matrix/matrix multiplication in the form of
C = a(op(A) * op(B)) + bC . op(X) means X, transposition of X, or Hermitian
transposition of X. However, code replacement libraries support only the limited case of
C = op(A) * op(B) (a = 1.0, b = 0.0) . Correspondingly, although BLAS libraries support
matrix/vector multiplication in the form of y = a(op(A) * x) + by , code replacement
libraries support only the limited case of y = op(A) * x (a = 1.0, b = 0.0) .

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_cblas_mmult_double

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Define the path for the CBLAS function library. For example:
LibPath = fullfile(matlabroot, 'toolbox', 'rtw', 'rtwdemos', 'crl_demo');

4 Create an entry for the first mapping with a call to the
RTW.TflBlasEntryGenerator function.

% Create table entry for cblas_dgemm

op_entry = RTW.TflCBlasEntryGenerator;

5 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The function call sets matrix
multiplication operator entry properties. The code generator ignores saturation and
rounding modes for floating-point nonscalar addition and subtraction.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

 Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement

23-125

 'Priority', 100, ...

 'ImplementationName', 'cblas_dgemm', ...

 'ImplementationHeaderFile', 'cblas.h', ...

 'ImplementationHeaderPath', LibPath, ...

 'AdditionalIncludePaths', {LibPath}, ...

 'GenCallback', 'RTW.copyFileToBuildDir', ...

 'SideEffects', true);

6 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with
one function call. To specify a matrix argument in the function call, use the
argument class RTW.TflArgMatrix and specify the base type and the dimensions
for which the argument is valid. This type of table entry supports a range of
dimensions specified in the format [Dim1Min Dim2Min ... DimNMin; Dim1Max
Dim2Max ... DimNMax]. For example, [2 2; inf inf] means a two-dimensional
matrix of size 2x2 or larger. The conceptual output argument for the dgemm32 entry
for matrix/matrix multiplication replacement specifies dimensions [2 2; inf
inf]. The conceptual output argument for the dgemv32 entry for matrix/vector
multiplication replacement specifies dimensions [2 1; inf 1].

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [1 1; inf inf]);

7 Create the implementation arguments. There are multiple ways to set up the
implementation arguments. This example uses calls to the getTflArgFromString
function to create the arguments. The example code configures special
implementation arguments that are required for dgemm and dgemv function
replacements. The convenience methods setReturn and addArgument specify
whether an argument is a return value or argument and adds the argument to the
entry’s array of implementation arguments.

% Using RTW.TflCBlasEntryGenerator for xgemm requires the following

% implementation signature:

%

% void f(enum ORDER, enum TRANSA, enum TRANSB, int M, int N, int K,

% type ALPHA, type* u1, int LDA, type* u2, int LDB,

23 Code Replacement Customization for MATLAB Code

23-126

% type BETA, type* y, int LDC)

%

% Since CRLs do not have the ability to specify enums, you must

% use integer. (This will cause problems with C++ code generation,

% so for C++, use a wrapper function to cast each int to the

% corresponding enumeration type.)

%

% When a match occurs, the code generator computes the

% values for M, N, K, LDA, LDB, and LDC and insert them into the

% generated code.

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'ORDER', 'integer', 102);

%arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'TRANSA', 'integer', 111);

%arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'TRANSB', 'integer', 111);

%arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'M', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'K', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 1);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDB', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

op_entry.Implementation.addArgument(arg);

 Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement

23-127

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDC', 'integer', 0);

op_entry.Implementation.addArgument(arg);

8 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

9 Create the entry for the second mapping.
% Create table entry for cblas_dgemv

op_entry = RTW.TflCBlasEntryGenerator;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

 'Priority', 100, ...

 'ImplementationName', 'cblas_dgemv', ...

 'ImplementationHeaderFile', 'cblas.h', ...

 'ImplementationHeaderPath', LibPath, ...

 'AdditionalIncludePaths', {LibPath}, ...

 'GenCallback', 'RTW.copyFileToBuildDir', ...

 'SideEffects', true);

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [2 1; inf 1]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [1 1; inf 1]);

% Using RTW.TflCBlasEntryGenerator for xgemv requires the following

% implementation signature:

%

% void f(enum ORDER, enum TRANSA, int M, int N,

% type ALPHA, type* u1, int LDA, type* u2, int INCX,

% type BETA, type* y, int INCY)

%

% Since CRLs do not have the ability to specify enums, you must

% use integer. (This will cause problems with C++ code generation,

% so for C++, use a wrapper function to cast each int to the

% corresponding enumeration type.)

%

% Upon a match, the CRL entry will compute the

% values for M, N, LDA, INCX, and INCY and insert them into the

% generated code.

23 Code Replacement Customization for MATLAB Code

23-128

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'ORDER', 'integer', 102);

%arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'TRANSA', 'integer', 111);

%arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'M','integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 1);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCX', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCY', 'integer', 0);

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

10 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example, create a model that uses two Product blocks. For example:

1 Create a model that includes two Product blocks, such as the following:

 Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement

23-129

2 Configure the model with the following settings:

• On the Solver pane, select a fixed-step, discrete solver with a fixed-step size such
as 0.1.

• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your addition operation entry.
3 For each Product block, set the block parameter Multiplication to the value

Matrix(*).
4 In the Model Explorer, configure the Signal Attributes for the In1, In2, and In3

source blocks. For In1 and In2, set Port dimensions to [3 3] and set the Data
type to double. For In3, set Port dimensions to [3 1] and set the Data type to
double.

5 Generate code and a code generation report.
6 Review the code replacements.

Related Examples
• “Define Code Replacement Mappings”
• “Small Matrix Operation to Processor Code Replacement”
• “Matrix Multiplication Operation to MathWorks BLAS Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”

23 Code Replacement Customization for MATLAB Code

23-130

• “What Is Code Replacement Customization?”
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

 Remap Operator Output to Function Input

23-131

Remap Operator Output to Function Input

If your generated code must meet a specific coding pattern or you want more flexibility,
for example, to further improve performance, you can remap operator outputs to input
positions in an implementation function argument list.

Note: Remapping outputs to implementation function inputs is supported only for
operator replacement.

For example, for a sum operation, the code generator produces code similar to:

add8_Y.Out1 = u8_add_u8_u8(add8_U.In1, add8_U.In2);

If you remap the output to the first input, the code generator produces code similar to:

u8_add_u8_u8(&add8_Y.Out1;, add8_U.In1, add8_U.In2);

The following table definition file for a sum operation remaps operator output y1 as the
first function input argument.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_add_uint8

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create an entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

% Create operation entry

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. In the function call, set the
property SideEffects to true.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 90, ...

 'ImplementationName', 'u8_add_u8_u8', ...

 'ImplementationHeaderFile', 'u8_add_u8_u8.h', ...

 'ImplementationSourceFile', 'u8_add_u8_u8.c', ...

 'SideEffects', true);

23 Code Replacement Customization for MATLAB Code

23-132

5 Create conceptual arguments y1, u1, and u2. There are multiple ways to set up the
conceptual arguments. This example uses calls to the getTflArgFromString and
addConceptualArg functions to create and add the arguments.
arg = getTflArgFromString(hTable, 'y1', 'uint8');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u1', 'uint8');

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u2', 'uint8');

addConceptualArg(op_entry, arg);

6 Create the implementation arguments. There are multiple ways to set up the
implementation arguments. This example uses calls to the getTflArgFromString
function to create the arguments. When defining the implementation function return
argument, create a new void output argument, for example, y2. When defining the
implementation function argument for the conceptual output argument (y1), set
the operator output argument as an additional input argument. Mark its IOType
as output. Make its type a pointer type. The convenience methods setReturn and
addArgument specify whether an argument is a return value or argument and adds
the argument to the entry’s array of implementation arguments.
% Create new void output y2

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

% Set y1 as first input arg, mark IOType as output, and use pointer type

arg=getTflArgFromString(hTable, 'y1', 'uint8*');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

arg=getTflArgFromString(hTable, 'u1', 'uint8');

op_entry.Implementation.addArgument(arg);

arg=getTflArgFromString(hTable, 'u2', 'uint8');

op_entry.Implementation.addArgument(arg);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example, create a model that uses an Add block. For example:

1 Create a model that includes an Add block, such as the following:

 Remap Operator Output to Function Input

23-133

2 Configure the model with the following settings:

• On the Solver pane, select a fixed-step solver.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your addition operation entry.
• On the Optimization pane, set Signals and Parameters > Optimize global

data access to Use global to hold temporary results. This reduces data
copies in the generated code.

3 Generate code and a code generation report.
4 Review the code replacements.

Related Examples
• “Define Code Replacement Mappings”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

23 Code Replacement Customization for MATLAB Code

23-134

Customize Matching and Replacement Process for Operators

This example shows how to create custom code replacement entries that add extra logic
to the code replacement matching and replacement process. Custom entries allow you to
specify additional match criteria or modify the replacement function signature to meet
your application needs.

• You might want to replace an operator with a particular fixed-point implementation
function only when fraction lengths are within a particular range.

• When a match occurs, you might want to modify your replacement function signature
based on compile-time information, such as passing fraction-length values into the
function.

The example modifies a fixed-point addition replacement such that the implementation
function passes in the fraction lengths of the input and output data types as arguments.

Create Class Folder for Entry

Create a class folder using the name of your derived class, such as
@TflCustomOperationEntry. Verify that the class folder is on the MATLAB search
path or in your current working folder.

Create Derived Class that Defines do_match Method

In the class folder, create and save the following class definition
file, TflCustomOperationEntry.m. This file defines the class
TflCustomOperationEntry, which is derived from the base class
RTW.TflCOperationEntryML.

The derived class defines a do_match method. In the do_match signature:

• ent is the return handle, which is returned either as empty (indicating that the
match failed) or as a TflCOperationEntry handle.

• hThis is the handle to this object.
• hCSO is a handle to an object created by the code generator for querying the library for

a replacement.
• The remaining arguments are the number of bits for various data types of the current

target.

The do_match method adds required additional match criteria that the base class does
not provide. the method makes required modifications to the implementation signature.

 Customize Matching and Replacement Process for Operators

23-135

In this case, the do_match method can rely on the base class for checking word size
and signedness. do_match must match only the number of conceptual arguments to the
value 3 (two inputs and one output) and the bias for each argument to the value 0. If the
code generator finds a match, do_match sets the return handle, removes slope and bias
wildcards from the conceptual arguments (the match is for specific slope and bias values),
and writes fraction-length values for the inputs and output into replacement function
arguments 3, 4, and 5.

You can create and add the three additional implementation function arguments
for passing fraction lengths in the class definition or in each code replacement entry
definition that instantiates this class. This example creates the arguments, adds them
to a code replacement table definition file, and sets them to specific values in the class
definition code.
classdef TflCustomOperationEntry < RTW.TflCOperationEntryML

 methods

 function ent = do_match(hThis, ...

 hCSO, ... %#ok

 targetBitPerChar, ... %#ok

 targetBitPerShort, ... %#ok

 targetBitPerInt, ... %#ok

 targetBitPerLong) %#ok

 % DO_MATCH - Create a custom match function. The base class

 % checks the types of the arguments prior to calling this

 % method. This will check additional data and perhaps modify

 % the implementation function.

 % The base class checks word size and signedness. Slopes and biases

 % have been wildcarded, so the only additional checking to do is

 % to check that the biases are zero and that there are only three

 % conceptual arguments (one output, two inputs)

 ent = []; % default the return to empty, indicating the match failed

 if length(hCSO.ConceptualArgs) == 3 && ...

 hCSO.ConceptualArgs(1).Type.Bias == 0 && ...

 hCSO.ConceptualArgs(2).Type.Bias == 0 && ...

 hCSO.ConceptualArgs(3).Type.Bias == 0

 % Modify the default implementation. Since this is a

 % generator entry, a concrete entry is created using this entry

 % as a template. The type of entry being created is a standard

 % TflCOperationEntry. Using the standard operation entry

 % provides required information, and you do not need

 % a custom match function.

 ent = RTW.TflCOperationEntry(hThis);

 % Since this entry is modifying the implementation for specific

 % fraction-length values (arguments 3, 4, and 5), the conceptual argument

 % wildcards must be removed (the wildcards were inherited from the

 % generator when it was used as a template for the concrete entry).

23 Code Replacement Customization for MATLAB Code

23-136

 % This concrete entry is now for a specific slope and bias.

 % hCSO holds the slope and bias values (created by the code generator).

 for idx=1:3

 ent.ConceptualArgs(idx).CheckSlope = true;

 ent.ConceptualArgs(idx).CheckBias = true;

 % Set the specific Slope and Biases

 ent.ConceptualArgs(idx).Type.Slope = hCSO.ConceptualArgs(idx).Type.Slope;

 ent.ConceptualArgs(idx).Type.Bias = 0;

 end

 % Set the fraction-length values in the implementation function.

 ent.Implementation.Arguments(3).Value = ...

 -1.0*hCSO.ConceptualArgs(2).Type.FixedExponent;

 ent.Implementation.Arguments(4).Value = ...

 -1.0*hCSO.ConceptualArgs(3).Type.FixedExponent;

 ent.Implementation.Arguments(5).Value = ...

 -1.0*hCSO.ConceptualArgs(1).Type.FixedExponent;

 end

 end

 end

end

Create Code Replacement Entry

Create code replacement entries that instantiate your custom entry class. For this
example, create and save a code replacement table that contains a single operator entry,
an entry generator for unsigned 32-bit fixed-point addition operations, with arbitrary
fraction-length values on the inputs and the output. This entry instantiates the derived
class from the previous step.

If you want to replace all word sizes and signedness attributes (not just 32-bit and
unsigned), you can use the same derived class, but not the same entry, because you
cannot wildcard the WordLength and IsSigned arguments. For example, to support
uint8, int8, uint16, int16, and int32, you must add five other distinct entries.
Similarly, to use different implementation functions for saturation and rounding
modes other than overflow and round to floor, you must add entries for those match
permutations.

This table entry creates and adds three implementation arguments to hold the
fraction-length values for the inputs and output. Alternatively, the entry can omit
those argument definitions. Instead the do_match method of the derived class
TflCustomOperationEntry can create and add the three implementation arguments.
When the number of additional implementation arguments required can vary based on
compile-time information, use the alternative approach.

1 In your working folder, create an entry definition file.

 Customize Matching and Replacement Process for Operators

23-137

2 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_custom_add_ufix32

3 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

4 Create an entry for the custom operator mapping with a call to the
RTW.TflCustomOperationEntry function.

%% Add TflCustomOperationEntry

op_entry = TflCustomOperationEntry;

5 Set function entry parameters with a call to the
setTflCOperationEntryParameters function.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 30, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_FLOOR'}, ...

 'ImplementationName', 'myFixptAdd', ...

 'ImplementationHeaderFile', 'myFixptAdd.h', ...

 'ImplementationSourceFile', 'myFixptAdd.c');

6 Create conceptual arguments y1, u1, and u2. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call.
createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'Scaling', 'BinaryPoint', ...

 'IsSigned', false, ...

 'WordLength', 32);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'Scaling', 'BinaryPoint', ...

 'IsSigned', false, ...

 'WordLength', 32);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

23 Code Replacement Customization for MATLAB Code

23-138

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'Scaling', 'BinaryPoint', ...

 'IsSigned', false, ...

 'WordLength', 32);

7 Create the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry.
% Specify replacement function signature

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', false, ...

 'WordLength', 32, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 32, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 32, ...

 'FractionLength', 0);

% Add 3 fraction-length args. Actual values are set during code generation.

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ...

 'Name', 'fl_in1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 32, ...

 'FractionLength', 0, ...

 'Value', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ...

 'Name', 'fl_in2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 32, ...

 'FractionLength', 0, ...

 'Value', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ...

 'Name', 'fl_out', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 32, ...

 Customize Matching and Replacement Process for Operators

23-139

 'FractionLength', 0, ...

 'Value', 0);

8 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

9 Save the table definition file. Use the name of the table definition function to name
the file.

Related Examples
• “Define Code Replacement Mappings”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “Code Replacement Match and Replacement Process”
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

23 Code Replacement Customization for MATLAB Code

23-140

Fixed-Point Operator Code Replacement

In this section...

“Fixed-Point Operator Entries” on page 23-140
“Fixed-Point Numbers and Arithmetic” on page 23-144
“Addition” on page 23-144
“Subtraction” on page 23-145
“Multiplication” on page 23-145
“Division” on page 23-146
“Data Type Conversion (Cast)” on page 23-147
“Shift” on page 23-147

Fixed-Point Operator Entries

If you have a Fixed-Point Designer license, you can define fixed-point operator code
replacement entries to match:

• A binary-point-only scaling combination on the operator inputs and output.
• A slope bias scaling combination on the operator inputs and output.
• Relative scaling or net slope between multiplication or division operator inputs

and output. Use one of these methods to map a range of slope and bias values to a
replacement function for multiplication or division.

• Equal slope and zero net bias across addition or subtraction operator inputs and
output. Use this method to disregard specific slope and bias values and map relative
slope and bias values to a replacement function for addition or subtraction.

The following table maps common ways to match fixed-point operator code replacement
entries with the associated fixed-point parameters that you specify in a code replacement
table definition file.

Match Create entry Minimally specify parameters

A specific binary-point-
only scaling combination
on the operator inputs and
output.

RTW.TflCOperationEntry createAndAddConceptualArg

function:

• CheckSlope: Specify the value
true.

 Fixed-Point Operator Code Replacement

23-141

Match Create entry Minimally specify parameters

• CheckBias: Specify the value true.
• DataTypeMode (or

DataType/Scaling equivalent):
Specify fixed-point binary-point-only
scaling.

• FractionLength: Specify a
fraction length (for example, 3).

A specific slope bias
scaling combination on
the operator inputs and
output.

RTW.TflCOperationEntry createAndAddConceptualArg

function:

• CheckSlope: Specify the value
true.

• CheckBias: Specify the value true.
• DataTypeMode (or DataType/

Scaling equivalent): Specify fixed-
point [slope bias] scaling.

• Slope (or
SlopeAdjustmentFactor/
FixedExponent equivalent):
Specify a slope value (for example,
15).

• Bias: Specify a bias value (for
example, 2).

23 Code Replacement Customization for MATLAB Code

23-142

Match Create entry Minimally specify parameters

Net slope between
operator inputs and
output (multiplication and
division).

RTW.TflCOperationEntry-

Generator_NetSlope

setTflCOperationEntryParameters

function:

• NetSlopeAdjustmentFactor:
Specify the slope adjustment factor
(F) part of the net slope, F2E (for
example, 1.0).

• NetFixedExponent: Specify the
fixed exponent (E) part of the net
slope, F2E (for example, -3.0).

createAndAddConceptualArg

function:

• CheckSlope: Specify the value
false.

• CheckBias: Specify the value
false.

• DataType: Specify the value
'Fixed'.

 Fixed-Point Operator Code Replacement

23-143

Match Create entry Minimally specify parameters

Relative scaling between
operator inputs and
output (multiplication and
division).

RTW.TflCOperationEntry-

Generator

setTflCOperationEntryParameters

function:

• RelativeScalingFactorF:
Specify the slope adjustment factor
(F) part of the relative scaling factor,
F2

E (for example, 1.0).
• RelativeScalingFactorE:

Specify the fixed exponent (E) part
of the relative scaling factor, F2E (for
example, -3.0).

createAndAddConceptualArg

function:

• CheckSlope: Specify the value
false.

• CheckBias: Specify the value
false.

• DataType: Specify the value
'Fixed'.

Equal slope and zero net
bias across operator inputs
and output (addition and
subtraction).

RTW.TflCOperationEntry-

Generator

setTflCOperationEntryParameters

function:

• SlopesMustBeTheSame: Specify
the value true.

• MustHaveZeroNetBias: Specify
the value true.

createAndAddConceptualArg

function:

• CheckSlope: Specify the value
false.

• CheckBias: Specify the value
false.

23 Code Replacement Customization for MATLAB Code

23-144

Fixed-Point Numbers and Arithmetic

Fixed-point numbers use integers and integer arithmetic to represent real numbers and
arithmetic with the following encoding scheme:

V V SQ B= = +%

• V is an arbitrarily precise real-world value.

• %V is the approximate real-world value that results from fixed-point representation.

• Q is an integer that encodes %V , referred to as the quantized integer.

•
S is a coefficient of Q , referred to as the slope.

• B is an additive correction, referred to as the bias.

The general equation for an operation between fixed-point operands is:

S Q B S Q B op S Q BO O O+() = +() < > +
1 1 1 2 2 2

()

The objective of fixed-point operator replacement is to replace an operator that accepts
and returns fixed-point or integer inputs and output with a function that accepts
and returns built-in C numeric data types. The following sections provide additional
programming information for each supported operator.

Addition

The operation V0 = V1 + V2 implies that

Q
S

S
Q

S

S
Q

B B B

S
0

1

0

1

2

0

2

1 2 0

0

=
Ê

Ë
Á

ˆ

¯
˜ +

Ê

Ë
Á

ˆ

¯
˜ +

+ -Ê

Ë
Á

ˆ

¯
˜

If an addition replacement function is defined such that the scaling on the operands and
sum are equal and the net bias

 Fixed-Point Operator Code Replacement

23-145

B B B

S

1 2 0

0

+ -Ê

Ë
Á

ˆ

¯
˜

is zero (for example, a function s8_add_s8_s8 that adds two signed 8-bit
values and produces a signed 8-bit result), then the operator entry must set the
operator entry parameters SlopesMustBeTheSame and MustHaveZeroNetBias
to true. (For parameter descriptions, see the reference page for the function
setTflCOperationEntryParameters.)

Subtraction

The operation V0 = V1 − V2 implies that

Q
S

S
Q

S

S
Q

B B B

S
0

1

0

1

2

0

2

1 2 0

0

=
Ê

Ë
Á

ˆ

¯
˜ -

Ê

Ë
Á

ˆ

¯
˜ +

- -Ê

Ë
Á

ˆ

¯
˜

If a subtraction replacement function is defined such that the scaling on the operands
and difference are equal and the net bias

B B B

S

1 2 0

0

- -Ê

Ë
Á

ˆ

¯
˜

is zero (for example, a function s8_sub_s8_s8 that subtracts two signed 8-bit
values and produces a signed 8-bit result), then the operator entry must set the
operator entry parameters SlopesMustBeTheSame and MustHaveZeroNetBias
to true. (For parameter descriptions, see the reference page for the function
setTflCOperationEntryParameters.)

Multiplication

There are different ways to specify multiplication replacements. The most direct way is to
specify an exact match of the input and output types. This is feasible if a model contains
only a few (known) slope and bias combinations. Use the TflCOperationEntry class

23 Code Replacement Customization for MATLAB Code

23-146

and specify the exact values of slope and bias on each argument. For scenarios where
there are numerous slope/bias combinations, it is not feasible to specify each value with a
different entry. Use a net slope entry or create a custom entry.

The operation V0 = V1 * V2 implies, for binary-point-only scaling, that

S Q S Q S Q

Q
S S

S
Q Q

Q S Q Q
n

0 0 1 1 2 2

0

1 2

0

1 2

0 1 2

= () ()

=
Ê

Ë
Á

ˆ

¯
˜

=

where Sn is the net slope.

It is common to replace all multiplication operations that have a net slope of 1.0 with
a function that performs C-style multiplication. For example, to replace all signed 8-
bit multiplications that have a net scaling of 1.0 with the s8_mul_s8_u8_ replacement
function, the operator entry must define a net slope factor, F2E. You specify the values
for F and E using operator entry parameters NetSlopeAdjustmentFactor and
NetFixedExponent. (For parameter descriptions, see the reference page for the
function setTflCOperationEntryParameters.) For the s8_mul_s8_u8 function, set
NetSlopeAdjustmentFactor to 1 and NetFixedExponent to 0.0.

Note: When an operator entry specifies NetSlopeAdjustmentFactor and
NetFixedExponent, matching entries must have arguments with zero bias.

Division

There are different ways to specify division replacements. The most direct way is to
specify an exact match of the input and output types. This is feasible if a model contains
only a few (known) slope and bias combinations. For this, use the TflCOperationEntry
class and specify the exact values of slope and bias on each argument. For scenarios
where there are numerous slope/bias combinations, it is not feasible to specify each
value with a different entry. For this, use a net slope entry or create a custom entry (see
“Customize Matching and Replacement Process for Functions”).

The operation V0 = (V1 / V2) implies, for binary-point-only scaling, that

 Fixed-Point Operator Code Replacement

23-147

S Q
S Q

S Q

Q S
Q

Q
n

0 0

1 1

2 2

0

1

2

=
Ê

Ë
Á

ˆ

¯
˜

=
Ê

Ë
Á

ˆ

¯
˜

where Sn is the net slope.

It is common to replace all division operations that have a net slope of 1.0 with
a function that performs C-style division. For example, to replace all signed 8-
bit divisions that have a net scaling of 1.0 with the s8_mul_s8_u8_ replacement
function, the operator entry must define a net slope factor, F2E. You specify the values
for F and E using operator entry parameters NetSlopeAdjustmentFactor and
NetFixedExponent. (For parameter descriptions, see the reference page for the function
setTflCOperationEntryParameters.) For the s16_netslope0p5_div_s16_s16
function, you would set NetSlopeAdjustmentFactor to 1 and NetFixedExponent to
0.0.

Note: When an operator entry specifies NetSlopeAdjustmentFactor and
NetFixedExponent, matching entries must have arguments with zero bias.

Data Type Conversion (Cast)

The data type conversion operation V0 = V1 implies, for binary-point-only scaling, that

Q
S

S
Q

Q S Q
n

0

1

0

1

0 1

=
Ê

Ë
Á

ˆ

¯
˜

=

where Sn is the net slope.

Shift

The shift left or shift right operation V0 = (V1 / 2n) implies, for binary-point-only scaling,
that

23 Code Replacement Customization for MATLAB Code

23-148

S Q
S Q

Q
S

S

Q

Q S
Q

n

n

n n

0 0

1 1

0

1

0

1

0

1

2

2

2

= Ê
Ë
Á

ˆ
¯
˜

=
Ê

Ë
Á

ˆ

¯
˜ + Ê

Ë
Á

ˆ
¯
˜

= Ê
Ë
Á

ˆ
¯
˜

where Sn is the net slope.

Related Examples
• “Define Code Replacement Mappings”
• “Binary-Point-Only Scaling Code Replacement”
• “Slope Bias Scaling Code Replacement”
• “Net Slope Scaling Code Replacement”
• “Equal Slope and Zero Net Bias Code Replacement”
• “Data Type Conversions (Casts) and Operator Code Replacement”
• “Shift Left Operations and Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

 Fixed-Point Operator Code Replacement

23-149

External Web Sites
• “Replacing Math Functions and Operators”

23 Code Replacement Customization for MATLAB Code

23-150

Binary-Point-Only Scaling Code Replacement
You can define code replacement entries for operations on fixed-point data types such
that they match a binary-point-only scaling combination on operator inputs and output.
These binary-point-only scaling entries can map the specified binary-point-scaling
combination to a replacement function for addition, subtraction, multiplication, or
division.

This example creates a code replacement entry for multiplication of fixed-point data
types. You specify arguments using binary-point-only scaling. The example defines the
function mapping programmatically. Alternatively, you can use the Code Replacement
Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_fixed_binptscale

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the
type of operation as multiplication, the saturation mode as saturate on integer
overflow, rounding modes as unspecified, and the name of the replacement function
as s32_mul_s16_s16_binarypoint.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

 'ImplementationName', 's32_mul_s16_s16_binarypoint', ...

 'ImplementationHeaderFile', 's32_mul_s16_s16_binarypoint.h', ...

 'ImplementationSourceFile', 's32_mul_s16_s16_binarypoint.c');

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Each argument specifies that the data type is fixed-point, the mode is
binary-point-only scaling, and its derived slope and bias values must exactly match
the call-site slope and bias values. The output argument is 32 bits, signed, with a

 Binary-Point-Only Scaling Code Replacement

23-151

fraction length of 28. The input arguments are 16 bits, signed, with fraction lengths
of 15 and 13.

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', true, ...

 'WordLength', 32, ...

 'FractionLength', 28);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 15);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 13);

6 Create the implementation arguments. There are multiple
ways to set up the implemenation arguments. This example
uses calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types). In this case, the output argument is
32 bits and signed (int32). The input arguments are 16 bits and signed (int16).

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', true, ...

 'WordLength', 32, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

23 Code Replacement Customization for MATLAB Code

23-152

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

Related Examples
• “Define Code Replacement Mappings”
• “Fixed-Point Operator Code Replacement”
• “Slope Bias Scaling Code Replacement”
• “Net Slope Scaling Code Replacement”
• “Equal Slope and Zero Net Bias Code Replacement”
• “Data Type Conversions (Casts) and Operator Code Replacement”
• “Shift Left Operations and Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

 Binary-Point-Only Scaling Code Replacement

23-153

External Web Sites
• “Replacing Math Functions and Operators”

23 Code Replacement Customization for MATLAB Code

23-154

Slope Bias Scaling Code Replacement
You can define code replacement for operations on fixed-point data types as matching
a slope bias scaling combination on the operator inputs and output. The slope bias
scaling entries can map the specified slope bias combination to a replacement function for
addition, subtraction, multiplication, or division.

This example creates a code replacement entry for division of fixed-point data types. You
specify arguments using slope bias scaling. The example defines the function mapping
programmatically. Alternatively, you can use the Code Replacement Tool to define the
same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_fixed_s16divslopebias

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the
type of operation as division, the saturation mode as saturate on integer overflow,
rounding modes as round to ceiling, and the name of the replacement function as
s16_div_s16_s16_slopebias.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_DIV', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_CEILING'}, ...

 'ImplementationName', 's16_div_s16_s16_slopebias', ...

 'ImplementationHeaderFile', 's16_div_s16_s16_slopebias.h', ...

 'ImplementationSourceFile', 's16_div_s16_s16_slopebias.c');

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Each argument specifies that the data type is fixed-point, the mode
is slope bias scaling, and its specified slope and bias values must exactly match the
call-site slope and bias values. The output argument and input arguments are 16
bits, signed, each with specific slope bias specifications.

 Slope Bias Scaling Code Replacement

23-155

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: slope and bias scaling', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'Slope', 15, ...

 'Bias', 2);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: slope and bias scaling', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'Slope', 15, ...

 'Bias', 2);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: slope and bias scaling', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'Slope', 13, ...

 'Bias', 5);

6 Create the implementation arguments. There are multiple ways
to set up the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types). In this case, the output and input
arguments are 16 bits and signed (int16).
createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

23 Code Replacement Customization for MATLAB Code

23-156

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

Related Examples
• “Define Code Replacement Mappings”
• “Fixed-Point Operator Code Replacement”
• “Binary-Point-Only Scaling Code Replacement”
• “Net Slope Scaling Code Replacement”
• “Equal Slope and Zero Net Bias Code Replacement”
• “Data Type Conversions (Casts) and Operator Code Replacement”
• “Shift Left Operations and Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

 Slope Bias Scaling Code Replacement

23-157

External Web Sites
• “Replacing Math Functions and Operators”

23 Code Replacement Customization for MATLAB Code

23-158

Net Slope Scaling Code Replacement

In this section...

“Multiplication and Division with Saturation” on page 23-158
“Multiplication and Division with Rounding Mode and Additional Implementation
Arguments” on page 23-161

Multiplication and Division with Saturation

You can define code replacement entries for operations on fixed-point data types as
matching net slope between operator inputs and output. The net slope entries can map a
range of slope and bias values to a replacement function for multiplication or division.

This example creates a code replacement entry for division of fixed-point data types,
using wrap on overflow saturation mode and a net slope. The example defines the
function mapping programmatically. Alternatively, you can use the Code Replacement
Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_fixed_netslopesaturate

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntryGenerator_Netslope function, which provides
access to the fixed-point parameters NetSlopeAdjustmentFactor and
NetFixedExponent.
wv = [16,32];

for iy = 1:2

 for inum = 1:2

 for iden = 1:2

 hTable = getDivOpEntry(hTable, ...

 fixdt(1,wv(iy)),fixdt(1,wv(inum)),fixdt(1,wv(iden)));

 end

 end

end

%---

function hTable = getDivOpEntry(hTable,dty,dtnum,dtden)

%---

% Create an entry for division of fixed-point data types where

 Net Slope Scaling Code Replacement

23-159

% arguments are specified using Slope and Bias scaling

% Saturation on, Rounding unspecified

funcStr = sprintf('user_div_%s_%s_%s',...

 typeStrFunc(dty),...

 typeStrFunc(dtnum),...

 typeStrFunc(dtden));

op_entry = RTW.TflCOperationEntryGenerator_NetSlope;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the
type of operation as division, the saturation mode as wrap on overflow, rounding
modes as unspecified, and the name of the replacement function as user_div_*.
NetSlopeAdjustmentFactor and NetFixedExponent specify the F and E parts of
the net slope F2E.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_DIV', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW',...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'},...

 'NetSlopeAdjustmentFactor', 1.0, ...

 'NetFixedExponent', 0.0, ...

 'ImplementationName', funcStr, ...

 'ImplementationHeaderFile', [funcStr,'.h'], ...

 'ImplementationSourceFile', [funcStr,'.c']);

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with
one function call. Specify each argument as fixed-point and signed. Also, for each
argument, specify that code replacement request processing does not check for an
exact match to the call-site slope and bias values.
createAndAddConceptualArg(op_entry, ...

 'RTW.TflArgNumeric', ...

 'Name', 'y1',...

 'IOType', 'RTW_IO_OUTPUT',...

 'CheckSlope', false,...

 'CheckBias', false,...

 'DataTypeMode', 'Fixed-point: slope and bias scaling',...

 'IsSigned', dty.Signed,...

 'WordLength', dty.WordLength,...

 'Bias', 0);

createAndAddConceptualArg(op_entry, ...

 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT',...

 'CheckSlope', false,...

 'CheckBias', false,...

23 Code Replacement Customization for MATLAB Code

23-160

 'DataTypeMode', 'Fixed-point: slope and bias scaling',...

 'IsSigned', dtnum.Signed,...

 'WordLength', dtnum.WordLength,...

 'Bias', 0);

createAndAddConceptualArg(op_entry, ...

 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT',...

 'CheckSlope', false,...

 'CheckBias', false,...

 'DataTypeMode', 'Fixed-point: slope and bias scaling',...

 'IsSigned', dtden.Signed,...

 'WordLength', dtden.WordLength,...

 'Bias', 0);

6 Create the implementation arguments. There are multiple ways to set up the
implemenation arguments. This example uses calls to the getTflArgFromString
function to create the arguments. Implementation arguments must describe
fundamental numeric data types (not fixed-point data types). The convenience
methods setReturn and addArgument specify whether an argument is a return
value or argument. These methods add the argument to the entry array of
implementation arguments.
arg = getTflArgFromString(hTable, 'y1', typeStrBase(dty));

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'u1', typeStrBase(dtnum));

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2',typeStrBase(dtden));

op_entry.Implementation.addArgument(arg);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

8 Define functions that determine the data type word length.
%---

function str = typeStrFunc(dt)

%---

if dt.Signed

 sstr = 's';

else

 sstr = 'u';

end

str = sprintf('%s%d',sstr,dt.WordLength);

%---

function str = typeStrBase(dt)

%---

 Net Slope Scaling Code Replacement

23-161

if dt.Signed

 sstr = ;

else

 sstr = 'u';

end

str = sprintf('%sint%d',sstr,dt.WordLength);

9 Save the table definition file. Use the name of the table definition function to name
the file.

Multiplication and Division with Rounding Mode and Additional
Implementation Arguments

You can define code replacement entries for multiplication and division operations on
fixed-point data types such that they match the net slope between operator inputs and
output. The net slope entries can map a range of slope and bias values to a replacement
function for multiplication or division.

This example creates a code replacement entry for division of fixed-point data types,
using the ceiling rounding mode and a net slope scaling factor. The example defines the
function mapping programmatically. Alternatively, you can use the Code Replacement
Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_fixed_netsloperound

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntryGenerator_Netslope function, which provides
access to the fixed-point parameters NetSlopeAdjustmentFactor and
NetFixedExponent.

op_entry = RTW.TflCOperationEntryGenerator_NetSlope;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the type
of operation as division, the saturation mode as saturation off, rounding modes as
round to ceiling, and the name of the replacement function as s16_div_s16_s16.
NetSlopeAdjustmentFactor and NetFixedExponent specify the F and E parts of
the relative scaling factor F2E.
setTflCOperationEntryParameters(op_entry, ...

23 Code Replacement Customization for MATLAB Code

23-162

 'Key', 'RTW_OP_DIV', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_CEILING'}, ...

 'NetSlopeAdjustmentFactor', 1.0, ...

 'NetFixedExponent', 0.0, ...

 'ImplementationName', 's16_div_s16_s16', ...

 'ImplementationHeaderFile', 's16_div_s16_s16.h', ...

 'ImplementationSourceFile', 's16_div_s16_s16.c');

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Specify each argument as fixed-point, 16 bits, and signed. Also, for each
argument, specify that code replacement request processing does not check for an
exact match to the call-site slope and bias values.

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'IsSigned', true, ...

 'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'IsSigned', true, ...

 'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'IsSigned', true, ...

 'WordLength', 16);

6 Create the implementation arguments. There are multiple ways
to set up the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types). In this case, the output and input
arguments are 16 bits and signed (int16).

 Net Slope Scaling Code Replacement

23-163

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

Related Examples
• “Define Code Replacement Mappings”
• “Fixed-Point Operator Code Replacement”
• “Binary-Point-Only Scaling Code Replacement”
• “Slope Bias Scaling Code Replacement”
• “Equal Slope and Zero Net Bias Code Replacement”
• “Data Type Conversions (Casts) and Operator Code Replacement”
• “Shift Left Operations and Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”

23 Code Replacement Customization for MATLAB Code

23-164

• “What Is Code Replacement Customization?”
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

 Equal Slope and Zero Net Bias Code Replacement

23-165

Equal Slope and Zero Net Bias Code Replacement

You can define code replacement entries for addition or subtraction of fixed-point data
types such that they match relative slope and bias values (equal slope and zero net bias)
across operator inputs and output. These entries allow you to disregard slope and bias
values. Map relative slope and bias values to a replacement function for addition or
subtraction.

This example creates a code replacement entry for addition of fixed-point data types.
Slopes must be equal and net bias must be zero across the operator inputs and output.
The example defines the function mapping programmatically. Alternatively, you can use
the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_fixed_slopeseq_netbiaszero

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntryGenerator function, which provides access to the fixed-
point parameters SlopesMustBeTheSame and MustHaveZeroNetBias.

op_entry = RTW.TflCOperationEntryGenerator;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify
the type of operation as addition, the saturation mode as saturation
off, rounding modes as unspecified, and the name of the replacement
function as u16_add_SameSlopeZeroBias. SlopesMustBeTheSame and
MustHaveZeroNetBias are set to true, indicating that slopes must be equal and
net bias must be zero across the addition inputs and output.

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

 'SlopesMustBeTheSame', true, ...

 'MustHaveZeroNetBias', true, ...

 'ImplementationName', 'u16_add_SameSlopeZeroBias', ...

 'ImplementationHeaderFile', 'u16_add_SameSlopeZeroBias.h', ...

 'ImplementationSourceFile', 'u16_add_SameSlopeZeroBias.c');

23 Code Replacement Customization for MATLAB Code

23-166

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Each argument is specified as 16 bits and unsigned. Each argument
specifies that code replacement request processing does not check for an exact match
to the call-site slope and bias values.

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'IsSigned', false, ...

 'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'IsSigned', false, ...

 'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'IsSigned', false, ...

 'WordLength', 16);

6 Create the implementation arguments. There are multiple ways
to set up the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types). In this case, the output and input
arguments are 16 bits and unsigned (uint16).

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', false, ...

 'WordLength', 16, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 16, ...

 Equal Slope and Zero Net Bias Code Replacement

23-167

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 16, ...

 'FractionLength', 0);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

Related Examples
• “Define Code Replacement Mappings”
• “Fixed-Point Operator Code Replacement”
• “Binary-Point-Only Scaling Code Replacement”
• “Slope Bias Scaling Code Replacement”
• “Net Slope Scaling Code Replacement”
• “Data Type Conversions (Casts) and Operator Code Replacement”
• “Shift Left Operations and Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

23 Code Replacement Customization for MATLAB Code

23-168

External Web Sites
• “Replacing Math Functions and Operators”

 Data Type Conversions (Casts) and Operator Code Replacement

23-169

Data Type Conversions (Casts) and Operator Code Replacement

You can use code replacement entries to replace code that the code generator produces for
data type conversion (cast) operations.

This example creates a code replacement entry that replaces int32 to int16
data type conversion (cast) operations. The example defines the function mapping
programmatically. Alternatively, you can use the Code Replacement Tool to define the
same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_cast_int32_to_int16

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the type
of operation as cast, the saturation mode as saturate on integer overflow, rounding
modes as toward negative infinity, and the name of the replacement function as
my_sat_cast.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_CAST', ...

 'Priority', 50, ...

 'ImplementationName', 'my_sat_cast', ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_FLOOR'}, ...

 'ImplementationHeaderFile', 'some_hdr.h', ...

 'ImplementationSourceFile', 'some_hdr.c');

5 Create the int16 argument as conceptual argument y1 and the implementation
return value. There are multiple ways to set up the conceptual and implementation
arguments. This example uses calls to the getTflArgFromString and
addConceptualArg functions to create the conceptual argument and add it
to the entry. Convenience method setReturn specifies the argument as the
implementation return value.
arg = getTflArgFromString(hTable, 'y1', 'int16');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

23 Code Replacement Customization for MATLAB Code

23-170

op_entry.Implementation.setReturn(arg);

6 Create the int32 argument as conceptual and implementation argument u1.
This example uses calls to the getTflArgFromString and addConceptualArg
functions to create the conceptual argument and add it to the entry. Convenience
method addArgument specifies the argument as implementation input argument.
arg = getTflArgFromString(hTable, 'u1', 'int32');

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hLib, hEnt);

8 Save the table definition file. Use the name of the table definition function to name
the file.

You can use code replacement entries to replace code that the code generator produces for
data type conversion (cast) operations.

This example creates a code replacement entry to replace data type conversions (casts)
of fixed-point data types by using a net slope. The example defines the function mapping
programmatically. Alternatively, you can use the Code Replacement Tool to define the
same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_cast_fixpt_net_slope

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntryGenerator_Netslope function, which provides
access to the fixed-point parameters NetSlopeAdjustmentFactor and
NetFixedExponent

op_entry = RTW.TflCOperationEntryGenerator_NetSlope;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the type
of operation as cast, the saturation mode as saturate on integer overflow, rounding
modes as toward negative infinity, and the name of the replacement function as
my_fxp_cast. NetSlopeAdjustmentFactor and NetFixedExponent specify the
F and E parts of the net slope F2E.

 Data Type Conversions (Casts) and Operator Code Replacement

23-171

InFL = 2;

InWL = 16;

InSgn = true;

OutFL = 4;

OutWL = 32;

OutSgn = true;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_CAST', ...

 'Priority', 50, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_FLOOR'}, ...

 'NetSlopeAdjustmentFactor', 1.0, ...

 'NetFixedExponent', (OutFL - InFL), ...

 'ImplementationName', 'my_fxp_cast', ...

 'ImplementationHeaderFile', 'some_hdr.h', ...

 'ImplementationSourceFile', 'some_hdr.c');

5 Create conceptual arguments y1 and u1. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Each argument is specified as fixed-point and signed. Each argument
specifies that code replacement request processing does not check for an exact match
to the call-site slope and bias values.

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', OutSgn, ...

 'WordLength', OutWL, ...

 'FractionLength',OutFL);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', InSgn, ...

 'WordLength', InWL, ...

 'FractionLength',InFL);

6 Create the implementation arguments. There are multiple ways
to set up the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types).

23 Code Replacement Customization for MATLAB Code

23-172

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', OutSgn, ...

 'WordLength', OutWL, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', InSgn, ...

 'WordLength', InWL, ...

 'FractionLength', 0);

7 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

Related Examples
• “Define Code Replacement Mappings”
• “Fixed-Point Operator Code Replacement”
• “Binary-Point-Only Scaling Code Replacement”
• “Slope Bias Scaling Code Replacement”
• “Net Slope Scaling Code Replacement”
• “Equal Slope and Zero Net Bias Code Replacement”
• “Shift Left Operations and Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Match and Replacement Process”

 Data Type Conversions (Casts) and Operator Code Replacement

23-173

• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

23 Code Replacement Customization for MATLAB Code

23-174

Shift Left Operations and Code Replacement

You can use code replacement entries to replace code that the code generator produces for
shift (<<) operations.

This example creates a code replacement entry to replace shift left operations for int16
data. The example defines the function mapping programmatically. Alternatively, you
can use the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_shift_left_int16

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the type of
operation as shift left and the name of the replacement function as my_shift_left.

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_SL', ...

 'Priority', 50, ...

 'ImplementationName', 'my_shift_left', ...

 'ImplementationHeaderFile', 'some_hdr.h', ...

 'ImplementationSourceFile', 'some_hdr.c');

5 Create the int16 argument as conceptual argument y1 and the implementation
return value. There are multiple ways to set up the conceptual and implementation
arguments. This example uses calls to the getTflArgFromString and
addConceptualArg functions to create the conceptual argument and add it
to the entry. Convenience method setReturn specifies the argument as the
implementation return value.

arg = getTflArgFromString(hTable, 'y1', 'int16');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

op_entry.Implementation.setReturn(arg);

6 Create the int16 argument as conceptual and implementation argument u1.
This example uses calls to the getTflArgFromString and addConceptualArg

 Shift Left Operations and Code Replacement

23-175

functions to create the conceptual argument and add it to the entry. Convenience
method addArgument specifies the argument as an implementation input argument.

arg = getTflArgFromString(hTable, 'u1', 'int16');

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

7 Create the int8 argument as conceptual and implementation argument u2. This
example uses calls to the getTflArgFromString and addConceptualArg
functions to create the conceptual argument and add it to the entry. This argument
specifies the number of bits to shift the previous input argument. Because the
argument type is not relevant, the example disables type checking by setting the
CheckType property to false. Convenience method addArgument specifies the
argument as implementation input argument.

arg = getTflArgFromString(hTable, 'u2', 'int8');

arg.CheckType = false;

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

• The function getTflArgFromString is called to create an int8 input argument.
This argument is added to the operator entry both as the third conceptual argument
and the second implementation input argument.

• Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

• Save the table definition file. Use the name of the table definition function to name
the file.

You can use code replacement entries to replace code that the code generator produces for
shift (<<) operations.

This example creates a code replacement entry to replace shift left operations
for fixed-point data using a net slope. The example defines the function mapping
programmatically. Alternatively, you can use the Code Replacement Tool to define the
same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_shift_left_fixpt_net_slope

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

23 Code Replacement Customization for MATLAB Code

23-176

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntryGenerator_Netslope function. This function
provides access to the fixed-point parameters NetSlopeAdjustmentFactor and
NetFixedExponent.

op_entry = RTW.TflCOperationEntryGenerator_NetSlope;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the type of
operation as shift left, the saturation mode as saturate on integer overflow, rounding
modes as toward negative infinity, and the name of the replacement function as
my_fxp_shift_left. NetSlopeAdjustmentFactor and NetFixedExponent
specify the F and E parts of the net slope F2E.

InFL = 2;

InWL = 16;

InSgn = true;

OutFL = 4;

OutWL = 32;

OutSgn = true;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_SL', ...

 'Priority', 50, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_FLOOR'}, ...

 'NetSlopeAdjustmentFactor', 1.0, ...

 'NetFixedExponent', (OutFL - InFL),...

 'ImplementationName', 'my_fxp_shift_left', ...

 'ImplementationHeaderFile', 'some_hdr.h', ...

 'ImplementationSourceFile', 'some_hdr.c');

5 Create conceptual arguments y1 and u1. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Each argument is specified as fixed-point and signed. Each argument
specifies that code replacement request processing does not check for an exact match
to the call-site slope and bias values.

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', OutSgn, ...

 'WordLength', OutWL, ...

 'FractionLength',OutFL);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 Shift Left Operations and Code Replacement

23-177

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', InSgn, ...

 'WordLength', InWL, ...

 'FractionLength',InFL);

6 Create the implementation arguments. There are multiple ways
to set up the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types).

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', OutSgn, ...

 'WordLength', OutWL, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', InSgn, ...

 'WordLength', InWL, ...

 'FractionLength', 0);

7 Create the int8 argument as conceptual and implementation argument u2. This
example uses calls to the getTflArgFromString and addConceptualArg
functions to create the conceptual argument and add it to the entry. This argument
specifies the number of bits to shift the previous input argument. Because the
argument type is not relevant, type checking is disabled by setting the CheckType
property to false. Convenience method addArgument specifies the argument as
implementation input argument.

arg = getTflArgFromString(hTable, 'u2', 'uint8');

arg.CheckType = false;

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

8 Add the entry to a code replacement table with a call to the addEntryfunction.

addEntry(hTable, op_entry);

9 Save the table definition file. Use the name of the table definition function to name
the file.

23 Code Replacement Customization for MATLAB Code

23-178

Related Examples
• “Define Code Replacement Mappings”
• “Fixed-Point Operator Code Replacement”
• “Binary-Point-Only Scaling Code Replacement”
• “Slope Bias Scaling Code Replacement”
• “Net Slope Scaling Code Replacement”
• “Equal Slope and Zero Net Bias Code Replacement”
• “Data Type Conversions (Casts) and Operator Code Replacement”
• “Remap Operator Output to Function Input”
• “Customize Matching and Replacement Process for Operators”
• “Develop a Code Replacement Library”
• “Quick Start Library Development”

More About
• “What Is Code Replacement?”
• “What Is Code Replacement Customization?”
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Match and Replacement Process”
• “Code Replacement Libraries”
• “Code Replacement Terminology”

External Web Sites
• “Replacing Math Functions and Operators”

Performance

24

Configuration

• “Configure Code Optimizations” on page 24-2
• “Specify Global Variable Localization” on page 24-5
• “Set Hardware Implementation Parameters” on page 24-6
• “Use External Mode with the ERT Target” on page 24-7

24 Configuration

24-2

Configure Code Optimizations

Several parameters available on the Optimization panes configure your model to
optimize code generation. The following table includes parameters on the Optimization
> General pane:

To... Select or Specify...

Remove initialization code for root-level
inports and outports with a value of zero.

Select Remove root level I/O zero initialization.

Generate additional code to set float and
double storage explicitly to value 0.0.

Select Use memset to initialize floats and doubles
to 0.0 When you set this parameter, the memset
function clears internal storage, regardless of type, to
the integer bit pattern 0 (that is, all bits are off).

If your compiler and target CPU both represent
floating-point zero with the integer bit pattern 0,
consider selecting this parameter to gain execution and
ROM efficiency.

Suppress the generation of code that
initializes internal work structures (for
example, block states and block outputs)
to zero.

Select Remove internal state zero initialization.

Generate run-time initialization code for
a block that has states only if the block is
in a system that can reset its states, such
as an enabled subsystem.

Select Optimize initialization code for model
reference This results in more efficient code.

The following restrictions apply to using the Optimize
initialization code for model reference parameter.
However, these restrictions do not apply to a Model
block that references a function-call model.

• In a subsystem that resets states, do not include a
Model block that references a model that has this
parameter set to on. For example, in an enabled
subsystem with the States when enabling
block parameter set to reset, do not include a
Model block that references a model that has
the Optimize initialization code for model
reference parameter set to on.

 Configure Code Optimizations

24-3

To... Select or Specify...

• If you set the Optimize initialization code for
model reference parameter to off in a model
that includes a Model block that directly references
a referenced model, do not set the Optimize
initialization code for model reference
parameter for the referenced model to on.

Remove wrapping code that handles
out-of-range floating-point to integer
conversion results.

Select Remove code from floating-point to integer
conversions that wraps out-of-range values.
This reduces the size and increases the speed of the
generated code at the cost of potentially producing
results that do not match simulation in the case of out-
of-range values.

Suppress generation of code that guards
against fixed-point division by zero.

Select Remove code that protects against division
arithmetic exceptions. When you select this
parameter, simulation results and results from
generated code may not be in bit-for-bit agreement.

To minimize the amount of memory
allocated for absolute and elapsed time
counters.

Specify an integer value for Application lifespan
(days) For more information on the allocation
and operation of absolute and elapsed timers, see
“Absolute and Elapsed Time Computation”, “ Use
Timers in Asynchronous Tasks”, and “Control Memory
Allocation for Time Counters” in the Simulink Coder
documentation.

The following table includes optimization parameters on the Optimization > Signals
and Parameters pane:

To... Select or Specify...

Control whether parameter data for
reusable subsystems is generated in a
separate header file for each subsystem
or in a single parameter data structure

Select Hierarchical or NonHierarchical for
Parameter structure.

Replace multiply operations in array
indices when accessing arrays in a loop

Select Simplify array indexing.

Store Boolean signals as one-bit bitfields
instead of as a Boolean data type

Select Pack Boolean data into bitfields. Selecting
this parameter enables the Bitfield declarator

24 Configuration

24-4

To... Select or Specify...

type specifier. To optimize your code further,
select uchar_T, however this optimization benefit is
dependent on your choice of target.

Pass each reusable subsystem output
argument as an address of a local
to reduce global memory usage and
eliminate copying local variables back to
global block I/O structures

Select Individual arguments for Pass reusable
subsystem outputs as.

 Specify Global Variable Localization

24-5

Specify Global Variable Localization

When you generate code for a model, the code generator can optimize variable references
by replacing global variables with local variables. Replacing global variables with
local variables improves execution speed and reduces RAM/ROM. Creating more local
variables can increase stack usage.

Some of the global variables that the code generator can localize include:

• Global signals that cross subsystem boundaries.
• Global signals across Simulink and Stateflow domains.
• Unused global state variables.
• Redundant local Data Store Memory block signals.

To enable the global variable localization analysis:

1 In the Configuration Parameters dialog box, on the Code Generation pane, in the
System target file box, specify an ERT target.

2 Verify that the OptimizeBlockIOStorage parameter is set to ‘on’:

>> get_param(gcs,'OptimizeBlockIOStorage')

ans =

 on

3 Verify that AdvancedOptControl is not set to ‘-SLCI’:

>> get_param(gcs,'AdvancedOptControl')

ans =

 ''

4 Set the storage class for signals to Auto.

The code generator does not localize global variables for MATLAB system objects or
AUTOSAR.

24 Configuration

24-6

Set Hardware Implementation Parameters

Specification of target-specific characteristics of generated code (such as word sizes
for char, short, int, and long data types, or desired rounding behaviors in integer
operations) can be critical in embedded systems development. The Hardware
Implementation category of options in a configuration set provides a simple and flexible
way to control such characteristics in both simulation and code generation.

Before generating and deploying code, you should become familiar with the options on
the Hardware Implementation pane of the Configuration Parameters dialog box. See
“Hardware Implementation Pane” in the Simulink documentation and “Platform Options
for Development and Deployment” in the Simulink Coder documentation for full details
on the Hardware Implementation pane.

By configuring the Hardware Implementation properties of your model's active
configuration set to match the behaviors of your compiler and hardware, you can
generate more efficient code. For example, if you specify the Byte ordering property,
you can avoid generation of extra code that tests the byte ordering of the target CPU.

You can use the rtwdemo_targetsettings demo model to determine some implementation-
dependent characteristics of your C or C++ compiler, as well as characteristics of your
target hardware. By using this model in conjunction with your target development
system and debugger, you can observe the behavior of the code as it executes on the
target. You can then use this information to configure the Hardware Implementation
parameters of your model.

To use this model, type the command

rtwdemo_targetsettings

Follow the instructions in the model window.

 Use External Mode with the ERT Target

24-7

Use External Mode with the ERT Target

Selecting the External mode option turns on generation of code to support external
mode communication between host (Simulink) and target systems. The Embedded Coder
software supports Simulink external mode features, as described in the “Host/Target
Communication” section of the Simulink Coder documentation.

This section discusses external mode options that may be of special interest to embedded
systems designers. The next figure shows the Data Exchange subpane of the
Configuration Parameters dialog box, Interface pane, with External mode selected.

Memory Management

Consider the Memory management option Static memory allocation before
generating external mode code for an embedded target. Static memory allocation is
generally desirable, as it reduces overhead and promotes deterministic performance.

When you select the Static memory allocation option, static external mode
communication buffers are allocated in the target application. When Static memory
allocation is deselected, communication buffers are allocated dynamically (with
malloc) at run time.

24 Configuration

24-8

Generation of Pure Integer Code with External Mode

The Embedded Coder software supports generation of pure integer code when external
mode code is generated. To do this, select the External mode option, and deselect the
Support floating-point numbers option in the Software environment section of the
Interface pane.

This enhancement lets you generate external mode code that is free of storage definitions
of double or float data type, and allows your code to run on integer-only processors

If you intend to generate pure integer code with External mode on, note the following
requirements:

• All trigger signals must be of data type int32. Use a Data Type Conversion block if
needed.

• When pure integer code is generated, the simulation stop time specified in the Solver
options is ignored. To specify a stop time, run your target application from the
MATLAB command line and use the -tf option. (See “Run the External Program” in
the Simulink Coder documentation.) If you do not specify this option, the application
executes indefinitely (as if the stop time were inf).

When executing pure integer target applications, the stop time specified by the -tf
command line option is interpreted as the number of base rate ticks to execute, rather
than as an elapsed time in seconds. The number of ticks is computed as

stop time in seconds / base rate step size in seconds

25

Code Execution Profiling

• “Execution Profiling for Generated Code” on page 25-2
• “Code Execution Profiling for SIL and PIL” on page 25-5
• “Configure Code Execution Profiling for SIL and PIL” on page 25-6
• “Execution Profiling for Atomic Subsystems and Model Reference Hierarchies” on

page 25-8
• “View and Compare Code Execution Times” on page 25-10
• “Analyze Code Execution Data” on page 25-16
• “Tips and Limitations” on page 25-18

25 Code Execution Profiling

25-2

Execution Profiling for Generated Code

Use code execution profiling to determine:

• Whether the generated code meets real-time requirements of your target hardware.
• Code sections that require performance improvements.

The following tasks represent a general workflow that uses code execution profiling:

1 With the Simulink model, design and optimize your algorithm.
2 Configure the model for code execution profiling, and generate code.
3 Execute generated code on target.
4 Analyze performance through code execution profiling plots and reports. For

example, check that the algorithm code satisfies real-time requirements:

• If the algorithm code easily meets the requirements, consider enhancing your
algorithm to exploit available processing power.

• If the code cannot be executed in real time, look for ways to reduce execution
time.

Identify the tasks that require the most time. For these tasks, investigate
whether trade-offs between functionality and speed are possible.

If your target is a multicore processor, distribute the execution of algorithm code
across available cores.

5 If required, refine the model and return to step 2.

To find information about code execution profiling with Simulink products, use the
following table.

Target Execution Feature Type of
Profiling

Relevant Products See

Host computer Model configured
for concurrent
execution

Execution
time

Simulink Coder • “Build and Download to a
Multicore Target”

• “Concurrent Execution
Models”

Host computer Software-in-the-
loop (SIL)

Execution
time

Embedded
Coder

• “Code Execution Profiling for
SIL and PIL”

 Execution Profiling for Generated Code

25-3

Target Execution Feature Type of
Profiling

Relevant Products See

• “Configure Code Execution
Profiling for SIL and PIL”

• “Execution Profiling for
Atomic Subsystems and
Model Reference Hierarchies”

• “View and Compare Code
Execution Times”

• “Analyze Code Execution
Data”

Embedded
hardware or
instruction set
simulator

Processor-in-the-
loop (PIL)

Execution
time

Embedded
Coder

• “Code Execution Profiling for
SIL and PIL”

• “Configure Code Execution
Profiling for SIL and PIL”

• “Execution Profiling for
Atomic Subsystems and
Model Reference Hierarchies”

• “View and Compare Code
Execution Times”

• “Analyze Code Execution
Data”

Target support
packages

Standalone
execution, PIL

Execution
time

Embedded
Coder

• “Code Execution Profiling for
IDE and Toolchain Targets”

• “Perform Execution Time
Profiling for IDE and
Toolchain Targets”

Target support
packages

Standalone
execution

Stack Embedded
Coder

• “Code Execution Profiling for
IDE and Toolchain Targets”

• “Perform Stack Profiling with
IDE and Toolchain Targets”

25 Code Execution Profiling

25-4

Target Execution Feature Type of
Profiling

Relevant Products See

Simulink Real-
Time™

Hardware-in-the-
loop (HIL)

Execution
time

Simulink Coder,
Simulink Real-
Time

• “Execution Profiling for Real-
Time Applications”

• “Configure Real-Time
Application for Profiling”

• “Generate Real-Time
Application Execution
Profile”

Simulink Real-
Time

Model configured
for concurrent
execution, HIL

Execution
time

Simulink Coder,
Simulink Real-
Time

• “Execution Profiling for Real-
Time Applications”

• “Concurrent Execution with
Simulink® Real-Time™”

 Code Execution Profiling for SIL and PIL

25-5

Code Execution Profiling for SIL and PIL

During a software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulation, you can
produce a profile of execution times for tasks and functions in your generated code. The
software calculates execution times from data that is obtained through instrumentation
probes added to the SIL or PIL test harness or placed inside generated code.

Use the execution time profile to check whether your code runs in real time on your
target hardware:

• If code execution overruns, look for ways to reduce execution time. For example:

1 Identify tasks that require the most time.
2 In these tasks, investigate whether trade-offs between functionality and speed

are possible.
3 Make the changes that reduce execution time.

• If your code easily meets real-time requirements, consider enhancing functionality to
exploit the unused processing power.

Note: Tasks are main entry points into the generated code. For example, the step
function for a sample rate or the model_initialize function.

The software collects execution time measurements in a variable that you specify. See
“Configure Code Execution Profiling for SIL and PIL” on page 25-6.

At the end of the SIL or PIL simulation, you can:

• View a report of code execution times.
• Use the Simulation Data Inspector to view and compare plots of function execution

times.
• Analyze the measurements within the MATLAB environment.

See “View and Compare Code Execution Times” on page 25-10 and “Analyze Code
Execution Data” on page 25-16.

25 Code Execution Profiling

25-6

Configure Code Execution Profiling for SIL and PIL

To configure code execution profiling for a SIL or PIL simulation:

1 In your top model, open the Configuration Parameters dialog box, and select the
Code Generation > Verification pane.

2 Select the Measure task execution time check box.
3 If you also want function execution times, select the Measure function execution

times check box. For information about how you apply this setting to atomic
subsystems and model reference hierarchies, see “Execution Profiling for Atomic
Subsystems and Model Reference Hierarchies” on page 25-8.

4 In the Workspace variable field, specify a name. When you run the simulation,
the software generates a variable with this name in the MATLAB base workspace.
The variable contains the execution time measurements, and is an object of type
coder.profile.ExecutionTime.

If you select the Data Import/Export > Save simulation output as single object
check box, the software creates the variable in the Simulink.SimulationOutput
object that you specify.

5 From the Save options drop-down list, select one of the following:

• Summary data only — If you want to generate only a report and reduce
memory usage, for example, during a long simulation. See “View and Compare
Code Execution Times” on page 25-10.

• All measurement and analysis data — Allows you to generate a
report and store execution time profiles in the base workspace. After the
simulation, you can use methods from the coder.profile.ExecutionTime and
coder.profile.ExecutionTimeSection classes to retrieve execution time
measurements for every call to each profiled section of code that occurs during the
simulation. See “Analyze Code Execution Data” on page 25-16.

6 Click OK.

For a PIL simulation, you must configure a hardware-specific timer. When you set up the
connectivity configuration for your target, create a timer object. See “Create PIL Target
Connectivity Configuration”. This action is not required for a SIL simulation.

If you select All measurement and analysis data from the Save options drop-
down list, the generated report displays Simulation Data Inspector icons . When you

 Configure Code Execution Profiling for SIL and PIL

25-7

click one of these icons, the software imports simulation results into the Simulation Data
Inspector. You can then plot execution times and manage and compare plots from various
simulations. See “View and Compare Code Execution Times” on page 25-10.

For details about automatically importing simulation data into the Simulation Data
Inspector, see “Validate System Behavior”.

25 Code Execution Profiling

25-8

Execution Profiling for Atomic Subsystems and Model Reference
Hierarchies

To generate execution data for tasks only, on the Code Generation > Verification
pane of the Configuration Parameters dialog box, select the Measure task execution
time check box and clear the Measure function execution times check box.

To generate function execution data for atomic subsystems in the top model, on the Code
Generation > Verification pane, you must select the Measure task execution time
and Measure function execution times check boxes.

The generation of function execution data requires the insertion of measurement
probes into the generated code. The software inserts measurement probes for an atomic
subsystem only if you set the Function packaging field (on the Code Generation
tab of the Function Block Parameters dialog box) to either Nonreusable function or
Reusable function. If the field is set to Auto, then the insertion of probes depends on
the packaging choice that results from the Auto setting. If the field is set to Inline, the
software does not insert probes.

Note: In the generated code, the software wraps each function call with measurement
probes except when:

• The call site cannot be wrapped because of expression folding (see “Minimize
Computations and Storage for Intermediate Results”).

• The call site is located in the shared utility code (see “Sharing Utility Code”).

You might not want to generate profiles for specific subsystems. To disable code
execution profiling for a subsystem in the top model:

1 Right-click the subsystem.
2 From the context menu, select Properties.
3 In the Block Properties dialog box, select the General tab.
4 In the Tag field, enter DoNotProfile.
5 Click OK.

To generate function execution data for model reference hierarchies:

 Execution Profiling for Atomic Subsystems and Model Reference Hierarchies

25-9

1 In the top model, open the Configuration Parameters dialog box, and select the Code
Generation > Verification pane.

2 Select the Measure task execution time check box.
3 For each Model block that you want to profile, select Measure function execution

times only at the reference level for which you require function execution data.

For example, consider a top model that has Model block A, which in turn contains Model
block B.

If you want to generate execution times for functions from model B, select Measure task
execution time for the top model and Measure function execution times for model
B.

Note: By default, the Model block parameter Code interface is set to Model
reference. If this block parameter is set to Top model, the configuration parameter
Measure task execution time for the top model and the referenced model must be the
same. Otherwise, the software produces an error.

If your top model has a PIL block, the execution profiling settings that apply to the PIL
block are the settings from the original model that you used to create the PIL block. See
“Use a SIL or PIL Block”. The execution profiling settings of your top model do not apply
to the PIL block.

25 Code Execution Profiling

25-10

View and Compare Code Execution Times
After a SIL or PIL simulation, you can:

• Use report to open a report of code execution times.
• Use the Simulation Data Inspector to:

• Plot execution times.
• Manage and compare plots from various simulations.

Consider the model rtwdemo_sil_topmodel, which has two subsystems
CounterTypeA and CounterTypeB.

To generate code execution times for the subsystems, on the Configuration
Parameters > Code Generation > Verification pane:

 View and Compare Code Execution Times

25-11

1 Select the following check boxes:

• Measure task execution time
• Measure function execution times

2 Specify a Workspace variable, for example, executionProfile.
3 From the Save options drop-down list, select All measurement and analysis

data.

When you run a SIL simulation, the software generates the variable
executionProfile in the MATLAB base workspace.

Note: If you select the Data Import/Export > Save simulation output as
single object check box, the software creates the variable in your specified
Simulink.SimulationOutput object.

To display a code execution report, in the Command Window, enter:

>> report(executionProfile)

25 Code Execution Profiling

25-12

Part 1 provides a summary. Part 2 contains information about profiled code sections.

You can expand and collapse profiled sections in Part 2 by clicking [+] and [–]
respectively. The following graphic shows fully expanded sections.

The report contains time measurements for:

• The model initialization function rtwdemo_sil_topmodel_initialize.
• A task represented by the step function rtwdemo_sil_topmodel_step [0.1 0].
• Functions generated from the subsystems CounterTypeA and CounterTypeB.

You can go to a profiled code section in the Generated Code view of the Code Generation
Report. In the Code Execution Profiling Report, on a code section row, click the icon .
For example, if you click the icon in the rtwdemo_sil_topmodel_initialize row, you
see the measurement probes around the call site in the SIL test harness.

 View and Compare Code Execution Times

25-13

By default, the report displays time in nanoseconds (10-9 seconds). You can specify the
time unit and numeric display format. For example, to display time in microseconds (10-6

seconds), use the following command:
>>report(executionProfile,'Units', 'Seconds', 'ScaleFactor', '1e-06', 'NumericFormat', '%0.3f')

The report displays time in seconds only if the timer is calibrated, that is, the number
of timer ticks per second is known. On a Windows machine, the software automatically
determines this value for a SIL simulation. On a Linux machine, you must manually
calibrate the timer. For example, if your processor speed is 1 GHz, specify the number of
timer ticks per second:

>>executionProfile.TimerTicksPerSecond = 1e9;

For more information, see “Analyze Code Execution Data” on page 25-16.

To display measured execution times for a task or function, click the Simulation Data
Inspector icon on the corresponding row. You can use the Simulation Data Inspector
to manage and compare plots from various simulations.

25 Code Execution Profiling

25-14

For information, see “Inspect Signal Data with Simulation Data Inspector”.

Note: To observe how code sections are invoked over the execution timeline, use the
timeline function.

The following table describes the information provided in the code section profiles.

Column Description

Model Name of task, top model, subsystem, or Model block. Click the link
to go to the model.

With a task, the sample period and sample offset are listed next
to the task name. For example, rtwdemo_sil_topmodel_step
[0.1 0] indicates that the sample period is 0.1 seconds and the
sample offset is 0.

Maximum
Execution Time

Maximum time between start and end of function execution.
Includes time spent in child functions.

Average Execution
Time

Average time between start and end of execution. Includes time
spent in child functions.

Maximum Self
Time

Longest time spent in function. Excludes time spent in child
functions.

Average Self Time Average time spent in function. Excludes time spent in child
functions.

Calls Number of calls made to task or function.
Icon that you click in the Code Execution Profiling Report to see
the profiled code section in the Generated Code view of the Code
Generation Report. Code section can be a task or function.

The specified workspace variable, for example,
executionProfile, must be present in the base workspace.
Icon that you click to display the profiled code section in the
Command Window. Equivalent to executing the command
executionProfile.Sections(i).

The specified workspace variable, for example,
executionProfile, must be present in the base workspace.

 View and Compare Code Execution Times

25-15

Column Description

Icon that you click to display measured execution times with
Simulation Data Inspector.

The specified workspace variable, for example,
executionProfile, must be present in the base workspace.

25 Code Execution Profiling

25-16

Analyze Code Execution Data

After a SIL or PIL simulation, you can analyze execution time data using methods from
the coder.profile.ExecutionTime and coder.profile.ExecutionTimeSection
classes.

Consider the model rtwdemo_sil_topmodel. Specify the following profiling options,
and then run a SIL simulation.

The software generates the workspace variable myExecutionProfile, an
coder.profile.ExecutionTime object.

To get the total number of code sections that have profiling data, use the Sections
method.
>> no_of_Sections = myExecutionProfile.Sections

no_of_Sections =

 2

>>

To get the coder.profile.ExecutionTimeSection object for a profiled code section,
use the method Sections.
>> FirstSectionProfile = myExecutionProfile.Sections(1)

 coder.profile.ExecutionTimeTaskSection

 Section name = rtwdemo_sil_topmodel_initialize

 Sample period = 0

 Sample offset = 0

>>

>> SecondSectionProfile = myExecutionProfile.Sections(2)

 coder.profile.ExecutionTimeTaskSection

 Section name = rtwdemo_sil_topmodel_step [0.1 0]

 Sample period = 0.1

 Sample offset = 0

 Analyze Code Execution Data

25-17

>>

Use coder.profile.ExecutionTimeSection methods to extract profiling information
for a particular code section. For example, use Name to obtain the name of a profiled task.
>> name_of_section = SecondSectionProfile.Name

name_of_section =

rtwdemo_sil_topmodel_step [0.1 0]

>>

If the timer is uncalibrated and you know the timer rate, for example 2.2 GHz, you can
use the coder.profile.ExecutionTime method TimerTicksPerSecond to calibrate
the timer:
>> myExecutionProfile.TimerTicksPerSecond(2.2e9)

>> SecondSectionProfile = myExecutionProfile.Sections(2);

>>

25 Code Execution Profiling

25-18

Tips and Limitations

Triggered Model Block

Consider the case where a triggered Model block is configured to run in the SIL or PIL
simulation mode. The software generates one execution time measurement each time the
referenced model is triggered to run. If there are multiple triggers in a single time step,
the software generates multiple measurements for the triggered Model block. Conversely,
if there is no trigger in a given time step, the software generates no time measurements.

Outliers in Execution Time Profiles

After the start of a measurement, the operating system might preempt a SIL application,
making the code execution profiling result for the time step unreliable. As a consequence
of preemption, you might see outliers in your execution time profiles, with execution
times that are longer than expected.

For execution time measurements greater than 232 ticks, the counter wraps. (If you
are profiling a real-time, multi-core application, the software reduces the effective
measurement range of the timer to accommodate synchronization discrepancies in the
recording of timer values for different cores.) Counter wrapping occurs when the actual
execution time is very long. Counter wrapping results in a measured execution time that
is shorter than expected.

Hardware-Specific Timer

If your target configuration does not already specify a timer, you must specify one. To
specify a timer, you must create a timer object that provides details of the hardware-
specific timer and associated source files:

• For SIL simulation, the timer word length is determined by your MEX compiler. The
word length is 64 bits, unless your selected MEX compiler is Lcc. In this case, the
word length is 32 bits.

• For PIL simulation, you can specify an 8-, 16-, 32-, or 64-bit timer.

Task Context Switching Due to Preemption

Profiling instrumentation is intrusive and affects the quantity that it is meant to
measure. Therefore, the design goal is to maximize code understanding with a minimum

 Tips and Limitations

25-19

of instrumentation. For example, with a real-time system, there can be task context
switches due to preemption. These context switches are not explicitly instrumented.
To record the start and end of each task, the software must infer context switches from
instrumentation. As a result, the software reports behavior that is an estimate. The
estimate is subject to error because of incomplete instrumentation within the kernel.

In some cases, when the software cannot accurately determine behavior, the software
generates a warning:

Warning: Analysis unsuccessful for one or more profiling data points. ...

For example, the software might generate this warning when not all mutex take system
calls (associated with rate transitions) are instrumented. In the case of Simulink Real-
Time, this situation might arise if you generate code for a model reference hierarchy
without enabling function profiling for all referenced models (set_param(model,
'CodeProfilingInstrumentation', 'on')). If a mutex take system call is not
instrumented, a task context switch might occur that is not visible to the execution
profiling analysis.

In other cases, although the software cannot accurately determine behavior, the software
does not generate a warning.

Data Type Replacement Support

Data type replacement does not support the measurement of function execution times.
For your model, clear one of the following check boxes:

• Configuration Parameters > Code Generation > Verification > Measure
function execution times

• Configuration Parameters > Code Generation > Data Type Replacement >
Replace data type names in the generated code

26

Code Execution Profiling for MATLAB
Coder

• “Execution Time Profiling for SIL and PIL” on page 26-2
• “Generate Execution Time Profile” on page 26-3
• “View Execution Time Profile” on page 26-4
• “Analyze Execution Time Data” on page 26-7

26 Code Execution Profiling for MATLAB Coder

26-2

Execution Time Profiling for SIL and PIL

During a software-in-the-loop (SIL) or processor-in-the-loop (PIL) execution, you can
produce a profile of execution times for code generated from entry-point functions. The
software calculates execution times from data that is obtained through instrumentation
probes added to the SIL or PIL test harness.

Use the execution time profile to check whether your code runs within the required time
on your target hardware:

• If code execution overruns, look for ways to reduce execution time.
• If your code easily meets time requirements, consider enhancing functionality to

exploit the unused processing power.

At the end of the SIL or PIL execution, you can:

• View a report of code execution times.
• Use the Simulation Data Inspector to view and compare plots of function execution

times.
• Access and analyze execution time profiling data.

Note: SIL and PIL execution supports multiple entry-point functions. An entry-point
function can call another entry-point function as a subfunction. However, the software
generates execution time profiles only for functions that are called at the entry-point
level. The software does not generate execution time profiles for entry-point functions
that are called as subfunctions by other entry-point functions.

For more information, see:

• “Generate Execution Time Profile” on page 26-3
• “View Execution Time Profile” on page 26-4
• “Analyze Execution Time Data” on page 26-7

 Generate Execution Time Profile

26-3

Generate Execution Time Profile

Before running a software-in-the-loop (SIL) or processor-in-the-loop (PIL) execution,
enable execution time profiling:

1 To open the MATLAB Coder app, on the MATLAB Toolstrip Apps tab, under Code
Generation, click the app icon.

2
To open your project, click and then click Open existing project. Select the
project.

3 On the Generate Code page, click the Generate arrow .
4 Click More Settings:

a Select the Debugging > Enable entry point execution profiling for SIL/
PIL check box.

b Click Close.
5 Click Generate.

Or, from the Command Window, specify the CodeExecutionProfiling property of
your coder.EmbeddedCodeConfig object. For example:

config.CodeExecutionProfiling = true;

Related Examples
• “Software-in-the-Loop Execution Using the MATLAB Coder App”
• “Processor-in-the-Loop Execution Using the MATLAB Coder App”
• “View Execution Time Profile” on page 26-4
• “Analyze Execution Time Data” on page 26-7

26 Code Execution Profiling for MATLAB Coder

26-4

View Execution Time Profile

If you enable SIL or PIL execution time profiling, at the end of the execution, the
software generates a link in the Test Output tab. For example:

Current plot held

Starting SIL execution for 'kalman01'

 To terminate execution: clear kalman01_sil

 Execution profiling report available after termination.

Current plot released

Click the clear kalman01_sil link. The software terminates the execution process
and displays a new link.

Stopping SIL execution for 'kalman01'

 Execution profiling report: report(getCoderExecutionProfile('kalman01'))

Click the report link. The software opens the Code Execution Profiling Report.

The first section provides a summary. The second section contains information about
profiled code sections.

The report contains time measurements for:

• The entry_point_fn_initialize function, for example, kalman01_initialize.
• The entry-point function, for example, kalman01.

 View Execution Time Profile

26-5

• The entry_point_fn_terminate function, for example, kalman01_terminate.

By default, the report displays time in nanoseconds (10-9 seconds). You can specify the
time unit and numeric display format. For example, to display time in microseconds (10-6

seconds), use the report command:

executionProfile=getCoderExecutionProfile('kalman01'); % Create workspace var

report(executionProfile, ...

 'Units', 'Seconds', ...

 'ScaleFactor', '1e-06', ...

 'NumericFormat', '%0.3f')

The report displays time in seconds only if the timer is calibrated, that is, the number of
timer ticks per second is established. On a Windows machine, the software determines
this value for a SIL simulation. On a Linux machine, you must manually calibrate the
timer. For example, if your processor speed is 1 GHz, specify the number of timer ticks
per second:

executionProfile.TimerTicksPerSecond = 1e9;

To display measured execution times for a function, click the Simulation Data Inspector
icon on the corresponding row. You can use the Simulation Data Inspector to manage
and compare plots from various executions. For information, see “Inspect Signal Data
with Simulation Data Inspector”.

The following table lists the information provided in the code section profiles.

Column Description

Section Name of function from which code is generated.
Maximum
Execution Time

Maximum time between start and end of function execution.
Includes time spent in child functions.

Average Execution
Time

Average time between start and end of execution. Includes time
spent in child functions.

Maximum Self
Time

Longest time spent in function. Excludes time spent in child
functions.

Average Self Time Average time spent in function. Excludes time spent in child
functions.

Calls Number of calls made to function.

26 Code Execution Profiling for MATLAB Coder

26-6

Column Description

Icon that you click to display the profiled code section.

Icon that you click to display measured execution times with
Simulation Data Inspector.

Related Examples
• “Generate Execution Time Profile” on page 26-3
• “Analyze Execution Time Data” on page 26-7

 Analyze Execution Time Data

26-7

Analyze Execution Time Data

After a software-in-the-loop (SIL) or processor-in-the-loop (PIL) execution, you can
analyze execution time data using methods from the coder.profile.ExecutionTime
and coder.profile.ExecutionTimeSection classes.

In the following example, you run a SIL execution and apply supplied methods to
execution time data.

Extract Execution Time Data for Kalman Estimator Code

1 Run SIL execution to generate execution time data

Copy MATLAB code to your working folder.

src_dir = ...

 fullfile(docroot,'toolbox','coder','examples','kalman');

copyfile(fullfile(src_dir,'kalman01.m'), '.')

copyfile(fullfile(src_dir,'test01_ui.m'), '.')

copyfile(fullfile(src_dir,'plot_trajectory.m'), '.')

copyfile(fullfile(src_dir,'position.mat'), '.')

For a description of the Kalman estimator, see “C Code Generation at the Command
Line”.

Create a coder.EmbeddedCodeConfig object.

config = coder.config('lib');

config.GenerateReport = true; % HTML report

Configure the object for SIL and enable execution time profiling.

config.VerificationMode = 'SIL';

config.CodeExecutionProfiling = true;

Generate library code for the kalman01 MATLAB function and the SIL interface.

codegen('-config', config, '-args', {zeros(2,1)}, 'kalman01');

Run the MATLAB test file test01_ui with kalman01_sil. kalman01_sil is the
SIL interface for kalman01.

coder.runTest('test01_ui', ['kalman01_sil.' mexext]);

26 Code Execution Profiling for MATLAB Coder

26-8

At end of the execution, you see the following message.

 To terminate execution: clear kalman01_sil

 Execution profiling report available after termination.

Current plot released

Terminate the SIL execution process. Click the link clear kalman01_sil.

 ### Stopping SIL execution for 'kalman01'

 Execution profiling report: report(getCoderExecutionProfile('kalman01'))

2 Create workspace variable that holds execution time data

Use the getCoderExecutionProfile function to create a workspace variable that
holds execution time profiling data.

executionProfile=getCoderExecutionProfile('kalman01');

3 Extract code sections

Use the Sections method.

allSections = executionProfile.Sections

The software displays the number of code sections and a list of properties.

allSections =

 1x3 ExecutionTimeTaskSection array with properties:

 Name

 Number

 ExecutionTimeInTicks

 SelfTimeInTicks

 TurnaroundTimeInTicks

 TotalExecutionTimeInTicks

 TotalSelfTimeInTicks

 TotalTurnaroundTimeInTicks

 MaximumExecutionTimeInTicks

 MaximumExecutionTimeCallNum

 MaximumSelfTimeInTicks

 MaximumSelfTimeCallNum

 MaximumTurnaroundTimeInTicks

 MaximumTurnaroundTimeCallNum

 NumCalls

 ExecutionTimeInSeconds

 Analyze Execution Time Data

26-9

 Time

4 Extract execution time data from specific code section

Specify the code section that you want to examine.

secondSectionProfile = executionProfile.Sections(2)

The software displays profile data for the code section.

secondSectionProfile =

 ExecutionTimeTaskSection with properties:

 Name: 'kalman01'

 Number: 2

 ExecutionTimeInTicks: [1x300 uint64]

 SelfTimeInTicks: [1x300 uint64]

 TurnaroundTimeInTicks: [1x300 uint64]

 TotalExecutionTimeInTicks: 6641016

 TotalSelfTimeInTicks: 6641016

 TotalTurnaroundTimeInTicks: 6641016

 MaximumExecutionTimeInTicks: 48864

 MaximumExecutionTimeCallNum: 158

 MaximumSelfTimeInTicks: 48864

 MaximumSelfTimeCallNum: 158

 MaximumTurnaroundTimeInTicks: 48864

 MaximumTurnaroundTimeCallNum: 158

 NumCalls: 300

 ExecutionTimeInSeconds: [1x300 double]

 Time: [300x1 double]

You can extract specific properties, for example, the name of a profiled function.

nameOfSection = secondSectionProfile.Name

The software displays the name.

nameOfSection =

kalman01

The following table lists the information that you can extract from each code section.

Property Description

Name Name of entry-point function

26 Code Execution Profiling for MATLAB Coder

26-10

Property Description

Number Code section number
ExecutionTimeInTicks Vector of execution times, measured in timer ticks. Each

element contains the difference between the timer reading at
the start and at the end of the code section. The data type is
the same data type as the data type of the timer used on the
target, which allows you to infer the maximum range of the
timer measurements.

SelfTimeInTicks Vector of timer tick numbers. Each element contains the
number of ticks recorded for the code section, excluding the
time spent in calls to child functions.

TurnaroundTimeInTicks Vector of timer tick numbers. Each element contains the
number of ticks recorded between the start and the finish of
the code section. Unless the code is preempted, this number is
the same number as the execution time.

TotalExecutionTimeInTicks Total number of timer ticks recorded for the code section over
the entire execution.

TotalSelfTimeInTicks Total number of timer ticks recorded for the profiled code
section over the entire execution. However, this number
excludes the time spent in calls to child functions.

TotalTurnaroundTimeInTicks Total number of timer ticks recorded between the start
and the finish of the profiled code section over the entire
execution. Unless the code is preempted, this number is the
same as the total execution time.

MaximumExecutionTimeInTicks Maximum number of timer ticks recorded for a single
invocation of the code section over the execution.

MaximumExecutionTimeCallNum Number of call in which MaximumExecutionTimeInTicks
occurs.

MaximumSelfTimeInTicks Maximum number of timer ticks recorded for a single code
section invocation, but excluding the time spent in calls to
child functions.

MaximumSelfTimeCallNum Number of call in which MaximumSelfTimeInTicks occurs.

 Analyze Execution Time Data

26-11

Property Description

MaximumTurnaroundTimeInTicks Maximum number of timer ticks recorded between the start
and the finish of a single invocation of the profiled code
section over the execution. Unless the code is preempted, this
time is the same as the maximum execution time.

MaximumTurnaroundTimeCallNum Number of call in which MaximumTurnaroundTimeInTicks
occurs.

NumCalls Total number of calls to the code section over the entire
execution.

ExecutionTimeInSeconds Vector of execution times, measured in seconds. Each element
contains the difference between the timer reading at the
start and at the end of the code section. Produced only if
TimerTicksPerSecond is set.

Time Vector of execution time measurements for the code section.

27

Data Copy Reduction

• “Optimize Global Variable Usage” on page 27-2
• “Reuse Block Outputs in the Generated Code” on page 27-12
• “Virtualized Output Ports Optimization” on page 27-16
• “Control Signal Storage” on page 27-18
• “Signal Reuse for Root-Level Model Inputs and Outputs” on page 27-19
• “Buffer Reuse for Model Block Boundary and Unit Delay” on page 27-24

27 Data Copy Reduction

27-2

Optimize Global Variable Usage

In this section...

“Minimize Global Data Access” on page 27-3
“Use Global to Hold Temporary Results” on page 27-8

To tune your application and choose tradeoffs for execution speed and memory usage, you
can choose a global variable reference optimization for the generated code.

In the Configuration Parameters dialog box, select Optimization > Signals and
Parameters. In the Optimize global data access drop-down list, three parameter
options control global variable usage optimizations.

• None. Use default optimizations. This choice works well for most models. The code
generator balances the use of local and global variables. It generates code which
balances RAM and ROM consumption and execution speed.

• Use global to hold temporary results. Reusing global variables improves
code efficiency and readability. This optimization reuses global variables, which
results in fewer variables defined by the code generator. It reduces RAM and ROM
consumption and data copies.

• Minimize global data access. Using local variables to cache global data reduces
ROM consumption by reducing code size in certain cases, such as when the global
variables are scalars. This optimization improves execution speed because the
code uses fewer instructions for local variable references than for global variable
references.

 Optimize Global Variable Usage

27-3

Minimize Global Data Access

This example shows how the code generator uses global and local variables when you
select None versus when you select Minimize global data access.

• None

Use default optimizations. This choice works well for most models. The code generator
balances the use of local and global variables. It produces balanced optimizations of
RAM and ROM consumption and execution speed.

• Minimize global data access

Minimize the use of global variables by using local variables to hold intermediate
values. This optimization reduces ROM and RAM consumption by reducing code size
in certain cases, such as when the global variables are scalars.

Minimizing the use of global variables by using local variables interacts with stack
usage control. For example, stack size can determine the number of local and global
variables that the code generator can allocate in the generated code. For more
information, see “Customize Stack Space Allocation” and “Control Signal Storage” on
page 27-18.

Example Model

In the Command Window, type rtwdemo_optimize_global.

Save the model to a local folder.

27 Data Copy Reduction

27-4

Set up the configuration for the model.

In the Configuration Parameters dialog box, on the Optimization > Signals and
Parameters pane, verify that the Signal Storage Reuse check box is selected. From
the Optimize global data access list, select None.

Generate Code

To generate the code, on the Code Generation pane:

1 Select Generate code only.
2 Click Apply.
3 Click Generate Code.

The code generator places the generated code in the
rtwdemo_optimize_global_ert_rtw folder. For this example, the file
rtwdemo_optimize_global.c contains the relevant code.

The code assigns values to the global vector rtY.Out1 in each case statement without
using a local variable. This assignment improves ROM and RAM consumption and

 Optimize Global Variable Usage

27-5

reduces data copies. The code places the value in the destination variable for each
assignment instead of copying the value at the end.

 switch ((int32_T)rtU.In1) {

 case 1:

 /* Outport: '<Root>/Out1' incorporates:

 * Constant: '<Root>/Constant'

 */

 rtY.Out1 = 1.0;

 break;

 case 2:

 /* Outport: '<Root>/Out1' incorporates:

 * Constant: '<Root>/Constant1'

 */

 rtY.Out1 = 2.0;

 break;

 case 3:

 /* Outport: '<Root>/Out1' incorporates:

 * Constant: '<Root>/Constant2'

 */

 rtY.Out1 = 3.0;

 break;

 default:

 /* Outport: '<Root>/Out1' incorporates:

 * Constant: '<Root>/Constant3'

 */

 rtY.Out1 = 4.0;

 break;

 }

 /* End of MultiPortSwitch: '<Root>/Multiport Switch' */

}

In the Static Code Metrics Report, examine the Global Variables section.

1 In the Code Generation report window, click Static Code Metrics Report.
2 Scroll down to the Global Variables section.
3 Click [+] before each variable to expand it.

27 Data Copy Reduction

27-6

The total number of reads and writes for global variables is 5.

Enable Optimization

On the Optimization > Signals and Parameters pane, from the Optimize global
data access list, select Minimize global data access. Click Apply.

Generate Code with Optimization

On the Code Generation pane, click Generate Code.

In the rtwdemo_optimize_global.c listing, the code assigns the constant value to the
local variable tmp_Out1 in each case statement. The last statement in the code listing
copies the value of tmp_Out1 to the global variable rtY.Out1. Fewer global variable
references result in fewer instructions and improved execution speed.

 switch ((int32_T)rtU.In1) {

 case 1:

 /* Outport: '<Root>/Out1' incorporates:

 * Constant: '<Root>/Constant'

 */

 tmp_Out1 = 1.0;

 break;

 Optimize Global Variable Usage

27-7

 case 2:

 /* Outport: '<Root>/Out1' incorporates:

 * Constant: '<Root>/Constant1'

 */

 tmp_Out1 = 2.0;

 break;

 case 3:

 /* Outport: '<Root>/Out1' incorporates:

 * Constant: '<Root>/Constant2'

 */

 tmp_Out1 = 3.0;

 break;

 default:

 /* Outport: '<Root>/Out1' incorporates:

 * Constant: '<Root>/Constant3'

 */

 tmp_Out1 = 4.0;

 break;

 }

 /* End of MultiPortSwitch: '<Root>/Multiport Switch' */

 /* Outport: '<Root>/Out1' */

 rtY.Out1 = tmp_Out1;

}

In the Static Code Metrics Report, examine the Global Variables section.

27 Data Copy Reduction

27-8

As a result of minimizing global data accesses, the total number of reads and writes for
global variables has decreased from 5 to 2.

Use Global to Hold Temporary Results

This example shows how the code generator uses global and local variables when you
select None versus when you select Use global to hold temporary results.

• None

Use default optimizations. This choice works well for most models. The code generator
balances the use of local and global variables. It generates code which balances RAM
and ROM consumption and execution speed.

• Use global to hold temporary results

Maximize use of global variables. Reusing global variables improves code efficiency
and readability. This optimization reuses global variables, which results in fewer
variables defined by the code generator, reducing RAM and ROM consumption and
data copies.

Example Model

In the Command Window, type rtwdemo_optimize_global_ebf.

Save the model to a local folder.

Set up the configuration for the model. In the Configuration Parameters dialog box, on
the Optimization > Signals and Parameters pane, verify that the Signal Storage
Reuse check box is selected. From the Optimize global data access list, select None.

Generate Code

To generate the code, on the Code Generation pane:

1 Select Generate code only.

 Optimize Global Variable Usage

27-9

2 Click Apply.
3 Click Generate Code.

The code generator places the generated code in the
rtwdemo_reuse_global_ebf_ert_rtw folder. The file
rtwdemo_optimize_global_ebf.c contains the relevant code.

The code assigns values to the local vector rtb_Assignment. The last statement copies
the values in the local vector rtb_Assignment to the global vector rtY.Out1. Fewer
global variable references result in improved execution speed. The code uses more
instructions for global variable references than for local variable references.

/* Model step function */

void rtwdemo_optimize_global_ebf_step(void)

{

 real_T rtb_Assignment[5];

 int32_T i;

 /* Assignment: '<Root>/Assignment' incorporates:

 * Constant: '<Root>/Constant'

 * Inport: '<Root>/In1'

 */

 for (i = 0; i < 5; i++) {

 rtb_Assignment[i] = rtCP_Constant_Value[i];

 }

 rtb_Assignment[1] = rtU.In1;

 /* End of Assignment: '<Root/Assignment' */

 /* Outport: '<Root>/Out1' incorporates:

 * Gain: '<Root>/Gain'

 */

 for (i = 0; i < 5; i++) {

 rtY.Out1[i] = 2.0 * rtb_Assignment[i];

 }

 /* End of Outport: '<Root>/Out1' */

}

In the Static Code Metrics Report, examine the Global Variables section.

1 In the Code Generation report window, click Static Code Metrics Report.

27 Data Copy Reduction

27-10

2 Scroll down to the Global Variables section.
3 Click [+] before each variable to expand it.

The total number of reads and writes for global variables is 2.

Enable Optimization

On the Optimization > Signals and Parameters pane, from the Optimize global
data access list, select Use global to hold temporary results. Click Apply.

Generate Code with Optimization

On the Code Generation pane, click Generate Code.

rtwdemo_optimize_global_ebf.c contains the following code.

The code assigns values to the global vector rtY.Out1 without using a local variable.
This assignment improves ROM and RAM consumption and reduces data copies. The
code places the value in the destination variable for each assignment instead of copying
the value at the end.

 for (i = 0; i < 5; i++) {

 rtY.Out1[i] = rtCP_Constant_Value[i];

 }

 rtY.Out1[1] = rtU.In1;

 Optimize Global Variable Usage

27-11

 /* End of Assignment: '<Root>/Assignment' */

 /* Outport: '<Root>/Out1' incorporates:

 * Gain: '<Root>/Gain'

 */

 for (i = 0; i < 5; i++) {

 rtY.Out1[i] *= 2.0;

 }

In the Static Code Metrics Report, examine the Global Variables section.

As a result of using global variables to hold local results, the total number of reads and
writes for global variables has increased from 2 to 5. This optimization reduces data
copies by reusing global variables.

27 Data Copy Reduction

27-12

Reuse Block Outputs in the Generated Code

In the Configuration Parameters dialog box, on the Optimization > Signals and
Parameters pane, the Reuse global block outputs parameter controls the reuse of
global block outputs in the generated code.

Reuse Global Block Outputs

This example shows the results of enabling the Reuse global block outputs
parameter.

Example Model

In the Command Window, type rtwdemo_reuse_global.

Save the model to a local folder.

 Reuse Block Outputs in the Generated Code

27-13

1 In the Configuration Parameters dialog box, on the Optimization > Signals and
Parameters pane, verify that Signal Storage Reuse is selected.

2 Clear Reuse global block outputs.
3 On the Code Generation > Report pane select Static code metrics.

Generate Code

To generate the code, on the Code Generation pane:

• Select Generate code only.
• Click Apply.
• Click Generate Code.

The code generator places the generated code in the rtwdemo_reuse_global_ert_rtw
folder. The file rtwdemo_reuse_global.c contains the relevant code listed. The code
assigns the value of:

• The calculation to the global variable rtY.Out1.
• The global variable rtY.Out1 to the global variable rtDW.Delay_DSTATE.

 rtY.Out1 = rtU.In1 + rtDW.Delay_DSTATE;

27 Data Copy Reduction

27-14

 /* Update for Delay: '<Root>/Delay' */

 rtDW.Delay_DSTATE = rtY.Out1;

The total number of reads and writes for global variables is 8. The total size in bytes is
28.

Enable Optimization

On the Optimization > Signals and Parameters pane, select Reuse global block
outputs. Click Apply.

Generate Code with Optimization

On the Code Generation pane, click Generate Code.

The code generator reduces two statements to one statement and three global variables
to two global variables. This optimization reduces ROM and RAM consumption and
improves execution speed.

 rtY.Out1 += rtU.In1;

 Reuse Block Outputs in the Generated Code

27-15

The optimization reduces the total number of reads and writes for global variables from 8
to 5 and the total size in bytes from 28 to 20.

For more information, see “Optimize Global Variable Usage” on page 27-2.

27 Data Copy Reduction

27-16

Virtualized Output Ports Optimization

The virtualized output ports optimization lets you store the signal entering the root
output port as a global variable. Clearing the MAT-file logging option and setting
the TLC variable FullRootOutputVector to 0, both defaults for Embedded Coder,
eliminate code and data storage associated with root output ports.

Consider the model in the following block diagram. The signal exportedSig has
exportedGlobal storage class.

In the default case, the output of the Gain block is written to the signal storage location,
exportedSig. The code generator does not generate code or data for the Out1 block,
which has become a virtual block.

/* Gain Block: <Root>/Gain */

 exportedSig = rtb_PulseGen * VirtOutPortLogOFF_P.Gain_Gain;

In cases where you enable MAT-file logging or set FullRootOutputVector = 1, the
generated code represents root output ports as members of an external outputs vector.

The following code fragment was generated with MAT-file logging enabled. The output
port is represented as a member of the external outputs vector VirtOutPortLogON_Y.
The Gain block output value is copied to exportedSig and to the external outputs
vector.

/* Gain Block: <Root>/Gain */

 exportedSig = rtb_PulseGen * VirtOutPortLogON_P.Gain_Gain;

/* Outport Block: <Root>/Out1 */

 VirtOutPortLogON_Y.Out1 = exportedSig;

Data maintenance in the external outputs vector can be significant for smaller models
that perform benchmarks.

You can force root output ports to be stored in the external outputs vector (regardless of
the setting of MAT-file logging) by setting the TLC variable FullRootOutputVector
to 1. Add the statement

 Virtualized Output Ports Optimization

27-17

%assign FullRootOutputVector = 1

to the Embedded Coder system target file. Alternatively, you can enter the assignment
from the MATLAB command line using the set_param command, the model parameter
TLCOptions, and the TLC option -a. For more information, see “Specify TLC Options”
and “Configure TLC”.

For more information on how to control signal storage in generated code, see “Signal
Representation in Generated Code”.

27 Data Copy Reduction

27-18

Control Signal Storage

You can control how signals in your model are stored and represented in the generated
code with a number of options. You can also control where signal storage is declared.

You can choose to store signals in global memory space or locally in functions, in stack
variables. For more information, see “Signal Representation in Generated Code”.

If you want to store signals in stack space, you must enable the Enable local block
outputs option.

1 In the Configuration Parameters dialog box, select Optimization > Signals and
Parameters. Select Signal storage reuse.

2 Select the Enable local block outputs option. Click Apply.

 Signal Reuse for Root-Level Model Inputs and Outputs

27-19

Signal Reuse for Root-Level Model Inputs and Outputs

Signal reuse allows for further optimizations that can reduce data copies, global
variables, and ROM/RAM consumption. The code generator can reuse the root input and
output signals for a model in the generated code. When you prepare to generate code
for a model, you can specify that pairs of root-level model input and output signals are
available to be reused. Use the Reusable custom storage class.

1 Choose one root-level input signal and one root-level output signal. Assign them the
same name. The name is used for the reused variable name in the generated code.
Specify that the signal name must resolve to a Simulink.Signal object.

2 Create a Simulink.Signal object and specify the same name as you chose for the
signals in the previous step. Set the storage class to Custom. Set the custom storage
class to Reusable or to a custom storage class that you derived from Reusable.
Verify that Is Reusable is set to Yes.

In some cases, code generation creates an extra buffer to satisfy requested buffer use for
the specified signal.

When you run an executable produced by code generation, and you reuse a root I/O pair,
it is important that when the root input value is zero that the root output value is also
zero. If the output value is nonzero and you reuse the signals, then the results from the
simulation can differ from the results produced by the executable.

Reuse Root-Level I/O Signals

This example shows how the code generator can reuse root-level input and output
signals. Reuse reduces ROM and RAM consumption, data copies, and global variables.

In the Command Window, open rtwdemo_merge.

Save the model to a local folder.

27 Data Copy Reduction

27-20

Generate Code Without Optimization

1 In the Configuration Parameters dialog box, on the Code Generation pane, set
System target file to ert.tlc.

2 Select Generate code only.
3 Click Apply.
4 Click Generate Code.

In the rtwdemo_merge.h header file the code generator declares these variables: In1,
In2, In3, and Out1, for a total of four variables.

/* External inputs (root inport signals with auto storage) */

typedef struct {

 real32_T In1; /* '<Root>/In1' */

 real32_T In2; /* '<Root>/In2' */

 real32_T In3; /* '<Root>/In3' */

} ExtU_rtwdemo_merge_T;

/* External outputs (root outports fed by signals with auto storage) */

typedef struct {

 real32_T Out1; /* '<Root>/Out1' */

} ExtY_rtwdemo_merge_T;

In rtwdemo_merge.c, in the rtwdemo_merge_U structure, the code generator uses
In1, In2, and In3 for the input values. In the rtwdemo_merge_Y structure, it uses Out1
for the output value.

 if (5.0F * rtwdemo_merge_U.In1 > 0.0F) {

 /* Outputs for IfAction SubSystem: '<Root>/IfBody' incorporates:

 * ActionPort: '<S2>/IfAction'

 */

 Signal Reuse for Root-Level Model Inputs and Outputs

27-21

 /* Outport: '<Root>/Out1' incorporates:

 * Gain: '<S2>/ifgain'

 * Inport: '<Root>/In2'

 */

 rtwdemo_merge_Y.Out1 = 5.0F * rtwdemo_merge_U.In2;

 /* End of Outputs for SubSystem: '<Root>/IfBody' */

 } else {

 /* Outputs for IfAction SubSystem: '<Root>/ElseBody' incorporates:

 * ActionPort: '<S1>/IfAction'

 */

 /* Outport: '<Root>/Out1' incorporates:

 * Gain: '<S1>/elsegain'

 * Inport: '<Root>/In3'

 */

 rtwdemo_merge_Y.Out1 = 10.0F * rtwdemo_merge_U.In3;

Enable Optimization

1 Choose a pair of root-level input and outputs. For this example, choose In1 for the
root-level input and Out1 for the root-level output.

2 For the input signal:

a Right-click the signal line. From the context menu, choose Properties.
b Set Signal name to mysig. Press Tab.
c Select Signal name must resolve to Simulink signal object.
d Click OK.

3 Repeat step 2 for the corresponding output signal.

The model, after being configured, with the root I/O signals labelled with Reuse,
looks like this:

27 Data Copy Reduction

27-22

4 Create a reusable signal object. Call it mysig, to match the name of the input and
output signals. In the Command Window, enter:

mysig=Simulink.Signal;

mysig.CoderInfo.StorageClass = 'Custom';

mysig.CoderInfo.CustomStorageClass = 'Reusable';

Generate Code With Optimization

On the Code Generation pane, click Generate Code.

In the rtwdemo_merge.h header file, the code generator declares In2, In3, and
mysig, resulting in three variables.

/* External inputs (root inport signals with auto storage) */

typedef struct {

 real32_T In2; /* '<Root>/In2' */

 real32_T In3; /* '<Root>/In3' */

} ExtU_rtwdemo_merge_T;

...

/* Declaration for custom storage class: Reusable */

extern real32_T mysig;

The code in rtwdemo_merge.c, in the structure rtwdemo_merge_U, uses the variables
In2 and In3 for input values. The code reuses the variable mysig for input and output,
instead of usingIn1 and Out1.

 if (5.0F * mysig > 0.0F) {

 /* Outputs for IfAction SubSystem: '<Root>/IfBody' incorporates:

 * ActionPort: '<S2>/IfAction'

 */

 mysig = 5.0F * rtwdemo_merge_U.In2;

 /* End of Outputs for SubSystem: '<Root>/IfBody' */

 } else {

 /* Outputs for IfAction SubSystem: '<Root>/ElseBody' incorporates:

 * ActionPort: '<S1>/IfAction'

 */

 mysig = 10.0F * rtwdemo_merge_U.In3;

With reuse, the number of variables created and referenced is reduced by half. Each
input/output signal pair results in one variable rather than two.

 Signal Reuse for Root-Level Model Inputs and Outputs

27-23

More About
• “Introduction to Custom Storage Classes”
• “Simulink Package Custom Storage Classes”
• “Signal Objects for Code Generation”

27 Data Copy Reduction

27-24

Buffer Reuse for Model Block Boundary and Unit Delay

In this section...

“Signal Reuse for Model Block Boundary” on page 27-24
“Buffer Reuse for Unit Delay Block” on page 27-25

The code generator can optimize code by trying to reuse buffers in the generated code.
The following examples show how to configure your model to take advantage of these
optimizations. For these examples, the following Reusable custom storage classes are
defined in the workspace:

Y = Simulink.Signal;

Y.CoderInfo.Storageclass = 'Custom';

Y.CoderInfo.CustomStorageClass = 'Reusable';

Z = Simulink.Signal;

Z.CoderInfo.Storageclass = 'Custom';

Z.CoderInfo.CustomStorageClass = 'Reusable';

Signal Reuse for Model Block Boundary

The code generator tries to eliminate buffers in the generated code by reusing buffers for
a pair of Model Block I/O signals with the same Reusable storage class specification.

Consider the following model block and submodel.

To reuse the buffers inside this model block:

1 Choose In1 and Out1 as the pair of input/output ports in the submodel.

 Buffer Reuse for Model Block Boundary and Unit Delay

27-25

2 For the input signal:

a Right-click the signal line. From the context menu, choose Properties.
b Set Signal name to a defined custom storage class. In this example, use your

defined CSC Z.
c Select Signal name must resolve to Simulink signal object.
d Click OK.

3 Repeat step 2 for the corresponding output signal.

The resulting generated code for sub_with_csc_at_rootio.c reuses variable Z for the
input and output.

void sub_with_csc_at_rootio_step(void)

{

Z = sub_with_csc_at_rootio_P.Gain_Gain * Z +...

sub_with_csc_at_rootio_P.Constant_Value;

}

This optimization has these constraints:

• The input and output signals must have the same data types and sampling rates.
• The output ports cannot be conditional.

Buffer Reuse for Unit Delay Block

Reusing the signals of a Unit Delay block can reduce the number of global variables. The
code generator tries to reuse the input, output, and state of a Unit Delay block, if any of
the following conditions exist:

• In the Configuration Parameters dialog box, on the Optimizations > Signals and
Parameters pane, select Use global to hold temporary results from the
Optimize global data access list.

• Use the same Reusable custom storage class specification for a pair of input and
state arguments or a pair of output and state arguments of a Unit Delay block.

• Use a Reusable custom storage class specification for a state argument of a Unit
Delay block.

For an example of reusing a pair of input and state arguments of a Unit Delay block,
consider the following model.

27 Data Copy Reduction

27-26

To reuse the input and state buffers of Unit Delay 1:

1 Right-click Unit Delay 1. From the context menu, choose Block Parameters.
2 In the State Attributes tab, set State name to the custom storage class Y.
3 Select State name must resolve to Simulink signal object.
4 For the Unit Delay block input signal:

a Right-click the signal line. From the context menu, choose Properties.
b Set Signal name to the custom storage class Y.
c Select Signal name must resolve to Simulink signal object.
d Click OK.

The resulting generated code reuses variable Y for the input signal and state.

demo_Y.Out1 = demo_P.Gain4_Gain *Y;

...

Y = demo_P.Gain3_Gain*demo_U.In1;

This optimization has these constraints:

• The input and output signals must have the same data types and sampling rates.
• Optimization works only for Unit Delay blocks.

28

Execution Speed

• “Remove Initialization Code” on page 28-2
• “Eliminate Zero Initialization Code for Internal Data” on page 28-3
• “Generate Pure Integer Code If Possible” on page 28-6
• “Disable MAT-File Logging” on page 28-7
• “Simplify Multiply Operations In Array Indexing” on page 28-8
• “Replace boolean with Specific Integer Data Type” on page 28-12

28 Execution Speed

28-2

Remove Initialization Code

Consider selecting the Remove internal state zero initialization and Remove root
level I/O zero initialization options on the Optimization > General pane.

These options (both off by default) control whether internal data (block states and block
outputs) and external data (root inports and outports whose value is zero) are initialized.
Initializing the internal and external data whose value is zero is a precaution and your
application might not require it. Many embedded application environments initialize
RAM to zero at startup, making generation of initialization code redundant.

However, be aware that if you select Remove internal state zero initialization,
memory might not be in a known state each time the generated code begins execution. If
you turn the option on, running a model (or a generated S-function) multiple times can
result in different answers for each run.

This behavior is sometimes desirable. For example, you can turn on Remove internal
state zero initialization if you want to test the behavior of your design during a warm
boot (that is, a restart without full system reinitialization).

In cases where you have turned on Remove internal state zero initialization but still
want to get the same answer on every run from a S-function generated by the Embedded
Coder software, you can use either of the following MATLAB commands before each run:

clear SFcnName

where SFcnName is the name of the S-function, or

clear mex

A related option, Use memset to initialize floats and doubles, lets you control the
representation of zero used during initialization. See “Use memset to initialize floats and
doubles to 0.0” in the Simulink reference documentation.

Note that the code still initializes data structures whose value is not zero when Remove
internal state zero initialization and Remove root level I/O zero initialization
are selected.

Note also that data of ImportedExtern or ImportedExternPointer storage classes
are not initialized, regardless of the settings of these options.

 Eliminate Zero Initialization Code for Internal Data

28-3

Eliminate Zero Initialization Code for Internal Data

This example shows how to eliminate generated code that initializes internal data with
zeroes, for example global DWork vectors, to reduce the size of the code and to accelerate
model initialization.

Overview

During model initialization, generated code can initialize internal data by using
assignments to zero. DWork vectors are an example of internal data.

If the data are global variables in the generated code, and if the target environment
already initializes global variables with zeroes, you can remove the corresponding lines of
model initialization code.

This optimization removes unnecessary zero initialization code, providing these benefits:

• Reduction in size of generated code
• Increased execution speed of generated code

Open Model

Open the model rtwdemo_internal_init. The model contains an enabled subsystem whose
initial output is zero. The subsystem contains a Unit Delay block whose initial condition
is 0.

model = 'rtwdemo_internal_init';

open_system(model);

28 Execution Speed

28-4

Generate Code Without Optimization

Create a temporary folder to contain the generated files and folders.

currentDir = pwd;

[~,cgDir] = rtwdemodir();

Build the model using Embedded Coder.

rtwbuild(model)

Starting build procedure for model: rtwdemo_internal_init

Successful completion of build procedure for model: rtwdemo_internal_init

View the following code from the generated file rtwdemo_internal_init.c.

cfile = fullfile(cgDir,'rtwdemo_internal_init_ert_rtw','rtwdemo_internal_init.c');

rtwdemodbtype(cfile,'/* Model initialize', '* File trailer', 1, 0);

/* Model initialize function */

void rtwdemo_internal_init_initialize(void)

{

 /* Registration code */

 /* initialize error status */

 rtmSetErrorStatus(rtM, (NULL));

 /* states (dwork) */

 (void) memset((void *)&rtDWork, 0,

 sizeof(D_Work));

 /* InitializeConditions for Enabled SubSystem: '<Root>/Enabled Subsystem' */

 /* InitializeConditions for UnitDelay: '<S1>/Unit Delay' */

 rtDWork.UnitDelay_DSTATE = 0.0;

 /* End of InitializeConditions for SubSystem: '<Root>/Enabled Subsystem' */

}

/*

Enable Optimization

Open the Configuration Parameters dialog box. On the Optimization pane, select
Remove internal data zero initialization.

 Eliminate Zero Initialization Code for Internal Data

28-5

Alternatively, you can use the command prompt to enable the optimization. To enable the
optimization, set the parameter ZeroInternalMemoryAtStartup to 'off'.

set_param(model, 'ZeroInternalMemoryAtStartup', 'off');

Generate Code with Optimization

Build the model using Embedded Coder.

rtwbuild(model)

Starting build procedure for model: rtwdemo_internal_init

Successful completion of build procedure for model: rtwdemo_internal_init

View the following code from the file rtwdemo_internal_init.c. Generated code does
not initialize internal data by assignment to zero.

rtwdemodbtype(cfile,'/* Model initialize', '* File trailer', 1, 0);

/* Model initialize function */

void rtwdemo_internal_init_initialize(void)

{

 /* (no initialization code required) */

}

/*

Close the model and clear the build files.

bdclose(model)

rtwdemoclean;

cd(currentDir)

28 Execution Speed

28-6

Generate Pure Integer Code If Possible

If your application uses only integer arithmetic, clear the Support floating-point
numbers option in the Software environment section of the Interface pane so that
the generated code contains no floating-point data or operations. When this option is
cleared, an error is raised if noninteger data or expressions are encountered during code
generation. The error message reports the offending blocks and parameters.

 Disable MAT-File Logging

28-7

Disable MAT-File Logging

Clear the MAT-file logging option in the Verification section of the Interface pane.
This setting is the default, and is recommended for embedded applications because it
eliminates the extra code and memory usage required to initialize, update, and clean up
logging variables. In addition to these efficiencies, clearing the MAT-file logging option
lets you exploit further efficiencies under certain conditions. See “Virtualized Output
Ports Optimization” on page 27-16 for information.

Note also that code generated to support MAT-file logging invokes malloc, which may be
undesirable for your application.

28 Execution Speed

28-8

Simplify Multiply Operations In Array Indexing

The generated code might have multiply operations when indexing an element of an
array. You can select the optimization parameter “Simplify array indexing” to replace
multiply operations in the array index with a temporary variable. To modify this
parameter open the Configuration Parameters dialog box and select the Optimization
> Signals and Parameters pane. This optimization can improve execution speed by
reducing the number of times the multiply operation is executed.

If you have the following model:

The Constant blocks have the following Constant value:

• Const1: reshape(1:30,[1 5 3 2])
• Const2: reshape(1:20,[1 5 2 2])
• Const3: reshape(1:90,[1 5 9 2])

The Concatenate block parameter Mode is set to Multidimensional array.

Generated Code Results

Building the model with the Simplify array indexing parameter turned off generates
the following code:

int32_T i;

int32_T i_0;

int32_T i_1;

 Simplify Multiply Operations In Array Indexing

28-9

for (i = 0; i < 2; i++) {

 for (i_1 = 0; i_1 < 3; i_1++) {

 for (i_0 = 0; i_0 < 5; i_0++) {

 ex_arrayindex_Y.Out[(i_0 + 5 * i_1) + 70 * i] =

 ex_arrayindex_P.Constant1_Value[(5 * i_1 + i_0) + 15 * i];

 }

 }

}

for (i = 0; i < 2; i++) {

 for (i_1 = 0; i_1 < 2; i_1++) {

 for (i_0 = 0; i_0 < 5; i_0++) {

 ex_arrayindex_Y.Out[(i_0 + 5 * (i_1 + 3)) + 70 * i] =

 ex_arrayindex_P.Constant2_Value[(5 * i_1 + i_0) + 10 * i];

 }

 }

}

for (i = 0; i < 2; i++) {

 for (i_1 = 0; i_1 < 9; i_1++) {

 for (i_0 = 0; i_0 < 5; i_0++) {

 ex_arrayindex_Y.Out[(i_0 + 5 * (i_1 + 5)) + 70 * i] =

 ex_arrayindex_P.Constant3_Value[(5 * i_1 + i_0) + 45 * i];

 }

 }

}

After selecting the Simplify array indexing parameter and building the model again, a
multiply operation in the array index, [(i_0 + 5 * i_1) + 70 * i], is replaced with
[(i_0 + tmp_1) + tmp]. The generated code is now:

int32_T i;

int32_T i_0;

int32_T i_1;

int32_T tmp;

int32_T tmp_0;

int32_T tmp_1;

tmp = 0;

tmp_0 = 0;

for (i = 0; i < 2; i++) {

 tmp_1 = 0;

 for (i_1 = 0; i_1 < 3; i_1++) {

28 Execution Speed

28-10

 for (i_0 = 0; i_0 < 5; i_0++) {

 ex_arrayindex_Y.Out[(i_0 + tmp_1) + tmp] =

 ex_arrayindex_P.Constant1_Value[(i_0 + tmp_1) + tmp_0];

 }

 tmp_1 += 5;

 }

 tmp += 70;

 tmp_0 += 15;

}

tmp = 0;

tmp_0 = 0;

for (i = 0; i < 2; i++) {

 tmp_1 = 0;

 for (i_1 = 0; i_1 < 2; i_1++) {

 for (i_0 = 0; i_0 < 5; i_0++) {

 ex_arrayindex_Y.Out[((i_0 + tmp_1) + tmp) + 15] =

 ex_arrayindex_P.Constant2_Value[(i_0 + tmp_1) + tmp_0];

 }

 tmp_1 += 5;

 }

 tmp += 70;

 tmp_0 += 10;

}

tmp = 0;

tmp_0 = 0;

for (i = 0; i < 2; i++) {

 tmp_1 = 0;

 for (i_1 = 0; i_1 < 9; i_1++) {

 for (i_0 = 0; i_0 < 5; i_0++) {

 ex_arrayindex_Y.Out[((i_0 + tmp_1) + tmp) + 25] =

 ex_arrayindex_P.Constant3_Value[(i_0 + tmp_1) + tmp_0];

 }

 tmp_1 += 5;

 }

 tmp += 70;

 tmp_0 += 45;

 Simplify Multiply Operations In Array Indexing

28-11

}

28 Execution Speed

28-12

Replace boolean with Specific Integer Data Type

Depending on the architecture of the processor that your production hardware uses, you
can improve the execution speed of generated code. Select a specific integer data type to
use for the built-in type boolean. Using data type replacement, in the generated code
you can replace the boolean built-in data type with one of these integer types:

• int8

• uint8

• intn

Replace n with 8, 16, or 32 to match the integer word size for the production hardware.

This example shows how to replace the data type boolean with the integer data type
int32 in the code generated for a 32-bit hardware target.

1 Define a Simulink.AliasType object with a base type of int32. Name the object
using the replacement name that you want to appear in the generated code.

mybool = Simulink.AliasType;

mybool.BaseType = 'int32';

2 Open an ERT-based model. In the Configuration Parameters dialog box Data
Type Replacement pane, specify the Replacement Name field for the data type
boolean as mybool.

 Replace boolean with Specific Integer Data Type

28-13

View the generated file rtwtypes.h. The code maps the identifier mybool to the native
integer type of the target hardware by creating typedef statements.

/* Generic type definitions ... */

...

typedef int boolean_T;

 ...

/* Define Simulink Coder replacement data types. */

typedef boolean_T mybool; /* User defined replacement datatype for boolean_T */

View the generated file model.c. The code declares Boolean variables using the type
mybool. For example, if the model has a Boolean output Out1, the generated code
declares the corresponding variable using mybool.

 mybool Out1; /* '<Root>/Out1' */

See Also
Simulink.AliasType

Related Examples
• “Data Type Replacement”

28 Execution Speed

28-14

More About
• “What Are User-Defined Data Types?”

29

Memory Usage

• “Optimize Generated Code Using Minimum and Maximum Values” on page 29-2
• “Flat Structures for Reusable Subsystem Parameters” on page 29-9
• “Reduce Global Variables in Nonreusable Subsystem Functions” on page 29-13
• “Optimize Generated Code By Packing Boolean Data Into Bitfields” on page 29-16
• “Optimize Generated Code By Passing Reusable Subsystem Outputs as Individual

Arguments” on page 29-19

29 Memory Usage

29-2

Optimize Generated Code Using Minimum and Maximum Values

To optimize the generated code for your model, you can choose an option to use input
range information, also known as design minimum and maximum, that you specify
on signals and parameters. These minimum and maximum values usually represent
environmental limits, such as temperature, or mechanical and electrical limits, such as
output ranges of sensors.

In the Configuration Parameters dialog box, on the Optimization pane, when you
select the Optimize using specified minimum and maximum values check box,
the software uses the minimum and maximum values to derive range information
for downstream signals in the model. It then uses this derived range information to
determine if it is possible to streamline the generated code by:

• Reducing expressions to constants
• Removing dead branches of conditional statements
• Eliminating unnecessary mathematical operations

This optimization results in:

• Reduced ROM and RAM consumption
• Improved execution speed

Configure Your Model

To make optimization more likely:

• Provide as much design minimum and maximum information as possible. Specify
minimum and maximum values for signals and parameters in the model for:

• Inport and Outport blocks
• Block outputs
• Block inputs, for example, for the MATLAB Function and Stateflow Chart blocks
• Simulink.Signal objects

• Before generating code, test the minimum and maximum values for signals and
parameters. Otherwise, optimization might result in numerical mismatch with
simulation. You can simulate your model with simulation range checking enabled. If
errors or warnings occur, fix these issues before generating code.

 Optimize Generated Code Using Minimum and Maximum Values

29-3

Enable Simulation Range Checking

1 In your model, select Simulation > Model Configuration Parameters to open
the Configuration Parameters dialog box.

2 In the Configuration Parameters dialog box, select Diagnostics > Data
Validity.

3 On the Data Validity pane, under Signals, set Simulation range checking to
warning or error.

• Provide design minimum and maximum information upstream of blocks as close to
the inputs of the blocks as possible. If you specify minimum and maximum values
for a block output, these values are most likely to affect the outputs of the blocks
immediately downstream.

Optimize Generated Code Using Specified Minimum and Maximum
Values

This example shows how the minimum and maximum values specified on signals and
parameters in a model are used to optimize the generated code.

Overview

The specified minimum and maximum values usually represent environmental limits,
such as temperature, or mechanical and electrical limits, such as output ranges of
sensors.

This optimization uses these values to streamline the generated code. For example, it
reduces expressions to constants or removes dead branches of conditional statements.

NOTE: Make sure the minimum and maximum values that you specify are valid limits.
Otherwise, this optimization might result in numerical mismatch with simulation.

The benefits of optimizing the generated code are:

• Reducing the ROM and RAM consumption.
• Improving the execution speed.

Review Minimum and Maximum Information

Consider the model rtwdemo_minmax. In this model, there are minimum and maximum
values specified on Inports and on the gain parameter of the Gain block.

29 Memory Usage

29-4

model = 'rtwdemo_minmax';

open_system(model);

Generate Code Without This Optimization

First, generate code for this model without considering the min and max values.

currentDir = pwd;

[~,cgDir] = rtwdemodir();

rtwconfiguredemo(model,'ERT')

rtwbuild(model)

 Optimize Generated Code Using Minimum and Maximum Values

29-5

Starting build procedure for model: rtwdemo_minmax

Successful completion of build procedure for model: rtwdemo_minmax

A portion of rtwdemo_minmax.c is listed below.

cfile = fullfile(cgDir,'rtwdemo_minmax_ert_rtw','rtwdemo_minmax.c');

rtwdemodbtype(cfile,'/* Model step', '/* Model initialize', 1, 0);

/* Model step function */

void rtwdemo_minmax_step(void)

{

 /* Switch: '<Root>/Switch' incorporates:

 * Gain: '<Root>/Gain'

 * Inport: '<Root>/U1'

 * Inport: '<Root>/U2'

 * Inport: '<Root>/U3'

 * RelationalOperator: '<Root>/Relational Operator'

 * Sum: '<Root>/Sum'

 */

 if (U1 + U2 <= k * U3) {

 /* Outport: '<Root>/Out1' incorporates:

 * Sum: '<Root>/Sum2'

 */

 rtY.Out1 = (U1 + U2) + U3;

 } else {

 /* Outport: '<Root>/Out1' incorporates:

 * Product: '<Root>/Product'

 */

 rtY.Out1 = U1 * U2 * U3;

 }

 /* End of Switch: '<Root>/Switch' */

}

Enable This Optimization

1 Open the Configuration Parameters dialog box.
2 In the dialog, under Code generation, select Optimize using the specified

minimum and maximum values.

Alternatively, you can enable this optimization by setting the command-line parameter.

set_param(model, 'UseSpecifiedMinMax', 'on');

29 Memory Usage

29-6

Generate Code With This Optimization

In the model, with the specified minimum and maximum values for U1 and U2, the sum
of U1 and U2 has a minimum value of 50. Considering the range of U3 and the specified
minimum and maximum values for the Gain block parameter, the maximum value of the
Gain block's output is 40.

The output of the Relational Operator block remains false, and the output of the Switch
block remains the product of the three inputs.

Configure and build the model using Embedded Coder.

rtwconfiguredemo(model,'ERT')

rtwbuild(model)

Starting build procedure for model: rtwdemo_minmax

Successful completion of build procedure for model: rtwdemo_minmax

View the optimized code from rtwdemo_minmax.c.

cfile = fullfile(cgDir,'rtwdemo_minmax_ert_rtw','rtwdemo_minmax.c');

rtwdemodbtype(cfile,'/* Model step', '/* Model initialize', 1, 0);

/* Model step function */

void rtwdemo_minmax_step(void)

{

 /* Outport: '<Root>/Out1' incorporates:

 * Inport: '<Root>/U1'

 * Inport: '<Root>/U2'

 * Inport: '<Root>/U3'

 * Product: '<Root>/Product'

 * Switch: '<Root>/Switch'

 */

 rtY.Out1 = U1 * U2 * U3;

}

Close the model and cleanup.

bdclose(model)

rtwdemoclean;

 Optimize Generated Code Using Minimum and Maximum Values

29-7

cd(currentDir)

Limitations

• This optimization does not take into account minimum and maximum values for:

• Merge block inputs. To work around this issue, use a Simulink.Signal object on
the Merge block output and specify the range on this object.

• Bus elements.
• Conditionally-executed subsystem (such as a triggered subsystem) block outputs

that are directly connected to an Outport block.

Outport blocks in conditionally-executed subsystems can have an initial
value specified for use only when the system is not triggered. In this case, the
optimization cannot use the range of the block output because the range might not
cover the initial value of the block.

• If you use Polyspace software to verify code generated using this optimization, it
might mark code that was previously green as orange. For example, if your model
contains a division where the range of the denominator does not include zero, the
generated code does not include protection against division by zero. Polyspace might
mark this code orange because it does not have information about the minimum and
maximum values for the inputs to the division.

Polyspace Code Prover automatically captures some minimum and maximum values
specified in the MATLAB workspace, for example, for Simulink.Signal and
Simulink.Parameter objects. In this example, to provide range information to the
Polyspace software, use a Simulink.Signal object on the input of the division and
specify a range that does not include zero.

Polyspace Code Prover stores these values in a Data Range Specification (DRS) file.
However, they do not capture all minimum and maximum values in your Simulink
model. To provide additional minimum and maximum information to Polyspace, you
can manually define a DRS file.

• If you are using double-precision data types and the Code Generation > Interface
> Support non-finite numbers configuration parameter is selected, this
optimization does not occur.

• If your model contains multiple instances of a reusable subsystem and each instance
uses input signals with different minimum and maximum values, this optimization
might result in different generated code for each subsystem so code reuse does not

29 Memory Usage

29-8

occur. Without this optimization, code is generated once for the subsystem and shares
this code among the multiple instances of the subsystem.

• The Model Advisor DO-178C/DO-331 check Check safety-related optimization
settings generates a warning if this option is selected. For many safety-critical
applications, removing dead code automatically is unacceptable because doing so
might make code untraceable. For more information about using the check to comply
with DO-178C/DO-331, see Check safety-related optimization settings.

 Flat Structures for Reusable Subsystem Parameters

29-9

Flat Structures for Reusable Subsystem Parameters

This example shows how to increase the efficiency of code generated for reusable
subsystems by generating a single flat parameter structure instead of a hierarchy of
nested parameter structures.

By default, code generated for reusable subsystems contains separate structures to
define the parameters that each subsystem uses. If you use nested reusable subsystems,
the generated code creates a hierarchy of nested parameter structures. Hierarchies of
structures can reduce code efficiency due to compiler padding between word boundaries
in memory.

This optimization is for only ERT-based targets. You must enable the model
configuration parameter Inline Parameters.

Explore Example Model

Open the example model rtwdemo_paramstruct.

model = 'rtwdemo_paramstruct';

open_system(model);

The model contains two nested reusable subsystems. Each subsystem uses two of the
parameters A, B, C, and D that are defined in the base workspace.

29 Memory Usage

29-10

Generate Code with Hierarchical Parameter Structures

Create a temporary folder to contain the model build files. Generate code for the model
using the default hierarchical data structure for reusable subsystems.

currentDir = pwd;

[~,cgDir] = rtwdemodir();

rtwbuild(model)

Starting build procedure for model: rtwdemo_paramstruct

Successful completion of build procedure for model: rtwdemo_paramstruct

In the code generation report, view the parameter structure definitions in the file
rtwdemo_paramstruct.h.

cfile = fullfile(cgDir,'rtwdemo_paramstruct_ert_rtw','rtwdemo_paramstruct.h');

rtwdemodbtype(cfile,'/* Parameters for system: ''<S1>/SubsysZ''',...

 '/* Parameters (auto storage)', 1, 0);

/* Parameters for system: '<S1>/SubsysZ' */

struct P_SubsysZ_ {

 uint16_T C; /* Variable: C

 * Referenced by: '<S2>/Gain3'

 */

 uint16_T D; /* Variable: D

 * Referenced by: '<S2>/Gain4'

 */

};

/* Parameters for system: '<S1>/SubsysZ' */

typedef struct P_SubsysZ_ P_SubsysZ;

/* Parameters for system: '<Root>/SubsysY' */

struct P_SubsysY_ {

 uint16_T A; /* Variable: A

 * Referenced by: '<S1>/Gain1'

 */

 uint16_T B; /* Variable: B

 * Referenced by: '<S1>/Gain2'

 */

 P_SubsysZ SubsysZ_m; /* '<S1>/SubsysZ'

 */

};

 Flat Structures for Reusable Subsystem Parameters

29-11

/* Parameters for system: '<Root>/SubsysY' */

typedef struct P_SubsysY_ P_SubsysY;

The code defines a parameter structure for each reusable subsystem and nests the
structures.

Enable Optimization

Open the Configuration Parameters dialog box. On the Optimization > Signals and
Parameters pane, select Nonhierarchical in the Parameter structure drop-down
list.

Alternatively, enable the optimization at the command prompt.

set_param(model, 'InlinedParameterPlacement', 'NonHierarchical');

Generate Code with Flat Parameter Structure

Generate code for the model using a flat parameter structure for reusable subsystems.

rtwbuild(model)

Starting build procedure for model: rtwdemo_paramstruct

Successful completion of build procedure for model: rtwdemo_paramstruct

In the code generation report, view the parameter structure definition in the file
rtwdemo_paramstruct.h.

rtwdemodbtype(cfile,'/* Parameters (auto storage) */',...

 '/* Real-time Model Data Structure */', 1, 0);

/* Parameters (auto storage) */

struct P_ {

 uint16_T A; /* Variable: A

 * Referenced by: '<S1>/Gain1'

 */

 uint16_T B; /* Variable: B

 * Referenced by: '<S1>/Gain2'

 */

 uint16_T C; /* Variable: C

 * Referenced by: '<S2>/Gain3'

 */

 uint16_T D; /* Variable: D

 * Referenced by: '<S2>/Gain4'

29 Memory Usage

29-12

 */

};

/* Parameters (auto storage) */

typedef struct P_ P;

The code stores all of the parameters for the reusable subsystems in a single flat
structure.

Close the model and delete build files.

bdclose(model)

rtwdemoclean;

cd(currentDir)

 Reduce Global Variables in Nonreusable Subsystem Functions

29-13

Reduce Global Variables in Nonreusable Subsystem Functions

In this section...

“Generate void-void Function” on page 29-13
“Generate Function with Arguments” on page 29-14

Global variables can increase memory requirements and reduce execution speed. To
reduce global RAM for a nonreusable subsystem, you can generate a function interface
that passes data through arguments instead of global variables. The Subsystem block
parameter “Function interface” provides this option. To compare the outputs for the
Function interface options, first generate a function for a subsystem with a void-
void interface, and then generate a function with arguments.

Generate void-void Function

By default, when you configure a Subsystem block as a nonreusable function, it generates
a void-void interface.

1 Open the example model rtwdemo_roll.
2 Right-click the subsystem RollAngleReference. From the list select Block

Parameter (Subsystem).
3 In the Block Parameter dialog box, confirm that the Treat as atomic unit check

box is selected.
4 Click the Code Generation tab and set the Function packaging parameter to

Nonreusable function.
5 The Function interface parameter is already set to void-void.
6 Click Apply and OK.
7 Repeat steps 2–6, for the other subsystems HeadingMode and BasicRollMode.
8 Generate code and the static code metrics report for rtwdemo_roll. This model is

configured to generate a code generation report and to open the report automatically.
For more information, see “Generate Static Code Metrics Report for Simulink
Model”.

In the code generation report, in rtwdemo_roll.c, the generated code for subsystem
RollAngleReference contains a void-void function definition:

 void rtwdemo_roll_RollAngleReference(void)

29 Memory Usage

29-14

 {

 ...

 }

In the static code metrics report, navigate to Global Variables. With the void-void
option, the number of bytes for global variables is 59.

Next, generate the same function with the Allow arguments option to compare the
results.

Generate Function with Arguments

To reduce global RAM, improve ROM usage and execution speed, generate a function
that allows arguments:

1 Open the Subsystem Block Parameter dialog box for RollAngleReference.
2 Click the Code Generation tab. Set the Function interface parameter to Allow

arguments.
3 Click Apply and OK.
4 Repeat steps 2 and 3, for the other subsystems HeadingMode and BasicRollMode.
5 Generate code and the static code metrics report for rtwdemo_roll.

In the code generation report, in rtwdemo_roll.c, the generated code for subsystem
RollAngleReference now has arguments:

 Reduce Global Variables in Nonreusable Subsystem Functions

29-15

real32_T rtwdemo_roll_RollAngleReference(real32_T rtu_Turn_Knob,...

 boolean_T rtu_AP_Eng,...

 real32_T rtu_Phi)

 {

 ...

 }

In the static code metrics report, navigate to Global Variables. With the Allow
arguments option set, the total number of bytes for global variables is now 47 bytes.

29 Memory Usage

29-16

Optimize Generated Code By Packing Boolean Data Into Bitfields

This example shows how to optimize the generated code by packing Boolean data into
bitfields. When you select the model configuration parameter Pack Boolean data into
bitfields, Embedded Coder® packs the Boolean signals into 1-bit bitfields, reducing
RAM consumption. By default, the optimization is enabled. This optimization reduces
the RAM consumption. Be aware that this optimization can potentially increase code size
and execution speed.

Example Model

Consider the model rtwdemo_pack_boolean.

model = 'rtwdemo_pack_boolean';

open_system(model);

Disable Optimization

1 Open the Configuration Parameters dialog box.
2 On the Optimization > Signals and Parameters pane, clear Pack Boolean data

into bitfields.

 Optimize Generated Code By Packing Boolean Data Into Bitfields

29-17

Alternatively, you can use the command-line API to disable the optimization:

set_param(model,'BooleansAsBitfields','off');

Create a temporary folder (in your system temporary folder) for the build and inspection
process.

currentDir = pwd;

[~,cgDir] = rtwdemodir();

Generate Code Without Optimization

Build the model using Embedded Coder®.

rtwbuild(model)

Starting build procedure for model: rtwdemo_pack_boolean

Successful completion of build procedure for model: rtwdemo_pack_boolean

View the generated code without the optimization. These lines of code are in
rtwdemo_pack_boolean.h.

hfile = fullfile(cgDir,'rtwdemo_pack_boolean_ert_rtw','rtwdemo_pack_boolean.h');

rtwdemodbtype(hfile,'/* Block signals and states','/* External inputs',1,0);

/* Block signals and states (auto storage) for system '<Root>' */

typedef struct {

 boolean_T LogicalOp1; /* '<Root>/Logical Op1' */

 boolean_T LogicalOp2; /* '<Root>/Logical Op2' */

 boolean_T LogicalOp5; /* '<Root>/Logical Op5' */

 boolean_T LogicalOp3; /* '<Root>/Logical Op3' */

 boolean_T LogicalOp4; /* '<Root>/Logical Op4' */

 boolean_T RelationalOperator; /* '<Root>/Relational Operator' */

 boolean_T UnitDelay_DSTATE; /* '<Root>/Unit Delay' */

} DW;

Enable Optimization

1 Open the Configuration Parameters dialog box.
2 On the Optimization > Signals and Parameters pane, select Pack Boolean

data into bitfields.

Alternatively, you can use the command-line API to enable the optimization:

29 Memory Usage

29-18

set_param(model,'BooleansAsBitfields','on');

Generate Code with Optimization

Build the model using Embedded Coder®.

rtwbuild(model)

Starting build procedure for model: rtwdemo_pack_boolean

Successful completion of build procedure for model: rtwdemo_pack_boolean

View the generated code with the optimization. These lines of code are in
rtwdemo_pack_boolean.h.

hfile = fullfile(cgDir,'rtwdemo_pack_boolean_ert_rtw','rtwdemo_pack_boolean.h');

rtwdemodbtype(hfile,'/* Block signals and states','/* External inputs',1,0);

/* Block signals and states (auto storage) for system '<Root>' */

typedef struct {

 struct {

 uint_T LogicalOp1:1; /* '<Root>/Logical Op1' */

 uint_T LogicalOp2:1; /* '<Root>/Logical Op2' */

 uint_T LogicalOp5:1; /* '<Root>/Logical Op5' */

 uint_T LogicalOp3:1; /* '<Root>/Logical Op3' */

 uint_T LogicalOp4:1; /* '<Root>/Logical Op4' */

 uint_T RelationalOperator:1; /* '<Root>/Relational Operator' */

 uint_T UnitDelay_DSTATE:1; /* '<Root>/Unit Delay' */

 } bitsForTID0;

} DW;

Selecting Pack Boolean data into bitfields enables model configuration parameter
Bitfield declarator type specifier. To optimize your code further, select uchar_t.
However, the optimization benefit of the Bitfield declarator type specifier setting
depends on your choice of target.

Close the model and code generation report.

bdclose(model)

rtwdemoclean;

cd(currentDir)

 Optimize Generated Code By Passing Reusable Subsystem Outputs as Individual Arguments

29-19

Optimize Generated Code By Passing Reusable Subsystem Outputs
as Individual Arguments

This example shows how passing reusable subsystem outputs as individual arguments
can optimize the generated code.

Overview

By default, the outputs of functions generated by reusable subsystems are passed as a
pointer to a structure that is stored in global memory.

This optimization changes the function signature such that the outputs of the function
are passed as pointers to local variables. This allows the reduction of global memory. The
code generator also might remove data copies when global memory structures are passed
into the function when outputs are not passed individually.

The benefits of this optimization are to:

• Reduce the RAM consumption.
• Improve the execution speed by removing data copies.

Review the Model

Consider the model rtwdemo_reusable_sys_outputs. In this model, the reusable
subsystem outputs feed the root outputs of the model.

model = 'rtwdemo_reusable_sys_outputs';

open_system(model);

29 Memory Usage

29-20

Generate Code Without This Optimization

Generate code for this model while passing subsystem outputs as a structure reference.
Create a temporary folder (in your system's temporary folder) for the build and
inspection process.

currentDir = pwd;

[~,cgDir] = rtwdemodir();

Build the model.

rtwbuild(model)

Starting build procedure for model: rtwdemo_reusable_sys_outputs

Successful completion of build procedure for model: rtwdemo_reusable_sys_outputs

Portions of rtwdemo_reusable_sys_outputs.c are listed below. Notice the global
block I/O structure and in the model step function a data copy from this structure.

cfile = fullfile(cgDir,'rtwdemo_reusable_sys_outputs_ert_rtw',...

'rtwdemo_reusable_sys_outputs.c');

rtwdemodbtype(cfile,'/* Output and update for atomic system',...

'/* Model initialize', 1, 0);

 Optimize Generated Code By Passing Reusable Subsystem Outputs as Individual Arguments

29-21

/* Output and update for atomic system: '<Root>/ReusableSubsystem' */

void ReusableSubsystem(real_T rtu_In1, real_T rtu_In2, real_T rtu_In3,

 DW_ReusableSubsystem *localDW)

{

 /* Gain: '<S1>/Gain' */

 localDW->Gain = 5.0 * rtu_In1;

 /* Gain: '<S1>/Gain1' */

 localDW->Gain1 = 6.0 * rtu_In2;

 /* Gain: '<S1>/Gain2' */

 localDW->Gain2 = 7.0 * rtu_In3;

}

/* Model step function */

void rtwdemo_reusable_sys_outputs_step(void)

{

 /* Outputs for Atomic SubSystem: '<Root>/ReusableSubsystem' */

 /* Inport: '<Root>/In1' incorporates:

 * Inport: '<Root>/In2'

 * Inport: '<Root>/In3'

 */

 ReusableSubsystem(rtU.In1, rtU.In2, rtU.In3, &rtDW.ReusableSubsystem_d);

 /* End of Outputs for SubSystem: '<Root>/ReusableSubsystem' */

 /* Outport: '<Root>/Out1' */

 rtY.Out1 = rtDW.ReusableSubsystem_d.Gain;

 /* Outport: '<Root>/Out2' */

 rtY.Out2 = rtDW.ReusableSubsystem_d.Gain1;

 /* Outport: '<Root>/Out3' */

 rtY.Out3 = rtDW.ReusableSubsystem_d.Gain2;

}

Enable This Optimization

1 Open the Configuration Parameters dialog box.
2 On the Optimization > Signals and Parameters pane, set Pass reusable

subsystem outputs as to Individual arguments.

Alternatively, you can use the command-line API to enable the optimization:

29 Memory Usage

29-22

set_param(model, 'PassReuseOutputArgsAs', 'Individual arguments');

Generate Code With This Optimization

With this optimization, the ReusableSubsystem function takes three output
arguments, which are direct references to the external outputs. The rtDW global
structure no longer exists and the data copies from this structure to the rtY (external
outputs) structure are removed.

Build the model.

rtwbuild(model)

Starting build procedure for model: rtwdemo_reusable_sys_outputs

Successful completion of build procedure for model: rtwdemo_reusable_sys_outputs

A portion of rtwdemo_reusable_sys_outputs.c is listed below. Observe the
optimized code.

rtwdemodbtype(cfile,'/* Output and update for atomic system',...

'/* Model initialize', 1, 0);

/* Output and update for atomic system: '<Root>/ReusableSubsystem' */

void ReusableSubsystem(real_T rtu_In1, real_T rtu_In2, real_T rtu_In3, real_T

 *rty_Out1, real_T *rty_Out2, real_T *rty_Out3)

{

 /* Gain: '<S1>/Gain' */

 *rty_Out1 = 5.0 * rtu_In1;

 /* Gain: '<S1>/Gain1' */

 *rty_Out2 = 6.0 * rtu_In2;

 /* Gain: '<S1>/Gain2' */

 *rty_Out3 = 7.0 * rtu_In3;

}

/* Model step function */

void rtwdemo_reusable_sys_outputs_step(void)

{

 /* Outputs for Atomic SubSystem: '<Root>/ReusableSubsystem' */

 /* Inport: '<Root>/In1' incorporates:

 * Inport: '<Root>/In2'

 * Inport: '<Root>/In3'

 Optimize Generated Code By Passing Reusable Subsystem Outputs as Individual Arguments

29-23

 */

 ReusableSubsystem(rtU.In1, rtU.In2, rtU.In3, &rtY.Out1, &rtY.Out2, &rtY.Out3);

 /* End of Outputs for SubSystem: '<Root>/ReusableSubsystem' */

}

Close the model and cleanup.

bdclose(model)

rtwdemoclean;

cd(currentDir)

Verification

30

Code Tracing

• “What Is Code Tracing?” on page 30-2
• “Traceability Tags” on page 30-5
• “Trace Code to Model Objects Using Hyperlinks” on page 30-6
• “Trace Model Objects to Generated Code” on page 30-8
• “Trace Stateflow Objects in Generated Code” on page 30-11
• “Reload Existing Traceability Information” on page 30-25
• “Customize Traceability Reports” on page 30-26
• “Generate a Traceability Matrix” on page 30-28
• “Traceability Limitations” on page 30-29

30 Code Tracing

30-2

What Is Code Tracing?

Code tracing (traceability) involves using hyperlinks to navigate between a line of
generated code and its corresponding object in a model. You can also right-click an
object in a model to find the line of code that corresponds to that object. This two-way
navigation is bidirectional traceability.

Code tracing provides a way to:

• Verify generated code. You can identify which model object corresponds to a line of
code and keep track of code from different objects that you have or have not reviewed.

• Include comments in code generated for large-scale models. You can identify objects in
generated code and avoid manually entering comments or descriptions.

The HTML code generation report that the code generator produces for a model includes
resources that support code tracing:

• Code element hyperlinks (indicated with underlining) that you can use to trace
through and toggle between generated source and header files.

• Tags in code comments that identify objects in a model from which lines of code are
generated.

Traceable Objects

Bidirectional traceability is supported for blocks and the following Stateflow Objects:

• States
• Transitions
• MATLAB functions

Note: Traceability is not supported for external code that you call from a MATLAB
function.

• Truth Table blocks and truth table functions
• Graphical functions
• Simulink functions
• State transition tables

 What Is Code Tracing?

30-3

Traceability in one direction is supported for these Stateflow objects:

• Events (code-to-model)

Code-to-model traceability works for explicit events, but not implicit events. Clicking
a hyperlink for an explicit event in the generated code highlights that item in the
Contents pane of the Model Explorer.

• Junctions (model-to-code)

Model-to-code traceability works for junctions with at least one outgoing transition.
Right-clicking such a junction in the Stateflow Editor highlights the line of code that
corresponds to the first outgoing transition for that junction.

Note: MATLAB Function blocks that you insert directly in a Simulink model are also
traceable. For more information, see “Use Traceability in MATLAB Function Blocks” in
the Simulink documentation.

Basic Workflow for Using Traceability

The basic workflow for using traceability is:

1 Open your model, if necessary.
2 Define your system target file to be an embedded real-time (ert) target.
3 Enable and configure the traceability options.
4 Generate the source code and header files for your model.
5 Do one or both of these steps:

• Trace a line of generated code to the model.
• Trace an object in the model to a line of code.

Related Examples
• “Trace Code to Model Objects Using Hyperlinks” on page 30-6
• “Trace Model Objects to Generated Code” on page 30-8
• “Reload Existing Traceability Information” on page 30-25
• “Customize Traceability Reports” on page 30-26

30 Code Tracing

30-4

More About
• “Traceability Tags” on page 30-5

 Traceability Tags

30-5

Traceability Tags

A traceability tag appears in a comment above the corresponding line of generated code.
The format of the tags is <system>/block_name, where

• system is one of the following:

• The string Root
• A unique system number assigned by the Simulink engine

• block_name is the name of the source block

The code generator documents the tags for a model in the comments section of the
generated header file model.h. For example, the following comment appears in the
header file for model, foo, that has a subsystem Outer and a nested subsystem Inner:

/* Here is the system hierarchy for this model.

 *

 * <Root> : foo

 * <S1> : foo/Outer

 * <S2> : foo/Outer/Inner

 */

The following code shows a tag comment adjacent to a line of code. This code is generated
from a Gain block at the root level of a source model:

/* Gain: '<Root>/UnDeadGain1' */

rtb_UnDeadGain1_h = dead_gain_U.In1 *

 dead_gain_P.UnDeadGain1_Gain;

The following code shows a tag comment adjacent to a line of code. This code is generated
from a Gain block within a subsystem one level below the root level of the source model:

/* Gain: '<S1>/Gain' */

dead_gain_B.temp0 *= (dead_gain_P.s1_Gain_Gain);

30 Code Tracing

30-6

Trace Code to Model Objects Using Hyperlinks

When using the Simulink Coder product, you can trace code to model objects using the
hilite_system command. The Embedded Coder product simplifies traceability with
the use of hyperlinks in HTML code generation reports. The reports display hyperlinks
in comment lines in generated code. You can highlight the corresponding block or
subsystem in the model diagram by clicking the hyperlinks.

To use hyperlinks for tracing code to model objects:

1 Open the model and make sure it is configured for an ERT target.
2 In the Configuration Parameters dialog box, on the Code Generation > Report

pane, select Create code generation report. The parameter is selected by default.
When selected, this parameter enables and selects Open report automatically and
Code-to-model.

3 Build or generate code for the model. An HTML code generation report is displayed.
4 In the HTML report window, click hyperlinks to highlight source blocks. For

example, generate an HTML report for model rtwdemo_hyperlinks. In the
generated code for the model step function in rtwdemo_hyperlinks.c, click the
first UnitDelay block hyperlink.

In the model window, the corresponding UnitDelay block is highlighted.

 Trace Code to Model Objects Using Hyperlinks

30-7

30 Code Tracing

30-8

Trace Model Objects to Generated Code

1 Open the model and make sure that it is configured for an ERT target.
2 In the Configuration Parameters dialog box, select Code Generation > Report

> Create code generation report. This parameter is selected by default. When
selected, the parameter enables and selects the Open report automatically and
Code-to-model parameters.

3 Select Model-to-code.

This parameter:

• Enables the Configure button, which opens a dialog box for loading existing
trace information.

• Enables and selects parameters for customizing the content of a traceability
report.

4 Build or generate code for the model. An HTML code generation report is displayed.
5 In the model window, right-click a model object.

 Trace Model Objects to Generated Code

30-9

6 In the context menu, select C/C++ Code > Navigate to C/C++ Code. In the
HTML code generation report, you see the first instance of highlighted code that is
generated for the model object. In the left pane of the report, numbers that appear
to the right of generated file names indicate the total number of highlighted lines
in each file. The following figure shows the result of tracing the Unit Delay block in
model rtwdemo_hyperlinks.

At the top of the code window, use the navigation toolbar to move forward and
backward through multiple instances of highlighted lines. Use the navigation
sidebar to go directly to a line of code.

If you close and reopen a model, the Navigate to Code context menu option might not
be available because Embedded Coder cannot find a build folder for your model in the
current working folder. Do one of the following:

• Reset the current working folder to the parent folder of the existing build folder.
• Select Model-to-code and rebuild the model. Rebuilding the model regenerates the

build folder into the current working folder.

30 Code Tracing

30-10

• Click Configure and in the Model-to-code navigation dialog box, reload the existing
trace information.

 Trace Stateflow Objects in Generated Code

30-11

Trace Stateflow Objects in Generated Code

In this section...

“Bidirectional Traceability for States and Transitions” on page 30-11
“Bidirectional Traceability for State Transition Tables” on page 30-13
“Bidirectional Traceability for Truth Table Blocks” on page 30-16
“Bidirectional Traceability for Graphical Functions” on page 30-18
“Code-to-Model Traceability for Events” on page 30-19
“Model-to-Code Traceability for Junctions” on page 30-20
“Format of Traceability Comments for Stateflow Objects” on page 30-21

Bidirectional Traceability for States and Transitions

You can see how bidirectional traceability works for states and transitions by following
these steps:

1 Type old_sf_car at the MATLAB prompt.
2 Open the Model Configuration Parameters dialog box.
3 In the Code Generation pane, go to the Target selection section and enter

ert.tlc for the system target file. Click Apply in the lower right corner of the
window.

Note: Traceability comments appear in generated code only for embedded real-time
targets.

4 In the Code Generation > Report pane, select Create code generation report.

This step automatically selects Open report automatically and Code-to-model.
5 Select Model-to-code in the Navigation section. Then click Apply.

This step automatically selects all check boxes in the Traceability Report
Contents section.

Tip For large models that contain over 1000 blocks, clear the Model-to-code check
box to speed up code generation.

30 Code Tracing

30-12

6 Go to the Code Generation > Interface pane. In the Software environment
section, select continuous time. Then click Apply.

Note: Because this model contains a block with a continuous sample time, you must
perform this step before generating code.

7 In the Code Generation pane, click Build in the lower right corner.

This step generates source code and header files for the old_sf_car model that
contains the shift_logic chart. After the code generation process is complete, the
code generation report appears automatically.

8 Click the old_sf_car.c hyperlink in the report.
9 Scroll down through the code to see the traceability comments.

Traceability
comment for
a state

Traceability
comment for
a transition

Note: The line numbers shown above can differ from the numbers that appear in
your code generation report.

10 Click the <S5>:2 hyperlink in this traceability comment:

/* During 'gear_state': '<S5>:2' */

The corresponding state appears highlighted in the chart.
11 Click the <S5>:12 hyperlink in this traceability comment:

/* Transition: '<S5>:12' */

The corresponding transition appears highlighted in the chart.

 Trace Stateflow Objects in Generated Code

30-13

Tip To remove highlighting from an object in the chart, select Display > Remove
Highlighting.

12 You can also trace an object in the model to a line of generated code. In the chart,
right-click the object gear_state and select C/C++ Code > Navigate to C/C++
Code.

The code for that state appears highlighted in old_sf_car.c.

Highlighted
line of code

13 In the chart, right-click the transition with the condition [speed > up_th] and
select C/C++ Code > Navigate to C/C++ Code.

The code for that transition appears highlighted in old_sf_car.c.

Highlighted
line of code

Note: For a list of all Stateflow objects in your model that are traceable, click the
Traceability Report hyperlink in the code generation report.

Bidirectional Traceability for State Transition Tables

This example shows how to navigate bidirectionally between objects in a state transition
table and the generated C/C++ and HDL code for traceability.

1 At the MATLAB prompt, type sf_cdplayer_STT. This model is already configured
for traceability. For more information on these configurations, see “Traceability of
Stateflow Objects in Generated Code”.

30 Code Tracing

30-14

2 Open the Model Configuration Parameters dialog box.
3 In the Code Generation pane, click Generate Code in the lower-right corner.

This step generates source code and header files for the sf_cdplayer_STT model.
After the code generation process is complete, the code generation report appears
automatically.

4 Click the sf_cdplayer_STT.c hyperlink in the report.
5 Scroll down through the code to see the traceability comments. The line numbers

shown can differ from the numbers that appear in your code generation report.

6 Click the <S2>:58 hyperlink in this traceability comment:

/* Entry Internal 'ON': '<S2>:58' */

The corresponding state’ON' appears highlighted in the state transition table.

 Trace Stateflow Objects in Generated Code

30-15

7 Right-click the highlighted state and select View state object. The state ’ON' also
appears highlighted in the underlying state transition diagram.

8 You can also trace a state or transition from the state transition table to the
generated code. Right click on the state Standby and select C/C++ Code >
Navigate to C/C++ Code.

The entry code for the state Standby is highlighted in the generated code.

30 Code Tracing

30-16

Bidirectional Traceability for Truth Table Blocks

You can see how bidirectional traceability works for a Truth Table block by following
these steps:

1 Type sf_climate_control at the MATLAB prompt.
2 Complete steps 2 through 5 in “Bidirectional Traceability for States and Transitions”

on page 30-11.
3 In the Code Generation pane of the Model Configuration Parameters dialog box,

click Build in the lower right corner.

The code generation report appears automatically.
4 Click the sf_climate_control.c hyperlink in the report.
5 Scroll down through the code to see the traceability comments.

Traceability
comment for a
truth table decision

Traceability
comment for a
truth table action

Note: The line numbers shown above can differ from the numbers that appear in
your code generation report.

6 Click the <S1>:1:47 hyperlink in this traceability comment:

 Trace Stateflow Objects in Generated Code

30-17

/* Action '3': '<S1>:1:47' */

In the Truth Table Editor, row 3 of the Action Table appears highlighted.

7 You can also trace a condition, decision, or action in the table to a line of generated
code. For example, right-click a cell in the column D2 and select C/C++ Code >
Navigate to C/C++ Code.

The code for that decision appears highlighted in sf_climate_control.c.

30 Code Tracing

30-18

Highlighted
line of code

Tip To select C/C++ Code > Navigate to C/C++ Code for a condition, decision, or
action, right-click a cell in the row or column that corresponds to that truth table
element.

Bidirectional Traceability for Graphical Functions

You can see how bidirectional traceability works for graphical functions by following
these steps:

1 Type sf_clutch at the MATLAB prompt.
2 Complete steps 2 through 6 in “Bidirectional Traceability for States and Transitions”

on page 30-11.
3 Go to the Solver pane in the Model Configuration Parameters dialog box. In the

Solver options section, select Fixed-step in the Type field. Then click Apply.

Note: Because this model does not work with variable-step solvers, you must
perform this step before generating code.

4 In the Code Generation pane of the Model Configuration Parameters dialog box,
click Build in the lower right corner.

The code generation report appears automatically.
5 Click the sf_clutch.c hyperlink in the report.
6 Scroll down through the code to see the traceability comments.

Traceability
comment for a
graphical function

 Trace Stateflow Objects in Generated Code

30-19

Note: The line numbers shown above can differ from the numbers that appear in
your code generation report.

7 Click the <S1>:3 hyperlink in this traceability comment:

/* Graphical Function 'getSlipTorque': '<S1>:3' */

In the chart, the graphical function getSlipTorque appears highlighted.
8 You can also trace a graphical function in the chart to a line of generated code. For

example, right-click the graphical function detectSlip and select C/C++ Code >
Navigate to C/C++ Code.

The code for that graphical function appears highlighted in sf_clutch.c.

Highlighted
line of code

Code-to-Model Traceability for Events

You can see how code-to-model traceability works for events by following these steps:

1 Type sf_security at the MATLAB prompt.
2 Complete steps 2 through 6 in “Bidirectional Traceability for States and Transitions”

on page 30-11.
3 In the Code Generation pane of the Model Configuration Parameters dialog box,

click Build in the lower right corner.

The code generation report appears automatically.
4 Click the sf_security.c hyperlink in the report.
5 Scroll down through the code to see the following traceability comment.

Traceability
comment for
an event

30 Code Tracing

30-20

Note: The line numbers shown above can differ from the numbers that appear in
your code generation report.

6 Click the <S8>:56 hyperlink in this traceability comment:

/* Event: '<S8>:56' */

In the Contents pane of the Model Explorer, the event Sound appears highlighted.

Model-to-Code Traceability for Junctions

You can see how model-to-code traceability works for junctions by following these steps:

1 Type sf_abs at the MATLAB prompt.
2 Complete steps 2 through 6 in “Bidirectional Traceability for States and Transitions”

on page 30-11.
3 Go to the Solver pane in the Model Configuration Parameters dialog box. In the

Solver options section, select Fixed-step in the Type field. Then click Apply.

 Trace Stateflow Objects in Generated Code

30-21

Note: Because this model does not work with variable-step solvers, you must
perform this step before generating code.

4 In the Code Generation pane, click Build in the lower right corner.

The code generation report appears automatically.
5 Open the AbsoluteValue chart.
6 Right-click the left junction and select C/C++ Code > Navigate to C/C++ Code.

The code for the first outgoing transition of that junction appears highlighted in
sf_abs.c.

Highlighted
line of code

Format of Traceability Comments for Stateflow Objects

The format of a traceability comment depends on the Stateflow object type.

State

Syntax

/* <ActionType> '<StateName>': '<ObjectHyperlink>' */

Example

/* During 'gear_state': '<S5>:2' */

This comment refers to the during action of the state gear_state, which has the
hyperlink <S5>:2.

30 Code Tracing

30-22

Transition

Syntax

/* Transition: '<ObjectHyperlink>' */

Example

/* Transition: '<S5>:12' */

This comment refers to a transition, which has the hyperlink <S5>:12.

MATLAB Function

Syntax

/* MATLAB Function '<Name>': '<ObjectHyperlink>' */

Within the inlined code for a MATLAB function, comments that link to individual lines of
the function have the following syntax:

/* '<ObjectHyperlink>' */

Examples

/* MATLAB Function 'test_function': '<S50>:99' */

/* '<S50>:99:20' */

The first comment refers to the MATLAB function named test_function, which has
the hyperlink <S50>:99.

The second comment refers to line 20 of the MATLAB function in your chart.

Truth Table Block

Syntax

/* Truth Table Function '<Name>': '<ObjectHyperlink>' */

Within the inlined code for a Truth Table block, comments for conditions, decisions, and
actions have the following syntax:

/* Condition '#<Num>': '<ObjectHyperlink>' */

/* Decision 'D<Num>': '<ObjectHyperlink>' */

/* Action '<Num>': '<ObjectHyperlink>' */

 Trace Stateflow Objects in Generated Code

30-23

<Num> is the row or column number that appears in the Truth Table Editor.

Examples

/* Truth Table Function 'truth_table_default': '<S10>:100' */

/* Condition '#1': '<S10>:100:8' */

/* Decision 'D1': '<S10>:100:16' */

/* Action '1': '<S10>:100:31' */

The first comment refers to a Truth Table block named truth_table_default, which
has the hyperlink <S10>:100.

The other three comments refer to elements of that Truth Table block. Each condition,
decision, and action in the Truth Table block has a unique hyperlink.

Truth Table Function

See “Truth Table Block” on page 30-22 for syntax and examples.

Graphical Function

Syntax

/* Graphical Function '<Name>': '<ObjectHyperlink>' */

Example

/* Graphical Function 'hello': '<S1>:123' */

This comment refers to a graphical function named hello, which has the hyperlink
<S1>:123.

Simulink Function

Syntax

/* Simulink Function '<Name>': '<ObjectHyperlink>' */

Example

/* Simulink Function 'simfcn': '<S4>:10' */

This comment refers to a Simulink function named simfcn, which has the hyperlink
<S4>:10.

30 Code Tracing

30-24

Event

Syntax

/* Event: '<ObjectHyperlink>' */

Example

/* Event: '<S3>:33' */

This comment refers to an event, which has the hyperlink <S3>:33.

 Reload Existing Traceability Information

30-25

Reload Existing Traceability Information

To reload existing traceability information for a model:

1 In the Configuration Parameters dialog box, click Code Generation > Report >
Configure. The Model-to-code navigation dialog box opens.

2 In the Build folder field, type or browse to the build folder that contains the
existing traceability information.

If you close and reopen a model, the Navigate to Code context menu option might not
be available. This occurs because Embedded Coder cannot find a build folder for your
model in the current working folder. To fix this without having to reset the current
working folder or rebuild the model, do the following:

1 Click Configure to open the Model-to-code navigation dialog box.
2 In the Model-to-code navigation dialog box, click Browse.
3 Browse to the build folder for your model, and select the folder. The build folder path

is displayed in the Build folder field, as shown in the preceding figure.

4 Click Apply or OK. This loads traceability information from the earlier build into
your Simulink session, provided that you selected Model-to-code for the build.

5 Right-click a model object and select C/C++ Code > Navigate to C/C++ Code to
open the context menu and trace a model object to corresponding code.

30 Code Tracing

30-26

Customize Traceability Reports

In the Configuration Parameters dialog box, the Code Generation > Report >
Traceability Report Contents section lists parameters you can select and clear
to customize the content of your traceability reports. By default, all parameters are
selected.

Select or clear any combination of the following:

• Eliminated / virtual blocks (account for blocks that are untraceable)
• Traceable Simulink blocks
• Traceable Stateflow objects
• Traceable MATLAB functions

If you select all parameters, you get a complete mapping between model elements and
the generated code.

The following figure shows the top section of the traceability report generated by
selecting all traceability content parameters for model rtwdemo_hyperlinks.

 Customize Traceability Reports

30-27

30 Code Tracing

30-28

Generate a Traceability Matrix

If you are licensed for either DO Qualification Kit software or IEC Certification Kit
software and are using a Windows host, you can generate a traceability matrix into
Microsoft Excel format directly from the traceability report described in “Customize
Traceability Reports” on page 30-26.

To do this, go to the Traceability Report section of the HTML code generation report
and click the Generate Traceability Matrix button.

When you click the button, a Generate Traceability Matrix dialog box appears. Use this
dialog to select an existing matrix file to update or specify a new matrix file to create.
Optionally, you can use this dialog to select and order the columns that appear in the
generated matrix. For more information, see “Generating a Traceability Matrix” in either
the DO Qualification Kit documentation or the IEC Certification Kit documentation.

 Traceability Limitations

30-29

Traceability Limitations

The following limitations apply to reports generated by Embedded Coder software.

• Under the following conditions, model-to-code traceability is disabled for a block if the
block name contains:

• A single quote (').
• An asterisk (*), that causes a name-mangling ambiguity relative to other names in

the model. This name-mangling ambiguity occurs if in a block name or at the end
of a block name, an asterisk precedes or follows a slash (/).

• The character ÿ (char(255)).
• If a block name contains a newline character (\n), in the generated code comments,

the block path name hyperlink replaces the newline character with a space for
readability.

• You cannot trace blocks representing the following types of subsystems to generated
code:

• Virtual subsystems
• Masked subsystems
• Nonvirtual subsystems for which code has been optimized away

If you cannot trace a subsystem at subsystem level, you might be able to trace
individual blocks within the subsystem.

31

Component Verification

• “Component Verification in the Target Environment” on page 31-2
• “Goals of Component Verification” on page 31-3
• “Maximizing Code Portability and Configurability” on page 31-4
• “Simplifying Code Integration and Maximizing Code Efficiency” on page 31-5
• “Running Component Tests” on page 31-6

31 Component Verification

31-2

Component Verification in the Target Environment

After you generate production code for a component design, you need to integrate,
compile, link, and deploy the code as a complete application on the embedded system.
One approach is to manually integrate the code into an existing software framework that
consists of an operating system, device drivers, and support utilities. The algorithm can
include externally written legacy or custom code.

An easier approach to verifying a component in a target environment is to use processor-
in-the-loop (PIL) simulation. For information about PIL simulations, see “About SIL and
PIL Simulations”.

 Goals of Component Verification

31-3

Goals of Component Verification

Assuming that you have generated production source code and integrated required
externally written code, such as drivers and a scheduler, you can verify that the
integrated software operates as expected by testing it in the target environment. During
testing, you can achieve either of the following goals, depending on whether you export
code that is strictly ANSI C/C++ or mixes ANSI C/C++ with code optimized for a target
environment.

Goal Type of Code Export

Maximize code portability and configurability ANSI C/C++
Simplify integration and maximize use of processor
resources and code efficiency

Mixed code

Regardless of your goal, you must integrate required external drivers and scheduling
software. To achieve real-time execution, you must integrate the real-time scheduling
software.

31 Component Verification

31-4

Maximizing Code Portability and Configurability

To maximize code portability and configurability, limit the application code to ANSI/ISO
C or C++ code only, as the following figure shows.

Special

interfaces

Actuators
Communication

interfaces

Comm

drivers

Input

drivers

Output

drivers

Special

device

drivers

Scheduler/operating system

and support utilities

Sensors

Tuning

Algorithm model

Generated

algorithm

code

Included

legacy

code

 Simplifying Code Integration and Maximizing Code Efficiency

31-5

Simplifying Code Integration and Maximizing Code Efficiency

To simplify code integration and maximize code efficiency for a target environment, use
Embedded Coder features for:

• Controlling code interfaces
• Exporting subsystems
• Including target-specific code, including compiler optimizations

The following figure shows a mix of ANSI C/C++ code with code that is optimized for a
target environment.

Special

interfaces

Actuators
Communication

interfaces

Comm

drivers

Input

drivers

Output

drivers

Special

device

drivers

Scheduler/operating system

and support utilities

Sensors

Tuning

Controller model

Generated

algorithm

code

Included

target

optimized

code

31 Component Verification

31-6

Running Component Tests

The workflow for running software component tests in the target environment is:

1 Integrate external code, for example, for device drivers and a scheduler, with the
generated C or C++ code for your component model. For more information, see “S-
Functions and Code Generation” in the Simulink Coder documentation. For more
specific references that depend on your verification goals, see the following table.

For See

ANSI C/C++ code integration “Integrate C Functions Using Legacy Code
Tool” in the Simulink documentation. Also, open
rtwdemos and navigate to the Custom Code
folder.

Mixed code integration • “Export Function-Call Subsystems” and
example rtwdemo_exporting_functions

• “Function Prototype Control”, “C++
Class Interface Control”, and example
rtwdemo_fcnprotoctrl

• “What Is Code Replacement?”, “What Is Code
Replacement Customization?”, and example
rtwdemo_crl_script

2 Simulate the integrated component model.
3 Generate code for the integrated component model.
4 Connect to data interfaces for the generated C code data structures. See “Data

Interchange Using the C API” and “ASAP2 Data Measurement and Calibration”
in the Simulink Coder documentation. Also see examples rtwdemo_capi and
rtwdemo_asap2.

5 Customize and control the build process, if required. See “Customize Post-Code-
Generation Build Processing” in the Simulink Coder documentation, and example
rtwdemo_buildinfo .

6 Create a zip file that contains generated code files, static files, and dependent data
to build the generated code in an environment other than your host computer. See
“Relocate Code to Another Development Environment”, in the Simulink Coder
documentation, and example rtwdemo_buildinfo.

32

Component Verification With a Real-
Time Target Environment

• “About Real-Time Software Component Verification” on page 32-2
• “Real-Time Software Component Testing” on page 32-4

32 Component Verification With a Real-Time Target Environment

32-2

About Real-Time Software Component Verification

One approach to verifying a software component is to build the component into a
complete software system that can execute in real time in the target environment. A
complete software system includes:

• Algorithm for the software component
• Scheduling algorithms
• Calls to drivers for board-specific devices

This single build approach is more time consuming to set up, but makes it easier to get
the complete application running in the target environment.

The following figure shows code generated for an algorithm being built into a complete
system executable for the target environment.

 About Real-Time Software Component Verification

32-3

Special

interfaces

Actuators
Communication

interfaces

Comm

drivers

Input

drivers

Output

drivers

Special

device

drivers

Scheduler/operating system

and support utilities

Sensors

Tuning

Algorithm model

Generated

algorithm

code

Optional

target

optimized

code

32 Component Verification With a Real-Time Target Environment

32-4

Real-Time Software Component Testing

The workflow for testing component software as part of a complete real-time target
environment is:

1 Develop a component model and generate source code for production.

For information on building in scheduling and real-time system support, see:

• “Time-Based Scheduling and Code Generation” and “Modeling for Multitasking
Execution” in the Simulink Coder documentation. For an example, open
rtwdemos and navigate to the Multirate Support folder.

• “Asynchronous Events” in the Simulink Coder documentation and example
rtwdemo_async

• “Standalone Programs (No Operating System)”
• “Workflows for AUTOSAR” and examples rtwdemo_autosar_legacy_script and

rtwdemo_autosar_mulitrunnables_script.
2 Optimize generated code for a specific run-time environment, using specialized

function libraries. For more information, see “What Is Code Replacement?”, “What Is
Code Replacement Customization?”, and rtwdemo_crl_script.

3 Customize post code generation build processing to accommodate third-party tools
and processes, as required. See “Customize Post-Code-Generation Build Processing”
in the Simulink Coder documentation and example rtwdemo_buildinfo.

4 Integrate external code, for example, for device drivers and a scheduler, with the
generated C or C++ code for your component model. For more information, see “S-
Functions and Code Generation” in the Simulink Coder documentation. For more
specific references depending on your verification goals, see the following table.

For... See...

ANSI C/C++ code integration “Integrate C Functions Using Legacy Code
Tool” in the Simulink documentation. Also, open
rtwdemos and navigate to the Custom Code
folder.

Mixed code integration • “Export Function-Call Subsystems” and
example rtwdemo_exporting_functions

 Real-Time Software Component Testing

32-5

For... See...

• “Function Prototype Control”, “C++
Class Interface Control”, and example
rtwdemo_fcnprotoctrl

• “What Is Code Replacement?”, “What Is Code
Replacement Customization?” on page 22-3,
and example rtwdemo_crl_script

5 Simulate the integrated model.
6 Generate code for the integrated model.
7 Connect to data interfaces for the generated C code data structures. See “Data

Interchange Using the C API” and “ASAP2 Data Measurement and Calibration”
in the Simulink Coder documentation. Also see examples rtwdemo_capi and
rtwdemo_asap2.

8 Customize and control the build process, as required. See “Customize Post-Code-
Generation Build Processing”, in the Simulink Coder documentation, and example
rtwdemo_buildinfo .

9 Create a zip file that contains generated code files, static files, and dependent data
to build the generated code in an environment other than your host computer. See
“Relocate Code to Another Development Environment”, in the Simulink Coder
documentation, and example rtwdemo_buildinfo.

33

Numerical Equivalence Checking

• “About SIL and PIL Simulations” on page 33-2
• “Choose a SIL or PIL Approach” on page 33-7
• “Configure a SIL or PIL Simulation” on page 33-10
• “Top Model Simulation Using SIL or PIL” on page 33-17
• “Referenced Model Simulation Using SIL or PIL” on page 33-18
• “Verify Internal Signals of a Component” on page 33-20
• “Simulation Mode Override Behavior in Model Reference Hierarchy” on page

33-21
• “Code Interfaces for SIL and PIL” on page 33-23
• “Configure Hardware Implementation Settings for SIL” on page 33-25
• “Debug Code During SIL Simulations” on page 33-30
• “Prevent Code Changes in Multiple SIL and PIL Simulations” on page 33-33
• “PIL Customization for Target Environment” on page 33-35
• “Create PIL Target Connectivity Configuration” on page 33-38
• “View Test Harness in Code Generation Report” on page 33-46
• “SIL and PIL Simulation Support and Limitations” on page 33-48
• “Programmatic Code Generation Verification” on page 33-74

33 Numerical Equivalence Checking

33-2

About SIL and PIL Simulations

In this section...

“What are SIL and PIL Simulations?” on page 33-2
“Why Use SIL and PIL” on page 33-3
“How SIL and PIL Simulations Work” on page 33-4
“Comparison of SIL and PIL Simulation” on page 33-5

What are SIL and PIL Simulations?

The Embedded Coder product supports software-in-the-loop (SIL) and processor-in-the-
loop (PIL) simulations.

A SIL simulation involves compiling and running production source code on your
host computer to verify the source code. SIL provides a convenient alternative to
processor-in-the-loop (PIL) simulation as no target hardware (for example, an evaluation
board or instruction set simulator) is required. For examples of SIL verification, see
rtwdemo_sil_pil_script.

A PIL simulation involves cross-compiling and running production object code on a target
processor or an equivalent instruction set simulator.

You can run a SIL or PIL simulation using:

• The Software-in-the-Loop (SIL) or Processor-in-the-Loop (PIL) simulation
mode for top models and Model blocks

• A SIL or PIL block

For more information, see “Choose a SIL or PIL Approach” on page 33-7.

The following features enable you to verify the generated code:

• Ability to compare the output of regular simulation modes, for example, Normal or
Accelerator, against the output of SIL and PIL simulation modes.

• Easy switching between regular simulation, SIL, and PIL modes.

You can model and test your embedded software component in Simulink and then reuse
your test suites across simulation and compiled production code. This approach avoids
the time-consuming process of leaving the Simulink software environment and verifying
production code on a separate test infrastructure.

 About SIL and PIL Simulations

33-3

For information about how you verify the configuration of your model for a SIL or PIL
simulation, see “Check the SIL or PIL Configuration”.

Why Use SIL and PIL

Through SIL and PIL, you can achieve early verification and fixing of defects. The
following table describes situations where you can use SIL and PIL.

Situation Use

You want to reuse test vectors developed for Normal mode
simulation to verify numerical output of generated (or legacy) code.
For example, reusing test cases generated by Simulink Design
Verifier™. See “What Is Test Case Generation?” in the Simulink
Design Verifier documentation.

SIL and PIL

You want to collect metrics for generated code:

• Code coverage. See “Configure SIL and PIL Code Coverage”.
• Execution profiling. See “Code Execution Profiling for SIL and

PIL”
• Stack profiling. See “Perform Stack Profiling with IDE and

Toolchain Targets”.

SIL and PIL

You want to achieve IEC 61508, ISO 26262, and DO-178
certification. See “Embedded Coder Reference Workflow Overview”
in the IEC Certification Kit documentation and Testing of Outputs
of Integration Process in the DO Qualification Kit documentation.

SIL and PIL

You do not have target hardware and want a convenient alternative
to PIL.

SIL

You have target hardware, for example, an evaluation board or
instruction set simulator, and you want to:

• Verify behavior of target-specific code, for example, code
replacement optimizations, and legacy code. See “What
Is Code Replacement?” and “What Is Code Replacement
Customization?”.

• Optimize the execution speed and memory footprint of your
code. See the row in this table about collecting execution
profiling and stack profiling metrics.

PIL

33 Numerical Equivalence Checking

33-4

Situation Use

• Investigate effects of compiler settings and optimizations, for
example, deviation from ANSI C overflow behavior.

Normal simulation techniques do not account for restrictions and
requirements that the hardware imposes, such as limited memory
resources or behavior of target-specific optimized code.

See “Sample Custom Targets” in the Simulink Coder
documentation, which gives information about running PIL
simulations on specific targets.

Note: The SIL and PIL simulation modes are not designed for reducing model simulation
times. If you want to speed up the simulation of your model, use the Rapid Accelerator
mode. For more information, see:

• “Acceleration”

• Rapid Accelerator Simulations Using PARFOR

How SIL and PIL Simulations Work

In a SIL/PIL simulation, code is generated for either the top model or part of the model.
With SIL, this code is compiled for, and executed on the host computer. With PIL, the
code is cross-compiled for the target hardware and runs on the target processor.

Through a communication channel, Simulink sends stimulus signals to the code on the
host or target processor for each sample interval of the simulation:

• For a top model, Simulink uses stimulus signals from the base or model workspace.
• If you have designated only part of the model to simulate in SIL/PIL mode, then a

part of the model remains in Simulink without the use of code generation. Typically,
you configure this part of the model to provide test vectors for the software executing
on the hardware. This part of the model can represent other parts of the algorithm or
the environment model in which the algorithm operates.

When the host/target processor receives signals from Simulink, the processor executes
the SIL/PIL algorithm for one sample step. The SIL/PIL algorithm returns output signals
computed during this step to Simulink through a communication channel. One sample

 About SIL and PIL Simulations

33-5

cycle of the simulation is complete, and Simulink proceeds to the next sample interval.
The process repeats and the simulation progresses. SIL/PIL simulations do not run in
real time. In each sample period, Simulink and the object code exchange I/O data.

Comparison of SIL and PIL Simulation

Use SIL or PIL simulation to verify automatically generated code by comparing the
results with a Normal mode simulation. With SIL, you can easily verify the behavior
of production source code on your host computer. However, you cannot verify the same
code that is subsequently compiled for your target hardware because the code is compiled
for your host computer (that is, a different compiler and different processor architecture
than the target). With PIL simulation, you can verify the same code that you intend
to deploy in production, and you can run the code on either real target hardware or an
instruction set simulator. See “What are SIL and PIL Simulations?” on page 33-2.

You can use the following approaches to verification.

Approach SIL PIL

Simulation mode (for
top model or Model
block)

Generated production code
compiled and executed on host
computer as separate process,
independent of the MATLAB
process.
Execution is host/host and
nonreal time.

Test the generated code as
cross-compiled object code on
target processor or instruction
set simulator. Exercises same
object code used in production
software.
Execution is host/target and
nonreal time.

Block Create SIL block. Software
runs compiled object code
through S-function wrapper.
S-function communicates
with object code executing as
standalone application on host
computer. SIL block execution
is independent of the MATLAB
process.
Execution is host/host and
nonreal time.
See “Use a SIL or PIL Block” on
page 33-13.

Create PIL block. Software
runs cross-compiled object code
through S-function wrapper
on host computer. S-function
communicates with object
code executing as standalone
application on target processor
or instruction set simulator.
Execution is host/target and
nonreal time.
See “Use a SIL or PIL Block”
on page 33-13.

33 Numerical Equivalence Checking

33-6

To decide which verification approach you want to use, see “Choose a SIL or PIL
Approach” on page 33-7 .

 Choose a SIL or PIL Approach

33-7

Choose a SIL or PIL Approach

In this section...

“Verify Top Model Code” on page 33-8
“Verify Referenced Model Code” on page 33-9
“Verify Subsystem Code” on page 33-9

Consider a top model that consists of components A, B, C, and D:

• A and B are existing components for which code has previously been generated and
tested.

• C, a referenced model, and D, a subsystem, are new components.

You can use the following approaches to code verification:

• Verify code from all components together. See “Verify Top Model Code” on page
33-8.

• Verify new components separately (before verifying code from all components). See
“Verify Referenced Model Code” on page 33-9 and “Verify Subsystem Code” on
page 33-9.

For some forms of code verification, you require a test harness model. The test harness
model:

33 Numerical Equivalence Checking

33-8

• Generates test vectors or stimulus inputs that feed the block under test.
• Makes it possible for you to observe or capture output from the block.

The following example shows a simple test harness model.

The block under test is a Model block. The Sine Wave block generates the input for the
Model block. Through the Scope block, you can observe the output from the Model block.

For examples that use the various approaches to SIL/PIL code verification, see
rtwdemo_sil_pil_script.

For information about running top-model SIL/PIL, Model block SIL/PIL, and SIL/PIL
block simulations, see “Configure a SIL or PIL Simulation” on page 33-10.

Verify Top Model Code

To verify code generated from the top-model components together (A, B, C and D), you can
use top-model SIL/PIL or Model block SIL/PIL.

• Top-model SIL/PIL:

1 Create test vectors or stimulus inputs in the MATLAB workspace.
2 Run the top model in Normal, SIL, and PIL simulation modes. The software loads

the test vectors or stimulus inputs from the MATLAB workspace.
3 For each simulation mode, observe or capture outputs.
4 Verify the generated code by comparing the Normal and SIL and PIL outputs.

• Model block SIL/PIL:

1 Create a Model block that contains the top-model components.
2 Insert the Model block in your test harness model.
3 Run simulations, switching the Model block between Normal, SIL, and PIL

modes. For the SIL and PIL simulation modes, set the Code interface Model
block parameter to Top model.

4 Verify the generated code by comparing the Normal and SIL and PIL outputs.

 Choose a SIL or PIL Approach

33-9

Verify Referenced Model Code

To verify code generated from the component C as part of a model reference hierarchy,
use the Model block SIL/PIL approach:

• Insert the Model block C in your test harness model.
• Run simulations, switching the Model block between Normal, SIL, and PIL modes.

For the SIL and PIL simulation modes, set the Code interface Model block
parameter to Model reference.

• Verify the generated code by comparing the Normal and SIL and PIL outputs.

Verify Subsystem Code

To verify code generated from the subsystem D, use the SIL or PIL block approach:

1 Insert the subsystem in your test harness model.
2 Run a Normal mode simulation, capturing the outputs.
3 Create a SIL or PIL block from the subsystem.
4 In the test harness model, replace the subsystem with the SIL or PIL block.
5 Run a simulation of the test harness model, capturing the outputs.
6 Verify the generated code by comparing the SIL or PIL block outputs against the

Normal mode subsystem outputs.

For information about how you create a SIL or PIL block, see “Use a SIL or PIL Block” on
page 33-13.

33 Numerical Equivalence Checking

33-10

Configure a SIL or PIL Simulation

In this section...

“Top-Model SIL or PIL Simulation” on page 33-10
“Model Block SIL or PIL Simulation” on page 33-12
“Use a SIL or PIL Block” on page 33-13
“Check the SIL or PIL Configuration” on page 33-14

Top-Model SIL or PIL Simulation

To configure and run a top-model SIL or PIL simulation:

1 Open your model.
2 Select either Simulation > Mode > Software-in-the-Loop (SIL) or Simulation >

Mode > Processor-in-the-Loop (PIL).

Note: This option is available only if the model is configured for an ERT or
AUTOSAR target. See “Code Generation Pane: General” and “Export AUTOSAR
Component XML and C Code” for configuration information.

3 If you have not already done so, in the Configuration Parameters dialog box, on the
Data Import/Export pane:

• In the Input check box and field, specify stimulus signals (or test vectors) for
your top model.

• Configure logging for model outputs, using either output logging or signal
logging:

• In the Output check box and field, specify output logging.
• In the Signal logging check box and field, specify signal logging.

See “Internal Signal Logging Support” and “Top-Model Root-Level Logging
Limitations”.

• Disable logging of Data Store Memory variables. The software does not support
this option for this simulation mode. If you do not clear the Data stores check
box, the software produces a warning when you run the simulation.

 Configure a SIL or PIL Simulation

33-11

4 If you are configuring a SIL simulation, specify the portable word sizes option. This
option allows you to switch seamlessly between the SIL and PIL modes. Select
Code Generation > Verification > Enable portable word sizes. See “Configure
Hardware Implementation Settings for SIL” on page 33-25.

5 If required, configure:

• Code coverage. See “Configure SIL and PIL Code Coverage”.
• Code execution profiling. See “Configure Code Execution Profiling for SIL and

PIL”.
• Creation of code generation report and static code metrics. See “View Test

Harness in Code Generation Report” on page 33-46.
6 Start the simulation.

Note: On a Windows operating system, the Windows Firewall might block your SIL
simulation. To allow the SIL simulation, use the Windows Security Alert dialog box . For
example, in Windows 7, click Allow access.

You cannot:

• Close the model while the simulation is running. To interrupt the simulation, in the
Command Window, press Ctrl+C.

• Alter the model during the simulation. You can move blocks and lines as long as it
does not alter the behavior of the model.

You can run a top-model SIL or PIL simulation using the command sim(model).The
software supports the sim command options SrcWorkspace and DstWorkspace for only
the following values:

• SrcWorkspace — 'base'
• DstWorkspace — 'base' or 'current'

For more information on the sim command and its options, see “Run Simulation Using
the sim Command”.

For information about how a simulation behaves when the top model contains a Model
block (and this Model block is a parent Model block containing Model blocks at lower
levels of its reference hierarchy), see “Simulation Mode Override Behavior in Model
Reference Hierarchy” on page 33-21.

33 Numerical Equivalence Checking

33-12

For a PIL simulation, you control the way code compiles and executes in the target
environment through connectivity configurations. See “Create PIL Target Connectivity
Configuration” on page 33-38.

Model Block SIL or PIL Simulation

To configure a Model block for a SIL or PIL simulation:

1 Open your model, for example, rtwdemo_sil_modelblock.
2 Right-click your Model block, for example, Counter A. In the context menu,

select Block Parameters (ModelReference), which opens the Function Block
Parameters dialog box.

3 From the Simulation Mode drop-down list, select the required mode, for example,
Software-in-the-loop (SIL).

4 From the Code interface drop-down list, specify the code that you want to test, for
example, Model reference.

5 Click OK. The software displays the simulation mode as a block label.

If you select Top model, the software displays the block label (SIL: Top).
6 If you are configuring a SIL simulation, specify the portable word sizes option. This

option allows you to switch seamlessly between the SIL and PIL modes. Select
Code Generation > Verification > Enable portable word sizes. See “Configure
Hardware Implementation Settings for SIL” on page 33-25.

7 If required, configure:

• Code coverage. See “Configure SIL and PIL Code Coverage”.

 Configure a SIL or PIL Simulation

33-13

• Code execution profiling for your Model block, by configuring execution profiling
for the top model. See “Configure Code Execution Profiling for SIL and PIL”.

• Creation of code generation report and static code metrics. See “View Test
Harness in Code Generation Report” on page 33-46.

8 Start the simulation.

Note: On a Windows operating system, the Windows Firewall might block your SIL
simulation. To allow the SIL simulation, use the Windows Security Alert dialog box . For
example, in Windows 7, click Allow access.

For a PIL simulation, you control the way code compiles and executes in the target
environment through connectivity configurations. See “Create PIL Target Connectivity
Configuration” on page 33-38.

Use a SIL or PIL Block

You can automatically create a SIL or PIL block from a subsystem and use this block to
test the code generated from the subsystem:

1 In the Configuration Parameters dialog box, select Code Generation >
Verification.

2 From the Create block drop-down list, select either SIL or PIL.
3 If required, configure code execution profiling. For details, see “Code Execution

Profiling for SIL and PIL”.
4 Click OK.
5 In your model window, right-click the subsystem that you want to simulate.
6 Select C/C++ Code > Build This Subsystem.
7 Click Build to start a subsystem build that generates a SIL or PIL block for the

generated subsystem code.
8 Add the generated block to an environment or test harness model that supplies test

vectors or stimulus input.
9 Run simulations with the environment or test harness model to perform SIL or PIL

tests.
10 Verify that the generated code in the SIL or PIL block provides the same results as

the original subsystem.

33 Numerical Equivalence Checking

33-14

Note: On a Windows operating system, the Windows Firewall might block your SIL
simulation. To allow the SIL simulation, use the Windows Security Alert dialog box . For
example, in Windows 7, click Allow access.

You cannot create a SIL or PIL block if you do one of the following:

• Disable the CreateSILPILBlock property.
• Select a code coverage tool.

Create block appears dimmed.

For a PIL simulation, you control the way code compiles and executes in the target
environment through connectivity configurations. See “Create PIL Target Connectivity
Configuration” on page 33-38.

For an example of how you can use the SIL block in testing, see
rtwdemo_sil_pil_script.

Check the SIL or PIL Configuration

To run a SIL or PIL simulation, you might need to change some model settings. To find
out what settings you must change, use the cgv.Config class. Using the cgv.Config
class, you can review your model configuration and determine which settings you
must change to configure the model for SIL or PIL. By default, cgv.Config changes
configuration parameter values to the value that it recommends, but does not save
the model. Alternatively, you can specify that cgv.Config use one of the following
approaches:

• Change configuration parameter values to the values that cgv.Config recommends,
and save the model. Specify this approach using the SaveModel property.

• List the values that cgv.Config recommends for the configuration parameters, but
do not change the configuration parameters or the model. Specify this approach using
the ReportOnly property.

Note:

• To execute the model in the target environment, you might need to make additional
modifications to the configuration parameter values or the model.

 Configure a SIL or PIL Simulation

33-15

• Do not use referenced configuration sets in models that you are changing
using cgv.Config. If the model uses a referenced configuration

set, update the model with a copy of the configuration set. Use the
Simulink.ConfigSetRef.getRefConfigSet method. For more information, see
Simulink.ConfigSetRef in the Simulink documentation.

• If you use cgv.Config on a model that executes a callback function, the callback
function might change configuration parameter values each time the model loads. The
callback function might revert changes that cgv.Config made. When this change
occurs, the model might no longer be set up for SIL or PIL. For more information, see
“Callbacks for Customized Model Behavior”.

For more information about the cgv.Config class, see cgv.Config.

How To Verify a SIL or PIL Configuration

To verify that your model is configured for SIL or PIL:

1 Construct a cgv.Config object that changes the configuration parameter values
without saving the model. For example, to configure your model for SIL:

c = cgv.Config('vdp', 'connectivity', 'sil');

Tip

• You can obtain a list of changes without changing the configuration
parameter values. When you construct the object, include the
'ReportOnly', 'on' property name and value pair.

• You can change the configuration parameter values and save the model.
When you construct the object, include the 'SaveModel', 'on' property
name and value pair.

2 Determine and change the configuration parameter values that the object
recommends using the configModel method. For example:

c.configModel();

3 Display a report of the changes that configModel makes. For example:

c.displayReport();

33 Numerical Equivalence Checking

33-16

4 Review the changes.
5 To apply the changes to your model, save the model.

 Top Model Simulation Using SIL or PIL

33-17

Top Model Simulation Using SIL or PIL

With a top-model SIL or PIL simulation:

• Simulink generates and executes code that uses the same code interface produced by
the standalone build process. See “Code Interfaces for SIL and PIL” on page 33-23.

• You can load data from the MATLAB workspace to specify stimulus signals, and
you can log output signals, which allows you to verify object code generated from a
complete model without creating a separate test harness model. Running the SIL or
PIL simulation is a simple operation.

You can use the Model block approach as an alternative to top-model SIL or PIL
simulation. See “Choose a SIL or PIL Approach” on page 33-7.

For the top-model SIL/PIL approach, Simulink creates a hidden wrapper model. When
you run a top-model SIL simulation, the software generates code for the model and
creates a hidden wrapper model to call this code at each time step.

As a result, in some circumstances, logged signals might have a _wrapper suffix. See
“Top-Model Root-Level Logging Limitations”.

During a SIL/PIL simulation, the software can generate warnings that refer to the
hidden wrapper model. For example:
Warning: The model 'modelName_wrapper' has the 'Configuration Parameters' ...

33 Numerical Equivalence Checking

33-18

Referenced Model Simulation Using SIL or PIL
In addition to the Normal and Accelerator simulation modes, Model blocks support the
Software-in-the-loop (SIL) and Processor-in-the-loop (PIL) simulation
modes.

You can switch easily between the simulation modes. This feature allows you to verify
the generated code by executing the referenced model as compiled code on the host
computer or target platform. You can model and test your embedded software component
in Simulink and reuse your regression test suites across simulation and compiled object
code. With this capability, you can avoid the time-consuming process of leaving the
Simulink software environment to run tests on object code compiled for your production
hardware.

When you set the Simulation mode (SimulationMode) parameter to Software-in-
the-loop (SIL) or Processor-in-the-loop (PIL), you can specify the code under
test through the Function Block Parameters dialog box.

Code interface
(CodeInterface) Setting

Description

Top model Code generated from top model with the standalone code
interface. Code generation uses the slbuild('model')
command.

On the Model block, under the model name, the text
label is (SIL: Top) or (PIL: Top).

Model reference Code generated from referenced model as part of a
model reference hierarchy. Code generation uses the
slbuild('model', 'ModelReferenceRTWTarget')

command.

On the Model block, under the model name, the text
label is (SIL) or (PIL).

For more information, see:

• “Verify Referenced Model Code” on page 33-9
• “Configure a SIL or PIL Simulation” on page 33-10
• “Simulation Mode Override Behavior in Model Reference Hierarchy” on page

33-21

 Referenced Model Simulation Using SIL or PIL

33-19

• “Code Interfaces for SIL and PIL” on page 33-23

33 Numerical Equivalence Checking

33-20

Verify Internal Signals of a Component

Outputs of the SIL or PIL component are available for verification. If you want to
examine an internal signal, you can:

• Enable internal signal logging for top-model or Model block SIL or PIL, but check the
limitations. See “Internal Signal Logging Support”.

• Manually route the signal to the top level.
• Use global data stores to access internal signals:

1 Inside the component, connect a Data Store Write block to the required signal.
2 Outside the component, use a Data Store Read block to access the signal value.

See “About Data Stores” and “Global Data Store Example”.
• Use MAT-file logging. See “Logging”. For PIL, the target environment must support

MAT-file logging.

For more information on signal support, see “I/O Support” on page 33-61.

 Simulation Mode Override Behavior in Model Reference Hierarchy

33-21

Simulation Mode Override Behavior in Model Reference Hierarchy

This section describes simulation behavior when the top model contains a Model block.
This Model block can also be a parent block containing child Model blocks at lower levels
of its reference hierarchy.

Note: You can view your model hierarchy in the Model Dependency Viewer. In the
Referenced Model Instances view, the software displays Model blocks differently to
indicate their simulation modes, for example, Normal, Accelerator, SIL, and PIL. In this
view, the software does not indicate the simulation mode of the top model.

You can specify the simulation mode of a top model to be Normal, Accelerator, Rapid
Accelerator, SIL, or PIL. With a Model block, you can specify all modes except Rapid
Accelerator. The configured simulation mode of a Model block can be overridden by the
parent simulation mode. The following table shows how the software determines the
effective simulation mode of a Model block in the hierarchy.

Mode of Parent or Child Block in Reference HierarchyMode of Top Model or
Parent Block Normal Accelerator SIL PIL

Normal Equivalent Compatible Compatible Compatible
Accelerator Override Equivalent Error Error
Rapid Accelerator Override Override Error Error
SIL Override Override Equivalent Error
PIL Override Override Error Equivalent

The following list explains the different types of simulation behavior:

• Equivalent – Both parent and child Model block run in the same simulation mode.
• Compatible – If the simulation mode of the top model or parent block is Normal, then

the software simulates the child block in the mode specified for it.
• Error – The simulation produces an error. For example, if a top model or parent

Model block has simulation mode Accelerator but contains a child block in SIL or
PIL mode, then running a simulation produces an error: the Accelerator mode cannot
override the SIL and PIL mode of child blocks. This behavior avoids the risk of “false
positives”, that is, the simulation of a model in Accelerator mode will not lead to the

33 Numerical Equivalence Checking

33-22

conclusion that generated source or object code of child Model blocks has been tested
or verified.

• Override – The simulation mode of the top model or parent Model block overrides the
simulation mode of the child block. For example, if a top model or parent Model block
that is configured for a SIL simulation contains a child Model block with simulation
mode Normal or Accelerator, then the software simulates the child block in SIL mode.
This override behavior:

• Allows a Model block in the reference hierarchy to have the SIL or PIL mode.
• Makes lower-level referenced models execute in SIL or PIL mode if you simulate

the top model or parent Model block in SIL or PIL mode. You do not have to switch
manually the simulation mode of every model component in the hierarchy.

Note: For a model reference hierarchy that consists of multiple sub-hierarchies, if the
top-model simulation mode is Normal, the software can run only one sub-hierarchy in
PIL mode. For example, if your Normal mode top model contains multiple Model blocks,
you can specify the PIL mode for only one of the Model blocks.

 Code Interfaces for SIL and PIL

33-23

Code Interfaces for SIL and PIL

In this section...

“Code Interface for Top-Model SIL or PIL” on page 33-23
“Code Interface for Model Block SIL or PIL” on page 33-24

You generate standalone code when you perform, for example, a top-model or right-click
subsystem build for a single deployable component. You can compile and link standalone
code into a standalone executable or integrate it with other code. For more information
on the standalone code interface, see “Entry-Point Functions and Scheduling”.

When you generate code for a referenced model hierarchy, the software generates
standalone executable code for the top model, and a library module called a model
reference target for each referenced model. When the code executes, the standalone
executable invokes the applicable model reference targets to compute the referenced
model outputs. For more information, see “Build Model Reference Targets”.

Note: If you intend to integrate automatically generated code with legacy code, use
standalone code because the standalone code interface is documented. See “Entry-Point
Functions and Scheduling”.

SIL/PIL Feature Standalone Code Interface Model Reference Code
Interface

Top-model Yes No (but you can include
Model blocks inside your top
model)

Model block Yes (if you set Code
interface to Top model)

Yes (if you set Code
interface to Model
reference)

SIL or PIL block Yes No

Code Interface for Top-Model SIL or PIL

Top-model SIL or PIL generates the standalone code interface for the model.

33 Numerical Equivalence Checking

33-24

When you run a top-model SIL or PIL simulation, the software calls the standalone code
for the model if it already exists. The software generates the standalone code if it does
not exist.

Code Interface for Model Block SIL or PIL

For Model Block SIL or PIL, the value of the Code interface block parameter
determines the code interface:

• Top model — The software generates the standalone code interface for the model.
When you run a simulation, the software calls the standalone code for the model if it
already exists. The software generates the standalone code if it does not exist.

• Model reference — The software generates the model reference code interface.
When you run a simulation with a Model block in SIL or PIL mode, the software calls
the model reference target for the Model block if it already exists, or generates the
model reference target. If the model reference target does not yet exist, there are
three ways to generate it:

• Run the simulation.
• Press Ctrl+B to build the top model containing the Model block.
• Use the command slbuild, specifying the model reference option, for example:

 slbuild('model','ModelReferenceRTWTargetOnly')

 Configure Hardware Implementation Settings for SIL

33-25

Configure Hardware Implementation Settings for SIL

In this section...

“Choose Hardware Implementation Approach” on page 33-25
“Portable Word Sizes” on page 33-25
“Test Hardware” on page 33-28
“Production hardware” on page 33-29

Choose Hardware Implementation Approach

Approach Use when

Portable word sizes You want to switch between the SIL and
PIL modes without regenerating code.

Test hardware You want to work around a limitation of
portable word sizes.

Production hardware Production hardware settings match your
host computer architecture.

For information about test and production targets, “Platform Options for Development
and Deployment” in the Simulink Coder documentation.

Portable Word Sizes

Embedded Coder provides an option to specify portable word sizes. If you select this
option for a model, you can use the same generated source code files for:

• Software-in-the-loop (SIL) simulation on the host computer
• Production deployment on the target platform

To configure a model to use portable word sizes, set the following model configuration
parameters.

Parameter Setting

Hardware Implementation > Test hardware
> Test hardware is the same as production
hardware

Selected

33 Numerical Equivalence Checking

33-26

Parameter Setting

Code Generation > Verification > Enable
portable word sizes

Selected

Generated Code Compilation with Portable Word Sizes

When you generate code for a model with portable word sizes specified, the code
generator conditionalizes data type definitions in rtwtypes.h:

#ifdef PORTABLE_WORDSIZES /* PORTABLE_WORDSIZES defined */

…

#else /* PORTABLE_WORDSIZES not defined */

…

#endif /* PORTABLE_WORDSIZES */

If you use the template makefile approach to build code for your host computer, the
template makefile that you select controls the passing of the PORTABLE_WORDSIZES
definition to the compiler. For example, ert_unix.tmf has the following lines:

ifeq ($(PORTABLE_WORDSIZES),1)

CPP_REQ_DEFINES += -DPORTABLE_WORDSIZES

endif

Note: The template makefile that you use to build code for your target must not contain
the PORTABLE_WORDSIZES definition.

With the toolchain approach, the software specifies -DPORTABLE_WORDSIZES for the
compiler only for host-based builds.

For information about the template makefile and toolchain approaches to building code,
see “Configure the Build Process”.

Code that the Host Cannot Compile

Consider the case where your target uses code that the host cannot compile. When
you switch from the PIL mode to the SIL mode and try to simulate the model, you see
compilation errors. You might be able to work around this problem by adding the source

 Configure Hardware Implementation Settings for SIL

33-27

code files to the SkipForSil group in the build information object RTW.BuildInfo. The
SIL build on the host platform does not compile source files present in the SkipForSil
group. For information about how you add source code files to a group in the build
information object, see:

• addSourceFiles in the Simulink Coder reference documentation
• “Customize Post-Code-Generation Build Processing” in the Simulink Coder

documentation

Portable Word Sizes Limitations

The following limitations apply when using portable word sizes in SIL simulation:

• Numerical results might differ between generated code executing in a SIL simulation
and generated code executing on the production hardware under one of the following
conditions:

• Your model contains blocks implemented in TLC, for which C integral promotion
in expressions might behave differently between the MATLAB host and the
production hardware target. Normal and PIL simulation results will match, but
SIL simulation results might be different.

• Your production hardware implements rounding to Floor for signed integer
division, and divisions in your model use rounding mode Floor or Simplest.
Normal and PIL simulation results will match, but SIL simulation results might
be different.

• The precision of floating-point operations differs between the MATLAB host and
the production hardware target. In this case, Normal and SIL simulation results
will match, but PIL simulation results might be different.

• You use custom code with the Stateflow product. In this case, type conversion
statements will not be inserted into the custom code, which might be required to
achieve target overflow behavior on the host. Normal and PIL simulation results
will match, but SIL simulation results might be different.

• Compilation warnings might occur for code generated using portable word sizes if all
of the following conditions exist:

• The combination of MATLAB host and production hardware target word sizes
causes rtwtypes.h to redefine the word sizes using preprocessor macros. For
example, when the production hardware has a 16-bit int data type and the
MATLAB host has a 16-bit short data type, int16_T is redefined to be short on
the host and int on the target.

33 Numerical Equivalence Checking

33-28

• The data types are used in pointer arguments to function calls.
• The called functions are host-based precompiled functions (not compiled using

rtwtypes.h).

Under these conditions, the compiler typically issues a warning similar to the
following:

warning: passing argument 2 of 'frexp' from incompatible pointer type

Executing the generated code on the MATLAB host could lead to memory corruption.
For example, the function "double frexp (double value, int *exp);" expects
'int *' as the second argument, for which 'int16_T *' is passed in the generated
code. But on the MATLAB host, int16_T is redefined to short, and during SIL
execution, frexp will attempt to write 4 bytes to a 2 byte location.

A potential workaround for the SIL workflow is to provide a custom code replacement
library for functions that write to address locations obtained through pointer
arguments. In the above example, the function frexp is called by the reciprocal
square root operation (rSqrt) and rSqrt is replaceable using a code replacement
library. Therefore, you can provide a custom version of rSqrt to support SIL
execution. The replacement function would perform the change in memory allocation
for the data accessed by the pointer variable, perhaps by introducing a temporary
variable and transferring the data to and from that variable. For more information,
see “What Is Code Replacement?” and “What Is Code Replacement Customization?”.

Test Hardware

Use this approach only if you need to work around a limitation of portable word sizes.

To configure a model for test hardware, set the following model configuration
parameters.

Parameter Setting

Code Generation > Verification > Enable
portable word sizes

Not selected

Hardware Implementation > Test hardware
> Test hardware is the same as production
hardware

Not selected

 Configure Hardware Implementation Settings for SIL

33-29

Parameter Setting

Hardware Implementation > Test hardware
> Device vendor

Generic

Hardware Implementation > Test hardware
> Device type

MATLAB Host Computer

For an example of how to configure a model to maintain bit-true agreement between host
simulation and target deployment, and generate code that is portable between the host
and target systems, see rtwdemo_sil_hardware_config.

Production hardware

You can use this approach only when the production hardware settings match your host
computer architecture.

Set the following model configuration parameters.

Parameters Settings

Code Generation > Verification > Enable
portable word sizes

Not selected.

Hardware Implementation > Test hardware
> Test hardware is the same as production
hardware

Selected.

Hardware Implementation > Production
hardware section parameters

Select settings that match your host
computer architecture.

33 Numerical Equivalence Checking

33-30

Debug Code During SIL Simulations

If you notice differences between the results of a Normal mode and SIL mode simulation,
you can rerun the SIL simulation with a debugger enabled. By inserting breakpoints, you
can observe the behavior of code sections, which might help you to understand the cause
of the differences in results.

The software supports the following debuggers;

• On Windows, Microsoft Visual Studio® debugger.
• On Linux, GNU Data Display Debugger (DDD).

Note: You can perform SIL debugging only if your Microsoft Visual C++ or GNU GCC
compiler is supported by the Simulink product family. For more information, see
supported compilers.

To enable your debugger for a SIL simulation, on the Configuration Parameters >
Code Generation > Verification pane, select the Enable source-level debugging
for SIL simulations check box.

If your top model has Model blocks where the Code interface block parameter is
set to Top model, then the Enable source-level debugging for SIL simulations
parameters for the top model and referenced models must have the same settings.
Otherwise, the software produces an error.

When you run the SIL simulation, for example on a Windows computer, your model.c or
model.cpp file opens in the Microsoft Visual Studio IDE with debugger breakpoints at
the start of the model_initialize and model_step functions.

http://www.mathworks.com/support/compilers/

 Debug Code During SIL Simulations

33-31

You can now use the debugger features to observe code behavior. For example, you can
step through code and examine variables.

To end the debugging session:

1 Remove all breakpoints.
2 Click the Continue button (F5).

The SIL simulation runs to completion and the Microsoft Visual Studio IDE closes
automatically.

Note: In the Microsoft Visual Studio IDE, if you select Debug > Stop Debugging, the
SIL simulation times out with the following error message:

The timeout of 1 seconds for receiving data from the rtiostream

interface has been exceeded. There are multiple possible causes

for this failure.

...

33 Numerical Equivalence Checking

33-32

...

 Prevent Code Changes in Multiple SIL and PIL Simulations

33-33

Prevent Code Changes in Multiple SIL and PIL Simulations

Suppose you want to run multiple SIL or PIL simulations with:

• Varying test vectors (parameter sets and input data).
• Unchanged generated code, that is, none of the simulations regenerate or rebuild

code after the initial build. For example, you want to avoid the incremental code
generation that an initial value change can trigger.

For such simulations, use Model block SIL/PIL or the SIL/PIL block.

With Model block SIL/PIL, use one of these methods:

• In your test harness model, set Configuration Parameters > Model Referencing
> Rebuild to Never. If the Model block Code interface parameter is Model
reference, the software does not rebuild the referenced model code. (If the Code
interface parameter is Top model, the software ignores the Rebuild setting.)

• Create a protected model and generate source or binary code. Then, insert the
protected model in your test harness model. With this method, you can verify top
model code (with the standalone code interface) or model reference code.

The following table summarizes code generation behavior after the initial build.

SIL/PIL Approach Code Generation Behavior
After Initial Build

Model block Configuration
Parameters > Model
Referencing > Rebuild
of test harness model set to
Never.

1 Component (algorithm)
code from initial build is
not regenerated.

2 Component code
makefile is not called.

3 SIL/PIL test harness
from initial build is not
regenerated.

4 SIL/PIL test harness
makefile is called.

Model block (protected
model)

Source code from protected
model.

You observe the same
behavior except for feature 2.
In this case, the component
code makefile is called.

33 Numerical Equivalence Checking

33-34

SIL/PIL Approach Code Generation Behavior
After Initial Build

Binary code from protected
model.

You observe features 1–4.

SIL/PIL block You observe features 1–4.

Related Examples
• “Model Referencing Pane”
• “Create a Protected Model”
• “Choose a SIL or PIL Approach” on page 33-7
• “Configure a SIL or PIL Simulation” on page 33-10

 PIL Customization for Target Environment

33-35

PIL Customization for Target Environment
In this section...

“Target Connectivity Configurations for PIL” on page 33-35
“Target Connectivity API Components” on page 33-35
“Communications rtiostream API” on page 33-36

Target Connectivity Configurations for PIL

Use target connectivity configurations and the target connectivity API to customize
processor-in-the-loop (PIL) verification for target environments.

Through a target connectivity configuration, you specify:

• A target connectivity configuration name for a target connectivity API
implementation.

• Settings that define the set of Simulink models that the configuration is compatible
with, for example, the set of models that have a particular system target file, template
makefile, and hardware implementation.

You must associate a connectivity configuration name with a connectivity API
implementation. You can have many different connectivity configurations, each
configuration being available for PIL simulation. Register a connectivity configuration
with Simulink by creating an sl_customization.m file and placing it on the MATLAB
search path.

To run a PIL verification, the software must first determine which of the available
connectivity configurations to use. The software looks for a connectivity configuration
that is compatible with the model under test. If the software finds multiple or no
compatible connectivity configurations, the software generates an error message with
information about resolving the problem.

For more information, see:

• “Target Connectivity API Components”
• “Create PIL Target Connectivity Configuration”

Target Connectivity API Components

Use the target connectivity API to integrate third-party tools for:

33 Numerical Equivalence Checking

33-36

• Building the processor-in-the loop (PIL) application, an executable for the target
hardware

• Downloading, starting, and stopping the application on the target
• Communicating between Simulink and the target

The following diagram shows the components of the target connectivity PIL API.

Communications rtiostream API

The rtiostream API supports communications for the target connectivity API. Use the
rtiostream API to implement a communication channel that enables data exchange
between different processes.

PIL verification requires a host-target communications channel. This communications
channel comprises driver code that runs on the host and target. The rtiostream API

 PIL Customization for Target Environment

33-37

defines the signature of target-side and host-side functions that must be implemented by
this driver code.

The API is independent of the physical layer that sends the data. Possible physical layers
include RS232, Ethernet, or Controller Area Network (CAN).

A full rtiostream implementation requires both host-side and target-side drivers. Code
generation software includes host-side drivers for the default TCP/IP implementation as
well as a version for serial communications. To use:

• The TCP/IP rtiostream communications channel, you must provide, or obtain from
a third party, target-specific TCP/IP device drivers.

• The serial communications channel, you must provide, or obtain from a third party,
target-specific serial device drivers.

For other communication channels and platforms, the code generation software does not
provide default implementations. You must provide both the host-side and the target-side
drivers.

The rtiostream API comprises the following functions:

• rtIOStreamOpen

• rtIOStreamSend

• rtIOStreamRecv

• rtIOStreamClose

For information about:

• Using rtiostream functions in a connectivity implementation, see “Create a
Connectivity API Implementation” on page 33-38.

• Testing the rtiostream shared library methods from MATLAB code, see
rtiostream_wrapper.

• Debugging and verifying the behavior of custom rtiostream interface
implementations, see “Test an rtiostream Driver” on page 33-39.

33 Numerical Equivalence Checking

33-38

Create PIL Target Connectivity Configuration

In this section...

“Create a Connectivity API Implementation” on page 33-38
“Test an rtiostream Driver” on page 33-39
“Synchronize Host and Target” on page 33-41
“Specify Hardware Timer” on page 33-42
“Register a Connectivity API Implementation” on page 33-44
“Target Connectivity API Examples” on page 33-44

Create a Connectivity API Implementation

To create a target connectivity API implementation, you must create a subclass of
rtw.connectivity.Config.

• You must instantiate rtw.connectivity.MakefileBuilder. This class configures
the build process.

• You must create a subclass of rtw.connectivity.Launcher. This class downloads
and executes the application using a third-party tool.

• Configure your rtiostream communications implementation:

• On the target-side, integrate the driver code implementing rtiostream
functions directly into the build process by creating a subclass of
rtw.pil.RtIOStreamApplicationFramework.

• On the host-side, compile the driver code into a shared library. You load and
initialize this shared library by instantiating (or optionally, customizing)
rtw.connectivity.RtIOStreamHostCommunicator.

• For code execution profiling, you must create a timer object that provides details
of the hardware-specific timer and associated source files. See “Specify Hardware
Timer”.

Note: Each time you modify a connectivity implementation, close and reopen the models
to refresh them.

See also:

 Create PIL Target Connectivity Configuration

33-39

• “Creating Subclasses — Syntax and Techniques” in MATLAB documentation.
• rtwdemo_custom_pil_script for an example that helps you to create a target

connectivity configuration using the target connectivity API

Test an rtiostream Driver

Use a test suite to debug and verify the behavior of custom rtiostream interface
implementations.

The test suite has the following advantages:

• Reduces time for integrating custom hardware that does not have built-in
rtiostream support.

• Reduces time for testing custom rtiostream drivers.
• Helps analyze the performance of custom rtiostream drivers.

The test suite has two parts. One part of the test suite runs on the target.

Note: After building the target application, download it to the target and run it.

To launch this part, compile and link the following files, which are in matlabroot/
toolbox/coder/rtiostream/src/rtiostreamtest.

• rtiostreamtest.c

• rtiostreamtest.h

• rtiostream.h (located at matlabroot/rtw/c/src/)
• rtiostream implementation under investigation (for example,

rtiostream_tcpip.c)
• main.c

To run the MATLAB part of the test suite, invoke rtiostreamtest. The syntax is as
follows:

rtiostreamtest(connection,param1,param2)

• connection is a string indicating the communication method. It can have values
'tcp' or 'serial'.

33 Numerical Equivalence Checking

33-40

• param1 and param2 have different values depending on the value of connection.

• If connection is 'tcp', then param1 and param2 are hostname and port,
respectively. For example, rtiostreamtest('tcp', 'localhost', 2345).

• If connection is 'serial', then param1 and param2 are COM port and baud
rate, respectively. For example, rtiostreamtest('serial', 'COM1', 9600).

You can run the MATLAB part of the test suite as follows:

rtiostreamtest('tcp','localhost','2345')

An output in the following format appears in the MATLAB window:

Test suite for rtiostream

Initializing connection with target...

Hardware characteristics discovered

Size of char : 8 bit

Size of short : 16 bit

Size of int : 32 bit

Size of long : 32 bit

Size of float : 32 bit

Size of double : 64 bit

Size of pointer : 64 bit

Byte ordering : Little Endian

rtiostream characteristics discovered

Round trip time : 0.96689 ms

rtIOStreamRecv behavior : non-blocking

Test results

Test 1 (fixed size data exchange): PASS

Test 2 (varying size data exchange): PASS

Test suite for rtiostream finished successfully

Furthermore, the following profile appears.

 Create PIL Target Connectivity Configuration

33-41

Synchronize Host and Target

If you use the rtiostream API to implement the communications channel, the host and
target must be synchronized, which prevents Simulink from transmitting and receiving
data before the target application is fully initialized.

33 Numerical Equivalence Checking

33-42

To synchronize the host and target for TCP/IP rtiostream
implementations, use the setInitCommsTimeout method from
rtw.connectivity.RtIOStreamHostCommunicator. This approach works well
for connection-oriented TCP/IP rtiostream implementations because Simulink
automatically waits until the target server is running.

With other rtiostream implementations, for example, serial, the Simulink side of the
rtiostream connection will open without waiting for the target to be fully initialized.
In this case, you must make your Launcher implementation wait until the target
application is fully initialized. Use one of the following approaches to synchronize your
host and target:

• Add a pause at the end of the Launcher implementation that makes the Launcher
wait until target initialization is complete.

• In the Launcher implementation, use third-party downloader or debugger APIs that
wait until target initialization is complete.

• Implement a handshaking mechanism in the Launcher / rtiostream
implementation to confirm that target initialization is complete.

Specify Hardware Timer

For code execution profiling, you must create a timer object that provides details of the
hardware-specific timer and associated source files. You can use the Code Replacement
Tool or the code replacement library API to specify this hardware-specific timer.

To specify the timer with the Code Replacement Tool:

1 Open the Code Replacement Tool. In the Command Window, enter crtool.
2 Create a new code replacement table. Select File > New table.
3 Create a new function entry. Under Tables List, right-click the new table. Then,

from the context-menu, select New entry > Function.
4 In the middle view, select the new unnamed function.
5 On the Mapping Information pane:

a From the Function drop-down list, select code_profile_read_timer.
b Specify the count direction for your timer. For example, from the Count

direction drop-down list, select Up.
c In the Ticks per second field, specify the number of ticks per second for your

timer, for example, 1e+09.

 Create PIL Target Connectivity Configuration

33-43

The default value is 0. In this case, the software reports time measurements in
terms of ticks, not seconds.

d In the Name field, specify a replacement function name, for example, MyTimer.
e Click Apply.

f To validate the function entry, click Validate entry.
6 On the Build Information pane, specify the required build information. See

“Specify Build Information for Replacement Code”.
7 Save the table (Ctrl+S). When you save the table for the first time, use the Save As

dialog box to specify the file name and location.

You must save the table in a location that is on the MATLAB search
path. For example, you can save this file in the folder for your subclass of
rtw.connectivity.Config.

33 Numerical Equivalence Checking

33-44

The software stores your timer information as a code replacement library table.
8 Assuming you save the table as MyCrlTable.m, in your subclass of

rtw.connectivity.Config, add the following line:

setTimer(this, MyCrlTable)

For more information, see “What Is Code Replacement?” and “What Is Code Replacement
Customization?”.

Register a Connectivity API Implementation

Register the new connectivity API implementation to Simulink as a connectivity
configuration, by creating or adding to an sl_customization.m file. By doing so,
you also define the set of Simulink models that the new connectivity configuration is
compatible with.

For details, see rtw.connectivity.ConfigRegistry.

Target Connectivity API Examples

For step-by-step examples, see:

• rtwdemo_custom_pil_script

This example shows you how to create a custom PIL implementation using the
target connectivity APIs. You can examine the code that configures the build process
to support PIL, a downloading and execution tool, and a communication channel
between host and target. Follow the steps in the example to activate a full host-based
PIL configuration.

• rtwdemo_rtiostream_script

This example shows you how to implement a communication channel for use with the
Embedded Coder product and your embedded target. This communication channel
enables exchange of data between different processes. PIL simulation requires
exchange of data between the Simulink software running on your host computer and
deployed code executing on target hardware.

The rtiostream interface provides a generic communication channel that you can
implement in the form of target connectivity drivers for a range of connection types.

 Create PIL Target Connectivity Configuration

33-45

The example shows how to configure your own target-side driver for TCP/IP, to
operate with the default host-side TCP/IP driver. The default TCP/IP communications
allow high-bandwidth communication between host and target, which you can use for
transferring data such as video.

Note: If you customize the rtiostream TCP/IP implementation for your PIL
simulations, you must turn off Nagle's algorithm for the server side of the
connection. If Nagle's algorithm is not turned off, your PIL simulations might run
at a significantly slower speed. The matlabroot/rtw/c/src/rtiostream/
rtiostreamtcpip/rtiostream_tcpip.c file shows how you can turn off Nagle's
algorithm:

/* Disable Nagle's Algorithm*/

option = 1;

sockStatus = setsockopt(lFd,IPPROTO_TCP,TCP_NODELAY,(char*)&option,sizeof(option));

For your custom TCP/IP implementation, you might have to modify this code.

The example also shows how to implement custom target connectivity drivers,
for example, using serial, CAN, or USB for both host and target sides of the
communication channel.

33 Numerical Equivalence Checking

33-46

View Test Harness in Code Generation Report

With top-model and Model block SIL and PIL simulations, you can produce a code
generation report and static code metrics that cover SIL and PIL test harness files. The
information helps you to:

• Understand and review the SIL and PIL verification process.
• See how your registered custom target connectivity files fit into the target application

that runs during a SIL or PIL simulation.

This feature is not supported for simulations that you run with the PIL block.

To configure the creation of a code generation report and static code metrics, on the
Configuration Parameters > Code Generation > Report pane, select the Create
code generation report and Static code metrics check boxes. Then click OK. For
more information about:

• Code generation reports, see “HTML Code Generation Report Extensions”
• Static code metrics, see “Static Code Metrics”

At the end of the simulation, the software displays test harness files and the
corresponding static code metrics in the code generation report.

 View Test Harness in Code Generation Report

33-47

The software displays the test harness files in the Interface files category.

Note: You must not use files from the SIL/PIL test harness in code development as these
files can change over releases. Use supplied APIs for code development.

33 Numerical Equivalence Checking

33-48

SIL and PIL Simulation Support and Limitations

In this section...

“About SIL and PIL Simulation Support and Limitations” on page 33-49
“Code Source Support” on page 33-50
“Block Support” on page 33-52
“Configuration Parameters Support” on page 33-55
“I/O Support” on page 33-61
“Hardware Implementation Support” on page 33-71
“Other Feature Support” on page 33-73

 SIL and PIL Simulation Support and Limitations

33-49

About SIL and PIL Simulation Support and Limitations

Top-model and Model block software-in-the-loop (SIL) and processor-in-the-loop (PIL)
simulation modes, and SIL and PIL blocks are Embedded Coder features.

The following tables summarize the support provided for top-model SIL and PIL, Model
block SIL and PIL and the SIL or PIL block. “Yes” indicates a supported feature.

Information on selected aspects of SIL and PIL is also provided, especially unsupported
features and limitations.

33 Numerical Equivalence Checking

33-50

Code Source Support

Code Source Code Interface Top-Model SIL/PIL Model Block SIL/PIL SIL/PIL Block

Top model Standalone Yes Yes. See “Top-Model
Code Testing with
Model Block SIL/PIL”
on page 33-50.

Yes

Atomic
subsystem

Standalone No No Yes

Virtual
subsystem

Standalone No No Yes, but
recommend atomic
subsystem. See
“Algebraic Loop
Issues” on page
33-56.

Model block Model reference
target

No, but you can
include Model
blocks inside your
top model.

Yes. See
“Conditionally
Executed Subsystem”
on page 33-51.

No, but you can
include Model
blocks inside your
model.

Enabled/
Triggered
subsystem

Standalone No No Yes

Exported
function-call
subsystem

Export
Functions

N/A N/A Yes

Export-function
model

Export
Functions

Yes Yes N/A

Legacy code Custom See “Custom Code
Interfaces” on
page 33-51.

See “Custom Code
Interfaces” on page
33-51.

See “Custom Code
Interfaces” on page
33-51.

For more information, see “Code Interfaces for SIL and PIL” on page 33-23.

Top-Model Code Testing with Model Block SIL/PIL

The following limitations apply:

 SIL and PIL Simulation Support and Limitations

33-51

• The Model Variants block does not support the block parameter CodeInterface.
The software behaves as if CodeInterface is set to 'Model reference'. To work
around this limitation, use the Variant Subsystem block. Through this block, you
can incorporate Model blocks for which CodeInterface is set to 'Top model'.

• Because model arguments do not apply to a top model, when the Code interface
block parameter is set to Top model, the software does not support the Model
arguments block parameter.

• Conditional execution does not apply to a top model. If a Model block is set up
to execute conditionally and the Code interface block parameter is set to 'Top
model', the software produces an error when you run a SIL or PIL simulation.

• For sample time independent models, you must set Configuration Parameters
> Solver > Periodic sample time constraint to Ensure sample time
independent.

• Simulation results from top-model code and model reference code might differ when
a root-level Inport is connected to a root-level Outport by a signal that has a signal
object with an initial value.

For top-model code, the software associates the signal object with the Inport.
The software might apply the initial value for the signal object to the Inport. See
“Initialization Behavior Summary for Signal Objects”.

For model reference code, the software associates the signal object with the Outport.
The software does not apply the initial value for the signal object to the Inport.

Conditionally Executed Subsystem

You see an error if:

• You place your Model block (in either SIL or PIL simulation mode) in a conditionally
executed subsystem and the referenced model is multirate (that is, has multiple
sample times). Single rate referenced models (with only a single sample time) are not
affected.

• Your Model block (in either SIL or PIL simulation mode) has blocks that depend on
absolute time and is conditionally executed.

Custom Code Interfaces

MathWorks does not provide direct SIL/PIL support for code interfaces such as legacy
code. However, you can incorporate these interfaces into Simulink as an S-function (for

33 Numerical Equivalence Checking

33-52

example, using the Legacy Code Tool, S-Function Builder, or handwritten code), and then
verify them using SIL/PIL.

SIL/PIL Does Not Check Simulink Coder Error Status

SIL/PIL does not check the Simulink Coder error status of the generated code under test.
This error status flags exceptional conditions during execution of the generated code.

The Simulink Coder error status can also be set by blocks in the model (for example,
custom blocks developed by a user). It is a limitation that SIL/PIL cannot check this error
status and report back errors.

Block Support

Blocks Supported
Within SIL/PIL
Component

Top-Model SIL/PIL Model Block SIL/PIL SIL/PIL Block

Driver blocks Yes, but not
recommended.

Yes, but not recommended. Yes, but not
recommended.

Function Caller
block

Yes Yes No. Use the Model
block SIL/PIL
approach, with the
Code interface block
parameter set to Top
model.

MATLAB Function
block

Yes Yes Yes

Model block Yes Yes Yes
Merge blocks Yes Yes. Cannot connect SIL/PIL

outputs to Merge blocks. See
“Merge Block Issue” on page
33-53.

Yes. Cannot connect
SIL/PIL outputs to
Merge blocks. See
“Merge Block Issue” on
page 33-53.

Scope blocks, and
all types of run-time
display.

No No No

 SIL and PIL Simulation Support and Limitations

33-53

Blocks Supported
Within SIL/PIL
Component

Top-Model SIL/PIL Model Block SIL/PIL SIL/PIL Block

For example, display
of port values and
signal values.
Simulink Function
block

Yes Yes No. Use the Model
block SIL/PIL
approach, with the
Code interface block
parameter set to Top
model.

Stop blocks No. SIL/PIL ignores
the Stop Simulation
block and continues
simulating.

No. SIL/PIL ignores the
Stop Simulation block and
continues simulating.

No. SIL/PIL ignores
the Stop Simulation
block and continues
simulating.

To File blocks Yes, if MAT-file
logging is on. MAT-
file logging might not
be available in PIL
mode.

Yes, if MAT-file logging is
on. MAT-file logging might
not be available in PIL
mode.

Yes, if MAT-file logging
is enabled. For PIL
block, MAT-file logging
must be supported.

To Workspace blocks Yes, if MAT-file
logging is on. MAT-
file logging might not
be available in PIL
mode.

No, MAT-file logging is not
supported.

Yes, if MAT-file logging
is supported and on.

Merge Block Issue

If you connect SIL/PIL outputs to a Merge block, you see an error because S-function
memory is not reusable.

Model in Compiled State During Top-Model SIL/PIL

During a top-model SIL/PIL simulation, the software places the model in a compiled
state – see model. This action might result in a conflict over global resources between the
model and the generated SIL/PIL code. In this case, you might see differences between
Normal mode and SIL/PIL simulation outputs.

33 Numerical Equivalence Checking

33-54

For example, you might see this limitation with a model that uses UDP blocks from
the DSP System Toolbox. These blocks open UDP sockets, which can lead to resource
contention between the model and the generated SIL/PIL code.

Other Top-Model SIL/PIL Limitations

SIL/PIL does not support the callbacks (model or block) StartFcn and StopFcn.

Note: Top-model SIL/PIL supports the callback InitFcn.

 SIL and PIL Simulation Support and Limitations

33-55

Configuration Parameters Support

Configuration
Parameters

Top-Model SIL/PIL Model Block SIL/PIL SIL/PIL Block

ERT-based system
target file

Yes Yes Yes

AUTOSAR system
target file

Yes. See “Verify
AUTOSAR C Code with
SIL and PIL”.

Yes. See “Verify
AUTOSAR C Code with
SIL and PIL”.

Yes. See “Verify
AUTOSAR C Code with
SIL and PIL”.

GRT-based system
target file

No No No

Classic call interface No; see “Missing Code
Interface Description
File Errors” on page
33-56.

No; see “Missing Code
Interface Description
File Errors” on page
33-56.

No; see “Missing Code
Interface Description
File Errors” on page
33-56.

Function Prototype
Control

Yes Yes Yes

Reusable code
format

Yes, but see “Tunable
Parameters and SIL/
PIL” on page 33-64
and “Imported Data
Definitions” on page
33-67.

N/A Yes, but see “Tunable
Parameters and SIL/
PIL” on page 33-64
and “Imported Data
Definitions” on page
33-67.

Standard math
library

Yes Yes Yes

Code replacement
library

Yes Yes Yes

C++ Yes Yes Yes
C++ class Yes Yes Yes
Generate ASAP2 file Yes Yes Yes
Generate example
main

N/A N/A N/A

MAT-file logging Yes. For PIL, the target
environment might not
support MAT-file logging.

Yes. For PIL, the target
environment might

Yes. For PIL, the target
environment might

33 Numerical Equivalence Checking

33-56

Configuration
Parameters

Top-Model SIL/PIL Model Block SIL/PIL SIL/PIL Block

not support MAT-file
logging.

not support MAT-file
logging.

Signal logging Yes, for internal signals
and for signals connected
to root-level inports and
outports.
See “Internal Signal
Logging Support”,
“Top-Model Root-Level
Logging Limitations”.

Yes. See “Internal
Signal Logging
Support”.

No, but see “Verify
Internal Signals of a
Component” on page
33-20.

'Simplified' model
initialization

Yes Yes Yes

Single output/
update

Yes, but see “Algebraic
Loop Issues” on page
33-56.

Yes, but see “Algebraic
Loop Issues” on page
33-56.

Yes, but see “Algebraic
Loop Issues” on page
33-56.

Configuration set
reference

Yes Yes Yes

• “Missing Code Interface Description File Errors” on page 33-56
• “Algebraic Loop Issues” on page 33-56
• “Internal Signal Logging Support” on page 33-58
• “Top-Model Root-Level Logging Limitations” on page 33-59

Missing Code Interface Description File Errors

SIL/PIL requires a code interface description file, which is generated during the code
generation process for the component under test. If the code interface description file is
missing, the SIL/PIL simulation cannot proceed and you see an error reporting that the
file does not exist. This error can occur if you select the unsupported option Classic call
interface in your configuration parameters. Do not select this option.

Algebraic Loop Issues

For more information on algebraic loops, see:

• “Algebraic Loops” in the Simulink documentation.

 SIL and PIL Simulation Support and Limitations

33-57

• The Algebraic Loops section in “Modeling Semantic Considerations”.
• “Code Generation of Subsystems”.

There are three ways that PIL simulation can introduce algebraic loops that do not exist
for a normal simulation:

• “Algebraic Loops Caused by Code Generation for a Virtual Subsystem” on page
33-57

• “Algebraic Loops Caused by “Single output/update function”” on page 33-57
• “Algebraic Loops Caused by SIL/PIL Scheduling Limitations” on page 33-57

Algebraic Loops Caused by Code Generation for a Virtual Subsystem

If you generate code for a virtual subsystem, code generation treats the subsystem
as atomic and generates the code accordingly. The resulting code can change the
execution behavior of your model, for example, by applying algebraic loops, and introduce
inconsistencies to the simulation behavior.

Declare virtual subsystems as atomic subsystems to enable consistent simulation and
execution behavior for your model. For more information, see “Code Generation of
Subsystems”

Algebraic Loops Caused by “Single output/update function”

The “single output/update function” in code generation optimization can introduce
algebraic loops because it introduces direct feedthrough via a combined output and
update function.

This option is not compatible with the Minimize algebraic loop occurrences
option (in the Subsystem Parameters dialog box and Model Referencing pane of the
Configuration Parameters dialog box). This option allows code generation to remove
algebraic loops by partitioning generated code between output and update functions to
avoid direct feedthrough.

Algebraic Loops Caused by SIL/PIL Scheduling Limitations

The S-function scheduling mechanism that the software uses to execute the SIL/PIL
component has the following limitations:

• Direct feedthrough is set to true.
• Separate output and update functions in the SIL/PIL component are executed from

the mdlOutputs S-function callback.

33 Numerical Equivalence Checking

33-58

These limitations mean that SIL/PIL can introduce algebraic loops that do not exist
in normal simulation, and you might get incorrect results. If this happens, you see a
warning or error about the introduced algebraic loop and SIL/PIL results can differ from
simulation results. You do not see a warning or error if Configuration Parameters >
Diagnostics > Algebraic loop is set to none.

A workaround is to break the algebraic loop by inserting a Unit Delay block so that the
algebraic loop does not occur. You can then use SIL/PIL.

Internal Signal Logging Support

You can use Simulink signal logging with the SIL and PIL simulation modes, with both
top-model SIL or PIL and Model block (referenced model) SIL or PIL. This feature allows
you to:

• Collect signal logging outputs (e.g., logsout) during SIL and PIL simulations.
• Log the internal signals and the root-level outputs of a SIL or PIL component.
• Manage the SIL and PIL signal logging settings using the Simulink Signal Logging

Selector.
• Compare logged signals between normal, SIL, and PIL simulations, for example,

using the Simulation Data Inspector.

SIL or PIL signal logging requires the following model configuration settings:

• On the Data Import/Export pane of the Configuration Parameters dialog box, set
Signal logging format to Dataset.

• On the Code Generation > Interface pane of the Configuration Parameters dialog
box, set Interface to C API.

The C API is used to determine the addresses of the internal signals that need to be
logged. See also “Internal Signal Logging Limitations” on page 33-58.

Internal Signal Logging Limitations

• The C API requires that support for floating-point numbers is selected (see
Configuration Parameters > Code Generation > Interface > Support >
floating-point numbers).

• Only signals that are included in the C API are logged during SIL/PIL simulation.
You might need to configure signals as test points (see Signal Properties > Test
point) to check that they are observable in the generated code.

 SIL and PIL Simulation Support and Limitations

33-59

• Logging of signals in models referenced by the SIL/PIL component is not supported.
Only signals within the top level of the SIL/PIL component are logged.

• Virtual signals (e.g. MUX) are not supported.
• Buses are not supported.
• Custom storage classes are not supported.
• Continuous, asynchronous and triggered sample times are not supported.
• Logging of Stateflow States and Local Data is not supported.

With top-model internal signal logging, some additional limitations apply:

• Variable-size signals, Function-call signals, and Action signals: error for normal
simulation and warning for SIL/PIL.

• State port signals: error for normal simulation; no warning for SIL/PIL.
• Signals feeding merge blocks are not supported for logging in normal simulation but

are logged in SIL/PIL mode. The logged values during SIL/PIL will be the same as the
logged values for the output of the merge block.

• Under the following circumstances, top-model Normal simulation logs data at a
periodic rate, but top-model SIL/PIL simulation logs data at the constant rate:

• Inline parameters is not selected.
• A constant sample time signal from a Model block is logged in the top model.
• The logged signal is not directly connected to a root-level output port.

To avoid this behavior, select Inline parameters to log at constant rate in all
simulation modes.

Top-Model Root-Level Logging Limitations

Top-model SIL/PIL supports signal logging for signals connected to root-level inports and
outports. Both ModelDataLogs and Dataset signal logging formats are supported, and
the C API is not required. Root-level logging has the following limitations:

• The characteristics of the logged data such as data type, sample time, and dimensions
match the characteristics of the root-level inports and outports rather than the
characteristics of the connected signal.

In some cases, there can be differences in data type and dimensions between the
signal being logged and the root inport or outport that the signal is connected to.
Consider the following examples.

33 Numerical Equivalence Checking

33-60

• If a signal being logged has matrix dimensions [1x5] but the outport connected
to the signal has vector dimensions (5), then the data logged during a SIL or PIL
simulation has vector dimensions (5).

• If a signal being logged has scalar dimensions but the outport connected to the
signal has matrix dimensions [1x1], then the data logged during a SIL or PIL
simulation has matrix dimensions [1x1].

• Signals connected to duplicated inports are not logged during SIL/PIL simulation. No
warning is issued.

During normal simulation, signals connected directly to duplicated inports are logged.
• The Signal Logging Selector / DataLoggingOverride override mechanism is not

supported.
• Unnamed signals are not logged if the signal logging format is ModelDataLogs.
• Normal and SIL/PIL simulations log bus signals with names that are different when

all of the following conditions apply:

• The SaveOutput or SignalLogging configuration parameter is on.
• The signal logging format is Dataset.
• The names of the elements in the bus signal are different from the corresponding

names in the bus object.
• The software inserts the suffix, _wrapper, in the following cases:

• For signal logging, if you specify the signal logging format to be ModelDataLogs,
the software adds _wrapper to the block path for signals in logsout. For
example:

>> logsout.SignalLogging

 Name: 'SignalLogging'

 BlockPath: 'sillogging_wrapper/sillogging'

 PortIndex: 1

 SignalName: 'SignalLogging'

 ParentName: 'SignalLogging'

 TimeInfo: [1x1 Simulink.TimeInfo]

 Time: [11x1 double]

 Data: [11x1 double]

If the Simulation Data Inspector is recording data, the software adds _wrapper to
the run name.

 SIL and PIL Simulation Support and Limitations

33-61

To avoid this behavior, use the Dataset signal logging format. See
Simulink.SimulationData.Dataset.

• For output logging, if the save format is Structure or Structure with time
and you run the sim command without specifying the single-output format, the
software adds _wrapper to the block name for signals in yout. For example:

>> yout.signals

ans =

 values: [11x1 double]

 dimensions: 1

 label: 'SignalLogging'

 blockName: 'sillogging_wrapper/OutputLogging'

If the save format is Array, the software does not add the suffix.

To avoid this behavior, run command-line simulations with the sim command
specifying the single-output format. See “Run Simulation Using the sim
Command”.

I/O Support

I/O Top-Model SIL/PIL Model Block SIL/PIL SIL/PIL Block

Tunable parameters
(Model reference
arguments)

N/A Yes. See “Tunable
Parameters and SIL/PIL”
on page 33-64.

N/A

Tunable parameters
(Workspace
variables)

No Yes. See “Tunable
Parameters and SIL/PIL”
on page 33-64.

Yes. See “Tunable
Parameters and SIL/PIL”
on page 33-64.

Virtual buses No Yes Yes
Nonvirtual buses Yes, but see “Top-

Model SIL/PIL Bus
Limitations” on page
33-70.

Yes Yes

MUX/DEMUX No Yes Yes, but see “PIL
Block MUX Support
Limitations” on page
33-70.

33 Numerical Equivalence Checking

33-62

I/O Top-Model SIL/PIL Model Block SIL/PIL SIL/PIL Block

Vector/2D/
Multidimensional

Yes Yes Yes

Complex data Yes Yes Yes
Fixed-point data Yes. See “Fixed-Point

Data Types Wider
Than 32 Bits” on
page 33-66.

Yes. See “Fixed-Point Data
Types Wider Than 32
Bits” on page 33-66.

Yes. See “Fixed-Point
Data Types Wider
Than 32 Bits” on page
33-66.

Multiword fixed-
point data

No No No

Complex fixed-point
data

Yes Yes Yes

Fixed-point data
type override

Yes Yes Yes

Data type
replacement

Yes, but see “Data
Type Replacement
Limitation” on page
33-70

Yes, but see “Data Type
Replacement Limitation”
on page 33-70

Yes, but see “Data Type
Replacement Limitation”
on page 33-70

Goto/From I/O N/A N/A Yes
Global data store I/O Yes. See “Global

Data Store Support”
on page 33-67
and “Imported Data
Definitions” on page
33-67.

Yes. See “Global Data
Store Support” on page
33-67 and “Imported
Data Definitions” on page
33-67.

Yes. See “Global Data
Store Support” on page
33-67 and “Imported
Data Definitions” on page
33-67.

Local data store I/O No. See “Imported
Data Definitions” on
page 33-67.

No. See “Imported Data
Definitions” on page
33-67.

No. See “Imported Data
Definitions” on page
33-67.

Non-port-based
sample times

Yes Yes Yes

Continuous sample
times

Not at SIL or PIL
component boundary.

No Not at SIL or PIL
component boundary.

 SIL and PIL Simulation Support and Limitations

33-63

I/O Top-Model SIL/PIL Model Block SIL/PIL SIL/PIL Block

Outputs with
constant sample
time

Yes No Yes

Non-auto-storage
classes for data
(such as signals,
parameters, data
stores)

Yes. See “Imported
Data Definitions” on
page 33-67.

Yes. See “Imported Data
Definitions” on page
33-67.

Yes. See “Imported Data
Definitions” on page
33-67.

Simulink data
objects

Yes Yes Yes

Simulink numeric
type and
alias type

Yes Yes Yes

Simulink
enumerated data

Yes Yes Yes

Custom storage
classes

Yes, but see
“Imported Data
Definitions” on
page 33-67, and
“GetSet Custom
Storage Class” on
page 33-68.

Yes, but see “Imported
Data Definitions” on page
33-67, and “GetSet
Custom Storage Class” on
page 33-68.

Yes, but see “Imported
Data Definitions” on page
33-67, and “GetSet
Custom Storage Class” on
page 33-68.

Variable-size signals No. See “Variable-
Size Signals and
SIL/PIL” on page
33-69.

Yes. On the
Configuration
Parameters > Model
Referencing pane, in
the Propagate sizes of
variable-size signals
field, specify During
execution.
Otherwise, software
generates error.

No. See “Variable-Size
Signals and SIL/PIL” on
page 33-69.

Noninlined S-
functions

Yes No Yes

• “Tunable Parameters and SIL/PIL” on page 33-64

33 Numerical Equivalence Checking

33-64

• “Fixed-Point Data Types Wider Than 32 Bits” on page 33-66
• “Global Data Store Support” on page 33-67
• “Imported Data Definitions” on page 33-67
• “GetSet Custom Storage Class” on page 33-68
• “Unsupported Implementation Errors” on page 33-68
• “Variable-Size Signals and SIL/PIL” on page 33-69
• “Data Type Overrides Unavailable for Most Blocks in Embedded Targets and Desktop

Targets” on page 33-69
• “Data Type Replacement Limitation” on page 33-70
• “Top-Model SIL/PIL Bus Limitations” on page 33-70
• “PIL Block MUX Support Limitations” on page 33-70
• “Incremental Build for Top-Model SIL/PIL” on page 33-70
• “Exported Functions in Feedback Loops” on page 33-70

Tunable Parameters and SIL/PIL

You can tune parameters during a SIL/PIL mode simulation the same way that you tune
parameters during a Normal mode simulation.

For more information, see “Global Tunable Parameters” and “Using Model Arguments” in
the Simulink documentation.

The following table summarizes SIL/PIL support for tunable workspace parameters.

Action Top-Model SIL/PIL Model Block SIL/PIL SIL/PIL Block

Define and initialize
parameters

Yes. See
“Limitations” on
page 33-64.

Yes. See
“Limitations” on
page 33-64.

Yes. See
“Limitations” on
page 33-64.

Tune parameters Yes. See
“Limitations” on
page 33-64.

Yes. See
“Limitations” on
page 33-64.

Yes. See
“Limitations” on
page 33-64.

Limitations

During a SIL/PIL simulation, the software cannot define, initialize, or tune the following
types of tunable workspace parameters. The software produces warnings or errors.

 SIL and PIL Simulation Support and Limitations

33-65

Software response forParameter description

Top-Model SIL/PIL Model Block SIL/PIL SIL/PIL Block

Parameters with storage
class that applies
"static" scope or
"const" keyword. For
example, Custom, Const,
or ConstVolatile

Warning Warning Warning

Parameters with
multiword fixed-point data
types

Warning Error Warning

Parameters with data
types that have different
sizes on host and target

Warning Error Warning

During a SIL/PIL block simulation, the software supports the tuning of tunable
workspace parameters but not tunable block dialog parameters. You can view the list of
tunable workspace parameters through the Function Block Parameters dialog box of the
SIL/PIL block.

For C++ class code, SIL/PIL tunable workspace parameters can be tuned provided you do
not use the following settings together:

• Block parameter visibility: private
• Block parameter access : Method or Inlined method

For top-model SIL/PIL and the SIL/PIL block, consider the case where all of the following
conditions apply:

• Code Generation > Interface > Code interface packaging is Reusable
function.

• Code Generation > Interface > Use dynamic memory allocation for model
initialization is not selected.

• Optimization > Signals and Parameters > Inline parameters is not selected.
• The model contains parameters with storage class Auto or SimulinkGlobal.

If the SIL/PIL component cannot dynamically initialize tunable parameters in the rtP
model parameter structure, the software produces an error message like the following:

33 Numerical Equivalence Checking

33-66

Parameter Dialog:InitialOutput in 'rtwdemo_sil_topmodel/CounterTypeA/count'

is part of the imported "rtP" structure in the generated code but cannot be

initialized by SIL or PIL. To avoid this error, make sure the parameter

corresponds to a tunable base workspace variable with a storage class such

as SimulinkGlobal and is supported for dynamic parameter initialization /

tuning with SIL/PIL. Alternatively, select Configuration Parameters >

Code Generation > Interface and set 'Code interface packaging' to

'Nonreusable function', or select 'Use dynamic memory allocation for model

initialization'.

The limitation does not apply if Code Generation > Interface > Use dynamic
memory allocation for model initialization is selected.

For Model block SIL/PIL, if you specify the code under test to be Top model, you can
tune parameters while a simulation runs. If you tune parameters between successive
runs of the simulation, the software generates new code for the later run. The new code
uses your latest settings as initial parameter values.

Fixed-Point Data Types Wider Than 32 Bits

SIL/PIL supports fixed-point data types that are wider than 32 bits. For example:

• 64-bit long and long long
• 64-bit execution profiling timer data type
• int64 and uint64, which are used in MATLAB Coder SIL execution.

The following constraints apply:

• For 64-bit data type support, the data type must be representable as long or
long long on the MATLAB host and the target. Otherwise, the software uses the
multiword fixed-point approach, which SIL/PIL does not support.

• 32-bit Windows does not support 64-bit long or long long data types. In this
case, the software uses the multiword fixed-point approach, which SIL/PIL does not
support.

• The software does not support the 40-bit long data type of the TI’s C6000™ target.

Through the Configuration > Hardware Implementation pane, you can enable
support for the 64-bit long long data type. However, for data types with widths
between 33 and 40 bits (inclusive), the software implements the data types using the
40-bit long data type, which SIL/PIL does not support.

 SIL and PIL Simulation Support and Limitations

33-67

Global Data Store Support

SIL/PIL supports global data stores. However, with components that are not export-
function models, top-model SIL/PIL and SIL/PIL block simulations that access global
data stores must be single rate. Otherwise, the software produces an error.

Imported Data Definitions

You can use, for example, signals, parameters, and data stores that specify storage
classes with imported data definitions.
Top-Model SIL/PIL and SIL/PIL Block

Top-model SIL/PIL and the SIL/PIL block do not define imported signals that are
internal with respect to the component or models referenced by the component.

Top-model SIL/PIL and the SIL/PIL block automatically define storage for imported data
associated with:

• Signals at the root level of the component (on the I/O boundary)
• Global data stores
• Parameters

Top-model SIL/PIL and the SIL/PIL block do not define storage for other imported data.
You must define the storage through custom code included by the component under test
or through the PIL rtw.pil.RtIOStreamApplicationFramework API. For example,
the SIL/PIL application does not define storage for imported data associated with:

• Internal signals (not on the I/O boundary)
• Local data stores

Model Block SIL/PIL

The SIL/PIL application automatically defines storage for imported data associated with:

• Signals at the root level of the component (on the I/O boundary)
• Parameters. See Tunable Parameters and SIL/PIL Limitations.
• Global data stores

Note: Model block SIL/PIL does not define imported signals that are internal with
respect to the component or models referenced by the component.

33 Numerical Equivalence Checking

33-68

A limitation is that SIL/PIL does not define storage for other imported data storage. You
must define the storage through custom code included by the component under test or
through the PIL rtw.pil.RtIOStreamApplicationFramework API. For example, the
PIL application does not define imported data storage for data associated with:

• Internal signals (not on the I/O boundary)
• Local data stores

GetSet Custom Storage Class

The software supports the GetSet custom storage class for all types of SIL and PIL
simulations. The SIL/PIL test harness automatically provides C definitions of the Get
and Set functions that are used during SIL/PIL simulations. In addition, the software
supports only scalar signals, parameters and global data stores.

Unsupported Implementation Errors

If you use a data store, signal, or parameter implementation that SIL/PIL does not
support, you might see errors like the following:
The following data interfaces have

implementations that are not supported by SIL or PIL.

data interfaces can be global data stores, inports, outports or parameters.

You see this error message because the model output port has been optimized through
virtual output port optimization. See “Virtualized Output Ports Optimization”. The error
occurs because the properties (for example, data type, dimensions) of the signal or signals
entering the virtual root output port have been modified by routing the signals in one of
the following ways:

• Through a Mux block
• Through a block that changes the signal data type. To check the consistency of data

types in the model, display Port Data Types by selecting Display > Signals & Ports
> Port Data Types.

• Through a block that changes the signal dimensions. To check the consistency of data
types in the model, display dimensions by selecting Display > Signal & Ports >
Signal Dimensions.

Note: Dimension changes from scalar (1) to matrix [1x1], and, matrix [1x1] to
scalar (1), can lead to this error. Furthermore, it is difficult to inspect the model for

 SIL and PIL Simulation Support and Limitations

33-69

such changes because the Display > Signal & Ports > Signal Dimensions feature
does not distinguish between (1) and [1x1] dimensions. The software shows both
signals as scalar signals. Check your model and workspace objects carefully and see
that scalar dimensions are specified consistently.

The following model causes this error by changing the output port signal data type.

Variable-Size Signals and SIL/PIL

SIL/PIL treats variable-size signals at the I/O boundary of the SIL/PIL component as
fixed-size signals, which can lead to errors during propagation of signal sizes. To avoid
such errors, use only fixed-size signals at the I/O boundary of the SIL/PIL component.

There might be cases where no error occurs during propagation of signal sizes. In these
cases, the software treats variable-size input signals as zero-size signals.

Data Type Overrides Unavailable for Most Blocks in Embedded Targets and Desktop Targets

When you attempt to perform a datatype override on a block, you might get an error
message similar to the following example:

Error reported by S-function 'sfun_can_frame_splitter' in

'c2000_host_CAN_monitor/CAN Message Unpacking/CAN Message

Unpacking': Incompatible DataType or Size specified.

33 Numerical Equivalence Checking

33-70

Fixed-Point Tool data type overrides are not available for blocks in Simulink Coder >
Desktop Targets and Embedded Coder > Embedded Targets libraries that support
fixed-point data types.

There is no resolution for this issue.

Data Type Replacement Limitation

The software does not support replacement data type names that you define for the built-
in data type boolean if these names map to either the int or uint built-in data type.

Top-Model SIL/PIL Bus Limitations

The software does not support grounded or unconnected signals at the outputs of a top
model.

For top-model SIL/PIL, set the Simulation > Configuration Parameters >
Diagnostics > Connectivity+Mux blocks used to create bus signals parameter to
error. For details, see “Prevent Bus and Mux Mixtures”.

PIL Block MUX Support Limitations

The PIL block supports mux signals, except mixed data-type mux signals that expand
into individual signals during a right-click subsystem build. You see an error for
unsupported cases.

Incremental Build for Top-Model SIL/PIL

When you start a top-model SIL/PIL simulation, the software regenerates code if it
detects changes to your model. The software detects changes by using a checksum for the
model. However, the software does not detect changes that you make to:

• The HeaderFile property of a Simulink.AliasType object
• Legacy S-functions

Therefore, if you make these changes, you must build (Ctrl-B) your model again before
starting the next PIL simulation.

Exported Functions in Feedback Loops

If your model has function-call subsystems and you export a subsystem that has
context-dependent inputs (for example, feedback signals), then the results of a SIL/PIL

 SIL and PIL Simulation Support and Limitations

33-71

simulation with the generated code might not match the results of the Normal mode
simulation of your model. One approach to make SIL/PIL and Normal mode simulations
yield identical results is to use Function-Call Feedback Latch blocks in your model. This
approach allows you to make context-dependent inputs become context-independent.

Note: The software generates a warning identifying context-dependent inputs of exported
function-call subsystems if you set Configuration Parameters > Diagnostics >
Connectivity > Context-dependent inputs to one of the following:

• Enable all as warnings

• Use local settings

• Disable all

For details, see “Context-dependent inputs”.

Hardware Implementation Support

Hardware Implementation Embedded Coder

Different host and target data-type size No. See “Hardware Implementation Settings” on
page 33-71.

Word-addressable targets Yes.

Data type sizes smaller than target word sizes are
supported.

Multiword data type word order different
from target byte order

No. PIL simulation fails with undefined behavior.

Hardware Implementation Settings

PIL requires that, in the Simulink Configuration Parameters dialog box, you configure
the right Hardware Implementation settings for the target environment. You must
also specify byte ordering for targets.

Warning If you do not specify the correct Hardware Implementation, the PIL
simulation fails, displaying undefined behavior.

33 Numerical Equivalence Checking

33-72

Host/Target Data Type Size Mismatch

PIL supports only data types that have the same size on the host and the target at the
PIL I/O boundary.

The data types used at the PIL I/O boundary are restricted based on the following rule:
PIL supports the data type only if the data-type size on the host (Simulink) is the same
as the data-type size on the target.

• For boolean, uint8, and int8, the size is 8-bits.
• For uint16 and int16, the size is 16-bits.
• For uint32 and int32, the size is 32-bits.
• For single, the size is 32-bits.
• For double, the size is 64-bits.

Examples of unsupported data types are:

• single and double on targets with 24-bit floating-point types
• double on targets with 32-bit double, that is, the same size as single

 SIL and PIL Simulation Support and Limitations

33-73

Other Feature Support

Other Features Top-Model SIL/PIL Model Block SIL/PIL SIL/PIL Block

Multiplatform
support (such as
Linux)

Yes Yes Yes

Execution profiling Yes Yes Yes
Stack profiling SIL: No.

PIL: Depends on
target connectivity
configuration and third-
party product support.

SIL: No.
PIL: Depends on
target connectivity
configuration and
third-party product
support.

SIL: No.
PIL: Depends on target
connectivity configuration
and third-party product
support.

C code coverage
report

Yes. See also “Tips and
Limitations”.

Yes. See also “Tips
and Limitations”.

SIL: No.
PIL: Depends on target
connectivity configuration
and third-party product
support.

Debugging SIL: Yes.
PIL: No.

SIL: Yes.
PIL: No.

SIL: Yes.
PIL: No

Non-ASCII
characters in name
of current working
folder

SIL: No.
PIL: N/A

SIL: No.
PIL: N/A

SIL: No.
PIL: N/A

33 Numerical Equivalence Checking

33-74

Programmatic Code Generation Verification

In this section...

“Code Generation Verification API Overview” on page 33-74
“Verify Numerical Equivalence with CGV” on page 33-74
“Verify Numerical Equivalence Between Two Modes of Execution of a Model” on page
33-75
“Plot Output Signals” on page 33-80

Code Generation Verification API Overview

When you execute a model in different modes of execution, you can use the Code
Generation Verification (CGV) API to verify the numerical equivalence of results. CGV
supports executing the model in simulation, Software-In-the-Loop (SIL), and Processor-
In-the-Loop (PIL). For more information about SIL and PIL, see “About SIL and PIL
Simulations”. The CGV example, rtwdemo_cgv_script, shows CGV configuration,
execution, and comparison support.

Note: CGV helps you verify the numerical equivalence of results for a given set of inputs.
CGV can detect numerical deviations for the given set of inputs only. The completeness of
the input data that you provide to CGV determines the validity of the results.

Verify Numerical Equivalence with CGV

Before verifying numerical equivalence:

• Configure your model for SIL or PIL simulation. For more information, see “Configure
a SIL or PIL Simulation” on page 33-10.

• Use the cgv.Config class of the CGV API to verify the model configuration for SIL
or PIL simulation. For more information, see “Check the SIL or PIL Configuration”.

• Configure your model for code generation. For more information, see “Application
Objectives”.

• Save your model. If you modify a model without saving it, CGV might issue an error.

To verify numerical equivalence:

 Programmatic Code Generation Verification

33-75

• Set up the tests for the first execution environment. For example, simulation.
• Use run (cgv.CGV) to run the tests for the first execution environment.
• Set up the tests for the second execution environment. For example, top-model PIL.
• Use cgv.CGV.run to run the tests for the second execution environment.
• Use getOutputData (cgv.CGV) to get the output data for each execution environment.
• Use getSavedSignals (cgv.CGV) to display the signal names in the output data.

(optional)
• Build a list of signal names for input to other cgv.CGV methods. (optional)
• Use createToleranceFile (cgv.CGV) to create a file correlating tolerance information

with output signal names. (optional)
• Use compare (cgv.CGV) to compare the output signals of the first and second

execution environments for numerical equivalence.

Verify Numerical Equivalence Between Two Modes of Execution of a
Model

The following example describes configuring, executing, and comparing the results of the
rtwdemo_cgv model in simulation and SIL modes.

This example contains the following tasks:

• “Configure the Model” on page 33-75
• “Execute the Model” on page 33-76
• “Compare All Output Signals” on page 33-77
• “Compare Individual Output Signals” on page 33-79

Configure the Model

The first task for verifying numerical equivalence is to check the configuration of your
model.

1 Open the rtwdemo_cgv model.
cgvModel = 'rtwdemo_cgv';

load_system(cgvModel);

2 Save the model to a working directory.

33 Numerical Equivalence Checking

33-76

save_system(cgvModel, fullfile(pwd, cgvModel));

close_system(cgvModel); % avoid original model shadowing saved model

3 Use the cgv.Config class to create a cgv.Config object. Specify parameters that
check and modify configuration parameter values and save the model for top-model
SIL mode of execution.
cgvCfg = cgv.Config('rtwdemo_cgv', 'connectivity', 'sil', 'SaveModel', 'on');

4 Use the configModel (cgv.Config) method to review your model configuration and to
change the settings to configure your model for SIL. When 'connectivity' is set
to 'sil', the system target file is automatically set to 'ert.tlc'. If you specified
the parameter/value pair, ('SaveModel', 'on') when you created the cgvCfg
object, the cgv.Config.configModel method saves the model.

Note: CGV runs on models that are open. If you modify a model without saving it,
CGV might issue an error.

cgvCfg.configModel(); % Evaluate, change, and save your model for SIL

5 Display a report of the changes that cgv.Config.configModel makes to the
model.
cgvCfg.displayReport(); % In this example, this reports no changes

Execute the Model

Use the CGV API to execute the model in two modes. The two modes in this example are
normal mode simulation and SIL mode. In each execution of the model, the CGV object
for each mode captures the output data and writes the data to a file.

1 If you have not already done so, follow the steps described in “Configure the Model”
on page 33-75.

2 Create a cgv.CGV object that specifies the rtwdemo_cgv model in normal mode
simulation.
cgvSim = cgv.CGV(cgvModel, 'connectivity', 'sim');

Note: When the top model is set to Normal simulation mode, the CGV API sets
referenced models in PIL mode to Accelerator mode.

3 Provide the input file to the cgvSim object.
cgvSim.addInputData(1, [cgvModel '_data']);

 Programmatic Code Generation Verification

33-77

4 Before execution of the model, specify the MATLAB files to execute or MAT-files to
load. This step is optional.
cgvSim.addPostLoadFiles({[cgvModel '_init.m']});

5 Specify a location where the object writes all output data and metadata files for
execution. This step is optional.
cgvSim.setOutputDir('cgv_output');

6 Execute the model.
result1 = cgvSim.run();

*** handling PostLoad file rtwdemo_cgv_init.m

Start CGV execution of model rtwdemo_cgv, ComponentType topmodel, ...

 connectivity sim, InputData rtwdemo_cgv_data.mat

End CGV execution: status completed

7 Get the output data associated with the input data.
outputDataSim = cgvSim.getOutputData(1);

8 For the next mode of execution, SIL, repeat steps 2–7.
cgvSil = cgv.CGV(cgvModel, 'Connectivity', 'sil');

cgvSil.addInputData(1, [cgvModel '_data']);

cgvSil.addPostLoadFiles({[cgvModel '_init.m']});

cgvSil.setOutputDir('cgv_output');

result2 = cgvSil.run();

At the MATLAB command line, the result is:
*** handling PostLoad file rtwdemo_cgv_init.m

Start CGV execution of model rtwdemo_cgv, ComponentType topmodel, ...

 connectivity sil, InputData rtwdemo_cgv_data.mat

Starting build procedure for model: rtwdemo_cgv

Successful completion of build procedure for ...

 model: rtwdemo_cgv

Preparing to start SIL simulation ...

Starting SIL simulation for model: rtwdemo_cgv

Stopping SIL simulation for model: rtwdemo_cgv

End CGV execution: status completed

Compare All Output Signals

After setting up and running the test, compare the outputs by doing the following:

1 If you have not already done so, configure and test the model, as described in
“Configure the Model” on page 33-75 and “Execute the Model” on page 33-76.

2 Test that the execution result of the model:
if ~result1 || ~result2

 error('Execution of model failed.');

33 Numerical Equivalence Checking

33-78

end

3 Use the getOutputData (cgv.CGV) method to get the output data from the cgv.CGV
objects.
simData = cgvSim.getOutputData(1);

silData = cgvSil.getOutputData(1);

4 Display a list of signals by name using the getSavedSignals (cgv.CGV) method.
cgvSim.getSavedSignals(simData);

At the MATLAB command line, the result it:
simData.hi0.Data(:,1)

simData.hi0.Data(:,2)

simData.Vector.Data(:,1)

simData.Vector.Data(:,2)

simData.Vector.Data(:,3)

simData.Vector.Data(:,4)

simData.BusOutputs.hi0.Data(:,1)

simData.BusOutputs.hi0.Data(:,2)

simData.BusOutputs.hi1.mid0.lo0.Data(1,1,:)

simData.BusOutputs.hi1.mid0.lo0.Data(1,2,:)

simData.BusOutputs.hi1.mid0.lo0.Data(2,1,:)

simData.BusOutputs.hi1.mid0.lo0.Data(2,2,:)

simData.BusOutputs.hi1.mid0.lo1.Data

simData.BusOutputs.hi1.mid0.lo2.Data

simData.BusOutputs.hi1.mid1.Data(:,1)

simData.BusOutputs.hi1.mid1.Data(:,2)

simData.ErrorsInjected.Data

5 Using the list of signals, build a list of signals in a cell array of strings. The signal
list can contain a number of signals.
signalList = {'simData.ErrorsInjected.Data'};

6 Use the createToleranceFile (cgv.CGV) method to create a file, in this example,
'localtol', correlating tolerance information with output signal names.
toleranceList = {{'absolute', 0.5}};

cgv.CGV.createToleranceFile('localtol', signalList, toleranceList);

7 Compare the output data signals. By default, the compare (cgv.CGV) method looks at
all signals which have a common name between both executions. If a tolerance file is
present, cgv.CGV.compare uses the associated tolerance for a specific signal during
comparison; otherwise the tolerance is zero. In this example, the 'Plot' parameter
is set to 'mismatch'. Therefore, only mismatched signals produce a plot.
[matchNames, ~, mismatchNames, ~] = ...

 cgv.CGV.compare(simData, silData, 'Plot', 'mismatch', ...

 'Tolerancefile', 'localtol');

fprintf('%d Signals match, %d Signals mismatch\n', ...

 length(matchNames), length(mismatchNames));

disp('Mismatched Signal Names:');

 Programmatic Code Generation Verification

33-79

disp(mismatchNames);

At the MATLAB command line, the result is:

14 Signals match, 1 Signals mismatch

Mismatched Signal Names:

 'simData.ErrorsInjected.Data'

A plot results from the mismatch on signal simData.ErrorsInjected.Data.

The lower plot displays the numeric difference between the results.

Compare Individual Output Signals

After setting up and running the test, compare the outputs of individual signals by doing
the following:

33 Numerical Equivalence Checking

33-80

1 If you have not already done so, configure and test the model, as described in
“Configure the Model” on page 33-75 and “Execute the Model” on page 33-76.

2 Use the getOutputData (cgv.CGV) method to get the output data from the cgv.CGV
objects.
simData = cgvSim.getOutputData(1);

silData = cgvSil.getOutputData(1);

3 Use the getSavedSignals (cgv.CGV) method to display the output data signal names.
Build a list of specific signal names in a cell array of strings. The signal list can
contain number of signals.
cgv.CGV.getSavedSignals(simData);

signalList = {'simData.BusOutputs.hi1.mid0.lo1.Data', ...

'simData.BusOutputs.hi1.mid0.lo2.Data', 'simData.Vector.Data(:,3)'};

4 Use the specified signals as input to the compare (cgv.CGV) method to compare the
signals from separate runs.
[matchNames, ~, mismatchNames, ~] = ...

 cgv.CGV.compare(simData, silData, 'Plot', 'mismatch', ...

 'signals', signalList);

fprintf('%d Signals match, %d Signals mismatch\n', ...

 length(matchNames), length(mismatchNames));

if ~isempty(mismatchNames)

 disp('Mismatched Signal Names:');

 disp(mismatchNames);

end

At the MATLAB command line, the result is:
3 Signals match, 0 Signals mismatch

Plot Output Signals

After setting up and running the test, use the plot (cgv.CGV) method to plot output
signals.

1 If you have not already done so, configure and test the model, as described in
“Configure the Model” on page 33-75 and “Execute the Model” on page 33-76.

2 Use the getOutputData (cgv.CGV) method to get the output data from the cgv.CGV
objects.
simData = cgvSim.getOutputData(1);

3 Use the getSavedSignals (cgv.CGV) method to display the output data signal names.
Build a list of specific signal names in a cell array of strings. The signal list can
contain number of signals.
cgv.CGV.getSavedSignals(simData);

 Programmatic Code Generation Verification

33-81

signalList = {'simData.Vector.Data(:,1)'};

4 Use the specified signal list as input to the plot (cgv.CGV) method to compare the
signals from separate runs.
[signalNames, signalFigures] = cgv.CGV.plot(simData, ...

 'Signals', signalList);

34

Software-in-the-Loop Execution for
MATLAB Coder

• “Code Verification Through Software-in-the-Loop and Processor-in-the-Loop
Execution” on page 34-2

• “Software-in-the-Loop Execution Using the MATLAB Coder App” on page 34-4
• “Software-in-the-Loop Execution From Command Line” on page 34-6
• “Code Debugging During SIL Execution” on page 34-9
• “PIL Customization for Target Environment” on page 34-12
• “Create PIL Target Connectivity Configuration” on page 34-15
• “Processor-in-the-Loop Execution Using the MATLAB Coder App” on page 34-22
• “Processor-in-the-Loop Execution From Command Line” on page 34-25
• “SIL/PIL Execution Support and Limitations” on page 34-30

34 Software-in-the-Loop Execution for MATLAB Coder

34-2

Code Verification Through Software-in-the-Loop and Processor-in-
the-Loop Execution

MATLAB Coder supports software-in-the-loop (SIL) and processor-in-the-loop (PIL)
execution, which enables you to verify production-ready source code and compiled
object code. With these execution modes, you can reuse test vectors developed for your
MATLAB functions to verify the numerical behavior of library code.

In SIL execution, through a MATLAB SIL interface, the software compiles and runs
library code on your host computer. In PIL execution, through a MATLAB PIL interface,
the software cross-compiles and runs production object code on a target processor or an
equivalent instruction set simulator. Before you run a PIL execution, you must set up a
PIL connectivity configuration for your target.

The workflow for generating and verifying code is:

1 Set up MATLAB Coder.
2 Fix errors detected at design time.
3 Generate MEX function.
4 Test MEX function.
5 Generate C/C++ library code.
6 Verify generated C/C++ code through SIL or PIL execution — requires Embedded

Coder license.

In step 4, you verify code that is generated for execution within MATLAB. However,
this code is different from the standalone code generated for libraries. In step 6, with an
Embedded Coder license, you use SIL or PIL execution to verify the standalone code.

For more information, use the following table.

Feature See

SIL execution • “Software-in-the-Loop Execution Using
the MATLAB Coder App” on page
34-4

• “Software-in-the-Loop Execution From
Command Line” on page 34-6

 Code Verification Through Software-in-the-Loop and Processor-in-the-Loop Execution

34-3

Feature See

PIL target connectivity configuration • “PIL Customization for Target
Environment” on page 34-12

• “Create PIL Target Connectivity
Configuration” on page 34-15

• “Processor-in-the-Loop Execution From
Command Line” on page 34-25

PIL execution • “Processor-in-the-Loop Execution Using
the MATLAB Coder App” on page
34-22

• “Processor-in-the-Loop Execution From
Command Line” on page 34-25

Code generation, MEX functions, and
libraries

• “MATLAB Code Analysis”
• “Generating Code”
• “Deployment”

34 Software-in-the-Loop Execution for MATLAB Coder

34-4

Software-in-the-Loop Execution Using the MATLAB Coder App

Use software-in-the-loop (SIL) execution to verify the numerical behavior of the
generated C/C++ code with reference to your original MATLAB functions.

1 To open the MATLAB Coder app, on the MATLAB Toolstrip Apps tab, under Code
Generation, click the app icon.

2
To open your project, click and then click Open existing project. Select the
project. For example, kalman_filter01.prj.

3 On the Generate Code page, click the Generate arrow .
4 In the Generate dialog box:

a Set Build type to Static Library (.lib) or Dynamic Library (.dll).
b In the Output file name field, use the default value. For example, kalman01.
c Specify Language.
d Clear the Generate code only check box.
e Under Production Hardware, use the default values for Device vendor

(Generic) and Device type (MATLAB Host Computer).

5 Click More Settings:

 Software-in-the-Loop Execution Using the MATLAB Coder App

34-5

a Select the Hardware > Test hardware is the same as production
hardware check box.

b Click Close.
6 To generate the C/C++ code, click Generate.
7 To open the Test dialog box, click Test.
8 Specify the test file that calls the original MATLAB functions, for example,

test01_ui.m.
9 If required, select the Enable source-level debugging for SIL check box.
10 To start the SIL execution, click Verify Generated Library.

The software:

• Generates a standalone library, for example, codegen\lib\kalman01.
• Generates SIL interface code, for example, codegen\lib\kalman01\sil
• Runs the test file, replacing calls to the MATLAB function by calls to the

generated code in the library.
• Displays messages from the SIL execution in the Test Output tab.

11 Verify that the results from the SIL execution agree with the results from the
original MATLAB functions.

12 To terminate the SIL execution process, click Stop SIL. Alternatively, on the Test
Output tab, click the link that follows To terminate execution.

Note: On a Windows operating system, the Windows Firewall might block the SIL
execution. To allow the SIL execution, use the Windows Security Alert dialog box. For
example, in Windows 7, click Allow access.

Related Examples
• “C Code Generation Using the MATLAB Coder App”
• “Software-in-the-Loop Execution From Command Line” on page 34-6
• “Code Debugging During SIL Execution” on page 34-9

34 Software-in-the-Loop Execution for MATLAB Coder

34-6

Software-in-the-Loop Execution From Command Line

Use software-in-the-loop (SIL) execution to verify the numerical behavior of the
generated C/C++ code with reference to your original MATLAB functions.

To set up and start a SIL execution from the command line:

1 Create a coder.EmbeddedCodeConfig object.
2 Configure the object for SIL.
3 Use the codegen function to generate library code for your MATLAB function and

the SIL interface.
4 Use the coder.runTest function to run the test file for your original MATLAB

function.

To terminate the SIL execution, use the clear function_sil or clear mex
command.

The following example shows how you can set up and run a SIL execution from the
command line.

SIL Execution of Code Generated for a Kalman Estimator

1 Copy MATLAB code for Kalman estimator

From docroot\toolbox\coder\examples\kalman, copy the following files to
your working folder:

• kalman01.m — MATLAB function for the Kalman estimator
• test01_ui.m — MATLAB file to test kalman01.m
• plot_trajectory.m — File that plots actual target trajectory and Kalman

estimator output
• position.mat — Input data

src_dir = ...

 fullfile(docroot,'toolbox','coder','examples','kalman');

copyfile(fullfile(src_dir,'kalman01.m'), '.')

copyfile(fullfile(src_dir,'test01_ui.m'), '.')

 Software-in-the-Loop Execution From Command Line

34-7

copyfile(fullfile(src_dir,'plot_trajectory.m'), '.')

copyfile(fullfile(src_dir,'position.mat'), '.')

For a description of the Kalman estimator in this example, see “C Code Generation
at the Command Line”.

2 Configure SIL execution

a From your working folder, create a coder.EmbeddedCodeConfig object.

config = coder.config('lib');

config.GenerateReport = true; % Optional, documents code in HTML report

b Configure the object for SIL.

config.VerificationMode = 'SIL';

% Check that production hardware setting is the default

% i.e. 'Generic->MATLAB Host Computer'

disp(config.HardwareImplementation.ProdHWDeviceType);

c If required, enable the Microsoft Visual Studio debugger for SIL execution:

config.SILDebugging = true;

3 Generate code and run SIL execution

a Generate library code for the kalman01 MATLAB function and the SIL
interface.

codegen('-config', config, '-args', {zeros(2,1)}, 'kalman01');

The software creates the following output folders:

• codegen\lib\kalman01 — Standalone code for kalman01.
• codegen\lib\kalman01\sil — SIL interface code for kalman01.

b Run the MATLAB test file test01_ui with kalman01_sil. kalman01_sil is
the SIL interface for kalman01.

coder.runTest('test01_ui', ['kalman01_sil.' mexext]);

Verify that the output of this run matches the output from the original kalman01.m
function.

34 Software-in-the-Loop Execution for MATLAB Coder

34-8

Note: On a Windows operating system, the Windows Firewall might block the SIL
execution. To allow the SIL execution, use the Windows Security Alert dialog box.
For example, in Windows 7, click Allow access.

4 Debug code during SIL execution

If you enable the Microsoft Visual Studio debugger, then running the test file opens
the Microsoft Visual Studio IDE with debugger breakpoints at the start of the
kalman01_initialize and kalman01 functions.

You can use the debugger features to observe code behavior. For example, you can
step through code and examine variables.

To end the debugging session:

a Remove all breakpoints.
b Click the Continue button (F5).

The SIL execution runs to completion.
5 Terminate SIL execution

Terminate the SIL execution process.

clear kalman01_sil;

You can also use the command clear mex, which clears MEX functions from
memory.

 Code Debugging During SIL Execution

34-9

Code Debugging During SIL Execution

If you notice differences between the outputs of your original MATLAB functions and the
generated code from a SIL execution, you can rerun the SIL execution with a debugger
enabled. By inserting breakpoints, you can observe the behavior of code sections, which
might help you to understand the cause of the differences in results.

The software supports the following debuggers:

• On Windows, Microsoft Visual Studio debugger.
• On Linux, GNU Data Display Debugger (DDD).

Note: You can perform SIL debugging only if your Microsoft Visual C++ or GNU GCC
compiler is supported by the MATLAB product family. For more information, see
supported compilers.

To run a SIL execution with debugging enabled:

1 On the Generate Code page, select Test.
2 Select the Enable source-level debugging for SIL check box.
3 Click Verify Generated Library.

On a Windows computer, your user_fn.c or user_fn.cpp file opens in the Microsoft
Visual Studio IDE with debugger breakpoints at the start of the user_fn_initialize
and user_fn functions.

http://www.mathworks.com/support/compilers/

34 Software-in-the-Loop Execution for MATLAB Coder

34-10

You can now use the debugger features to observe code behavior. For example, you can
step through code and examine variables.

To end the debugging session:

1 Remove all breakpoints.
2 Click the Continue button (F5).

The SIL execution runs to completion.
3 To terminate the SIL execution process, on the Test Output tab, click the link that

follows To terminate execution, for example, clear kalman01_sil.

The Microsoft Visual Studio IDE closes automatically.

Note: If you select Debug > Stop Debugging, the SIL execution times out with the
following error message:

Communications error: failed to send data to the target. There might be

multiple reasons for this failure.

 Code Debugging During SIL Execution

34-11

...

...

Related Examples
• “Software-in-the-Loop Execution Using the MATLAB Coder App” on page 34-4
• “Software-in-the-Loop Execution From Command Line” on page 34-6

34 Software-in-the-Loop Execution for MATLAB Coder

34-12

PIL Customization for Target Environment

In this section...

“Target Connectivity Configurations for PIL” on page 34-12
“Target Connectivity PIL API Components” on page 34-12
“Communications rtiostream API” on page 34-13

Target Connectivity Configurations for PIL

Use target connectivity configurations and the target connectivity API to customize
processor-in-the-loop (PIL) verification for target environments.

Through a target connectivity configuration, you specify:

• A target connectivity configuration name for a target connectivity API
implementation.

• Settings that define the MATLAB code that the configuration is compatible with, for
example, the code that is generated for a particular hardware implementation.

You must associate a connectivity configuration name with a connectivity API
implementation. You can have many different connectivity configurations, each
configuration being available for PIL simulation. Register a connectivity configuration
with MATLAB by creating an rtwTargetInfo.m file and placing it on the MATLAB
search path.

To run a PIL verification, the software must first determine which of the available
connectivity configurations to use. The software looks for a connectivity configuration
that is compatible with the code under test. If the software finds multiple or no
compatible connectivity configurations, the software generates an error message with
information about resolving the problem.

For more information, see:

• “Target Connectivity PIL API Components”
• “Create PIL Target Connectivity Configuration”

Target Connectivity PIL API Components

Use the target connectivity PIL API to integrate third-party tools for:

 PIL Customization for Target Environment

34-13

• Building the PIL application, an executable for the target hardware
• Downloading, starting, and stopping the application on the target
• Communicating between MATLAB and the target

Communications rtiostream API

The rtiostream API supports communications for the target connectivity API. Use the
rtiostream API to implement a communication channel that enables data exchange
between different processes.

PIL verification requires a host-target communications channel. This communications
channel comprises driver code that runs on the host and target. The rtiostream API
defines the signature of target-side and host-side functions that must be implemented by
this driver code.

The API is independent of the physical layer that sends the data. Possible physical layers
include RS232, Ethernet, or Controller Area Network (CAN).

34 Software-in-the-Loop Execution for MATLAB Coder

34-14

A full rtiostream implementation requires both host-side and target-side drivers. Code
generation software includes host-side drivers for the default TCP/IP implementation as
well as a version for serial communications. To use:

• The TCP/IP rtiostream communications channel, you must provide, or obtain from
a third party, target-specific TCP/IP device drivers.

• The serial communications channel, you must provide, or obtain from a third party,
target-specific serial device drivers.

For other communication channels and platforms, the code generation software does not
provide default implementations. You must provide both the host-side and the target-side
drivers.

The rtiostream API comprises the following functions:

• rtIOStreamOpen

• rtIOStreamSend

• rtIOStreamRecv

• rtIOStreamClose

For information about:

• Using rtiostream functions in a connectivity implementation, see “Create a
Connectivity API Implementation” on page 34-15.

• Testing the rtiostream shared library methods from MATLAB code, see
rtiostream_wrapper.

• Debugging and verifying the behavior of custom rtiostream interface
implementations, see “Test an rtiostream Driver” on page 34-16.

 Create PIL Target Connectivity Configuration

34-15

Create PIL Target Connectivity Configuration

In this section...

“Create a Connectivity API Implementation” on page 34-15
“Test an rtiostream Driver” on page 34-16
“Synchronize Host and Target” on page 34-41
“Specify Hardware Timer” on page 34-19
“Register a Connectivity API Implementation” on page 34-44

Create a Connectivity API Implementation

To create a target connectivity API implementation, you must create a subclass of
rtw.connectivity.Config.

• You must instantiate rtw.connectivity.MakefileBuilder. This class configures
the build process.

• You must create a subclass of rtw.connectivity.Launcher. This class downloads
and executes the application using a third-party tool.

• Configure your rtiostream communications implementation:

• On the target-side, integrate the driver code implementing rtiostream
functions directly into the build process by creating a subclass of
rtw.pil.RtIOStreamApplicationFramework.

• On the host-side, compile the driver code into a shared library. You load and
initialize this shared library by instantiating (or optionally, customizing)
rtw.connectivity.RtIOStreamHostCommunicator.

• For code execution profiling, you must create a timer object that provides details
of the hardware-specific timer and associated source files. See “Specify Hardware
Timer”.

For information about creating a subclass, see “Creating Subclasses — Syntax and
Techniques” in MATLAB documentation.

For a target connectivity API implementation example, see “Processor-in-the-Loop
Execution From Command Line” on page 34-25.

34 Software-in-the-Loop Execution for MATLAB Coder

34-16

Test an rtiostream Driver

Use a test suite to debug and verify the behavior of custom rtiostream interface
implementations.

The test suite has the following advantages:

• Reduces time for integrating custom hardware that does not have built-in
rtiostream support.

• Reduces time for testing custom rtiostream drivers.
• Helps analyze the performance of custom rtiostream drivers.

The test suite has two parts. One part of the test suite runs on the target.

Note: After building the target application, download it to the target and run it.

To launch this part, compile and link the following files, which are in matlabroot/
toolbox/coder/rtiostream/src/rtiostreamtest.

• rtiostreamtest.c

• rtiostreamtest.h

• rtiostream.h (located at matlabroot/rtw/c/src/)
• rtiostream implementation under investigation (for example,

rtiostream_tcpip.c)
• main.c

To run the MATLAB part of the test suite, invoke rtiostreamtest. The syntax is as
follows:

rtiostreamtest(connection,param1,param2)

• connection is a string indicating the communication method. It can have values
'tcp' or 'serial'.

• param1 and param2 have different values depending on the value of connection.

• If connection is 'tcp', then param1 and param2 are hostname and port,
respectively. For example, rtiostreamtest('tcp', 'localhost', 2345).

 Create PIL Target Connectivity Configuration

34-17

• If connection is 'serial', then param1 and param2 are COM port and baud
rate, respectively. For example, rtiostreamtest('serial', 'COM1', 9600).

You can run the MATLAB part of the test suite as follows:

rtiostreamtest('tcp','localhost','2345')

An output in the following format appears in the MATLAB window:

Test suite for rtiostream

Initializing connection with target...

Hardware characteristics discovered

Size of char : 8 bit

Size of short : 16 bit

Size of int : 32 bit

Size of long : 32 bit

Size of float : 32 bit

Size of double : 64 bit

Size of pointer : 64 bit

Byte ordering : Little Endian

rtiostream characteristics discovered

Round trip time : 0.96689 ms

rtIOStreamRecv behavior : non-blocking

Test results

Test 1 (fixed size data exchange): PASS

Test 2 (varying size data exchange): PASS

Test suite for rtiostream finished successfully

Furthermore, the following profile appears.

34 Software-in-the-Loop Execution for MATLAB Coder

34-18

Synchronize Host and Target

If you use the rtiostream API to implement the communications channel, the host and
target must be synchronized, which prevents MATLAB from transmitting and receiving
data before the target application is fully initialized.

 Create PIL Target Connectivity Configuration

34-19

To synchronize the host and target for TCP/IP rtiostream
implementations, use the setInitCommsTimeout method from
rtw.connectivity.RtIOStreamHostCommunicator . This approach works well
for connection-oriented TCP/IP rtiostream implementations because MATLAB
automatically waits until the target server is running.

With other rtiostream implementations, for example, serial, the MATLAB side of the
rtiostream connection will open without waiting for the target to be fully initialized.
In this case, you must make your Launcher implementation wait until the target
application is fully initialized. Use one of the following approaches to synchronize your
host and target:

• Add a pause at the end of the Launcher implementation that makes the Launcher
wait until target initialization is complete.

• In the Launcher implementation, use third-party downloader or debugger APIs that
wait until target initialization is complete.

• Implement a handshaking mechanism in the Launcher / rtiostream
implementation to confirm that target initialization is complete.

Specify Hardware Timer

For code execution profiling, you must create a timer object that provides details of the
hardware-specific timer and associated source files. You can use the Code Replacement
Tool or the code replacement library API to specify this hardware-specific timer.

To specify the timer with the Code Replacement Tool:

1 Open the Code Replacement Tool. In the Command Window, enter crtool.
2 Create a new code replacement table. Select File > New table.
3 Create a new function entry. Under Tables List, right-click the new table. Then,

from the context-menu, select New entry > Function.
4 In the middle view, select the new unnamed function.
5 On the Mapping Information pane:

a From the Function drop-down list, select code_profile_read_timer.
b Specify the count direction for your timer. For example, from the Count

direction drop-down list, select Up.
c In the Ticks per second field, specify the number of ticks per second for your

timer, for example, 1e+09.

34 Software-in-the-Loop Execution for MATLAB Coder

34-20

The default value is 0. In this case, the software reports time measurements in
terms of ticks, not seconds.

d In the Name field, specify a replacement function name, for example, MyTimer.
e Click Apply.

f To validate the function entry, click Validate entry.
6 On the Build Information pane, specify the required build information. See

“Specify Build Information for Replacement Code”.
7 Save the table (Ctrl+S). When you save the table for the first time, use the Save As

dialog box to specify the file name and location.

You must save the table in a location that is on the MATLAB search
path. For example, you can save this file in the folder for your subclass of
rtw.connectivity.Config.

 Create PIL Target Connectivity Configuration

34-21

The software stores your timer information as a code replacement library table.
8 Assuming you save the table as MyCrlTable.m, in your subclass of

rtw.connectivity.Config, add the following line:

setTimer(this, MyCrlTable)

For more information, see “What Is Code Replacement?” and “What Is Code Replacement
Customization?”.

Register a Connectivity API Implementation

Register the new connectivity API implementation with MATLAB as a connectivity
configuration, by creating or adding to an rtwTargetInfo.m file. Through this
action, you also specify the MATLAB code that is compatible with the new connectivity
configuration.

For more information, see:

• rtw.connectivity.ConfigRegistry

• “Processor-in-the-Loop Execution From Command Line”

.

34 Software-in-the-Loop Execution for MATLAB Coder

34-22

Processor-in-the-Loop Execution Using the MATLAB Coder App

Use processor-in-the-loop (PIL) execution to verify the numerical behavior of cross-
compiled object code with reference to your original MATLAB functions.

Before you run a PIL execution, you must define a target connectivity configuration. In
“Processor-in-the-Loop Execution From Command Line” on page 34-25, steps 1 and 2
of the example, PIL Execution of Code Generated for a Kalman Estimator, show how you
can set up and register a connectivity configuration for host-based PIL.

1 To open the MATLAB Coder app, on the MATLAB Toolstrip Apps tab, under Code
Generation, click the app icon.

2
To open your project, click and then click Open existing project. Select the
project. For example, kalman_filter.prj.

3 On the Generate Code page, click the Generate arrow .
4 In the Generate dialog box:

a Set Build type to Static Library (.lib) or Dynamic Library (.dll).
b In the Output file name field, use the default value. For example, kalman01.
c Clear the Generate code only check box.
d Under Production Hardware specify your device vendor and type, which must

match the target hardware settings specified in the rtwTargetInfo.m file of
your target connectivity configuration. For example, for host-based PIL, set
Device Vendor to Generic and Device Type to 32-bit x86 compatible.

 Processor-in-the-Loop Execution Using the MATLAB Coder App

34-23

5 To generate the C/C++ code, click Generate.
6 To open the Test dialog box, click Test.
7 Specify the test file that calls the original MATLAB functions, for example,

test01_ui.m.
8 To start the PIL execution, click Verify Generated Library.

The software:

• Generates a standalone library, for example, codegen\lib\kalman01.
• Generates PIL interface code, for example, codegen\lib\kalman01\pil
• Runs the test file, replacing calls to the MATLAB function by calls to the

generated code in the library.
• Displays messages from the PIL execution in the Test Output tab.

9 Verify that the results from the PIL execution agree with the results from the
original MATLAB functions.

10 To terminate the PIL execution process, click Stop SIL. Alternatively, on the Test
Output tab, click the link that follows To terminate execution.

Related Examples
• “C Code Generation Using the MATLAB Coder App”

34 Software-in-the-Loop Execution for MATLAB Coder

34-24

• “Processor-in-the-Loop Execution From Command Line” on page 34-25

 Processor-in-the-Loop Execution From Command Line

34-25

Processor-in-the-Loop Execution From Command Line

Use processor-in-the-loop (PIL) execution to verify code that you intend to deploy in
production.

To set up and start a PIL execution from the command line:

1 Create a connectivity configuration for your target.
2 Create a coder.EmbeddedCodeConfig object.
3 Configure the object for PIL.
4 Use the codegen function to generate library code for your MATLAB function and

the PIL interface.
5 Use the coder.runTest function to run the test file for your original MATLAB

function.

To terminate the PIL execution, use the clear function_pil or clear mex
command.

The following example shows how you can set up and run a host-based PIL execution
from the command line.

PIL Execution of Code Generated for a Kalman Estimator

1 Create a target connectivity API implementation

a In your current working folder, make a local copy of the connectivity classes.

src_dir = ...

 fullfile(matlabroot,'toolbox','coder','simulinkcoder','+coder','+mypil');

if exist(fullfile('.','+mypil'),'dir')

 rmdir('+mypil','s')

end

mkdir +mypil

copyfile(fullfile(src_dir,'Launcher.m'), '+mypil');

copyfile(fullfile(src_dir,'TargetApplicationFramework.m'), '+mypil');

copyfile(fullfile(src_dir,'ConnectivityConfig.m'), '+mypil');

b Make the copied files writable.

fileattrib(fullfile('+mypil', '*'),'+w');

c Update the package name to reflect the new location of the files.

34 Software-in-the-Loop Execution for MATLAB Coder

34-26

coder.mypil.Utils.UpdateClassName(...

 './+mypil/ConnectivityConfig.m',...

 'coder.mypil',...

 'mypil');

d Check that you now have a folder +mypil in the current folder, which
includes three files, Launcher.m, TargetApplicationFramework.m, and
ConnectivityConfig.m.

dir './+mypil'

e Review the code that starts the PIL application. The mypil.Launcher class
configures a tool for starting the PIL executable. Open this class in the editor.

edit(which('mypil.Launcher'))

Review the content of this file. For example, consider the setArgString
method. This method allows additional command line parameters to be supplied
to the application. These parameters can include a TCP/IP port number. For
an embedded processor implementation, you might have to hard code these
settings.

f The class mypil.ConnectivityConfig configures target connectivity.

edit(which('mypil.ConnectivityConfig'))

Review the content of this file. For example:

• The creation of an instance of
rtw.connectivity.RtIOStreamHostCommunicator that configures the
host side of the TCP/IP communications channel.

• A call to the setArgString method of Launcher that configures the target
side of the TCP/IP communications channel.

• A call to setTimer that configures a timer for execution time measurement.
To define your own target-specific timer for execution time profiling, you
must use the Code Replacement Library to specify a replacement for the
function code_profile_read_timer.

g Review the target-side communication drivers.

rtiostreamtcpip_dir=fullfile(matlabroot,'rtw','c','src','rtiostream',...

 'rtiostreamtcpip');

edit(fullfile(rtiostreamtcpip_dir,'rtiostream_tcpip.c'))

Scroll down to the end of this file. The file contains a TCP/IP implementation
of the functions rtIOStreamOpen, rtIOStreamSend, andrtIOStreamRecv.

 Processor-in-the-Loop Execution From Command Line

34-27

These functions are required for target communication with the host. For each
of these functions, you must provide an implementation that is specific to your
target hardware and communication channel.

The mypil.TargetApplicationFramework class adds target-side
communication drivers to the connectivity configuration.

edit(which('mypil.TargetApplicationFramework'))

The file specifies additional files to include in the build.
2 Register a target connectivity configuration

Use an rtwTargetInfo.m file to:

• Create a target connectivity configuration object.
• Invoke registerTargetInfo, which registers the target connectivity

configuration.

The target connectivity configuration object specifies, for example:

• The configuration name and associated API implementation. See
rtw.connectivity.ConfigRegistry

• A toolchain for your target hardware. This example assumes that the target
hardware is your host computer, and uses the toolchain supplied for host-based
PIL verification. For information about toolchains, see “Custom Toolchain
Registration”.

a Insert the following code into your rtwTargetInfo.m file, and save the file in
the current working folder or in a folder that is on the MATLAB search path:

function rtwTargetInfo(tr)

% Register PIL connectivity config: mypil.ConnectivityConfig

tr.registerTargetInfo(@loc_createConfig);

% local function

function config = loc_createConfig

% Create object for connectivity configuration

config = rtw.connectivity.ConfigRegistry;

% Assign connectivity configuration name

config.ConfigName = 'My PIL Example';

% Associate the connectivity configuration with the connectivity

34 Software-in-the-Loop Execution for MATLAB Coder

34-28

% API implementation

config.ConfigClass = 'mypil.ConnectivityConfig';

% Specify toolchains for host-based PIL

config.Toolchain = rtw.connectivity.Utils.getHostToolchainNames;

% Through the TargetHWDeviceType property, define compatible code for the

% target connectivity configuration

config.TargetHWDeviceType = {'Generic->32-bit x86 compatible' ...

 'Generic->Custom' ...

 'ARM Compatible->ARM Cortex'};

b Refresh the MATLAB Coder library registration information.

RTW.TargetRegistry.getInstance('reset');

3 Copy MATLAB code for Kalman estimator

Copy the MATLAB code to your working folder.

src_dir = ...

 fullfile(docroot,'toolbox','coder','examples','kalman');

copyfile(fullfile(src_dir,'kalman01.m'), '.')

copyfile(fullfile(src_dir,'test01_ui.m'), '.')

copyfile(fullfile(src_dir,'plot_trajectory.m'), '.')

copyfile(fullfile(src_dir,'position.mat'), '.')

For a description of the Kalman estimator in this example, see “C Code Generation
at the Command Line”.

4 Configure the PIL execution

a Create a coder.EmbeddedCodeConfig object.

config = coder.config('lib');

b Configure the object for PIL.

config.VerificationMode = 'PIL';

c Specify production hardware, which must match one of the test hardware
settings in rtwTargetInfo.m.

config.HardwareImplementation.ProdHWDeviceType =...

 'Generic->32-bit x86 compatible';

 Processor-in-the-Loop Execution From Command Line

34-29

5 Generate code and run PIL execution

a Generate library code for the kalman01 MATLAB function and the PIL
interface.

codegen('-config', config, '-args', {zeros(2,1)}, 'kalman01');

The software creates the following output folders:

• codegen\lib\kalman01 — Standalone code for kalman01.
• codegen\lib\kalman01\pil — PIL interface code for kalman01.

b Run the MATLAB test file test01_ui with kalman01_pil. kalman01_pil is
the PIL interface for kalman01.Verify that the output of this run matches the
output from the original kalman01.m function.

6 Terminate PIL execution

Terminate the PIL execution process.

clear kalman01_pil;

34 Software-in-the-Loop Execution for MATLAB Coder

34-30

SIL/PIL Execution Support and Limitations

Feature Supported

Static library Yes
Dynamic library YesOutput types
Executable No
C YesLanguages
C++ Yes
Inputs Yes
Outputs Yes
Constant inputs Yes
Global data No
Constant global
data

Yes

Reentrant code Yes

Interface types

Multiple entry
points

Yes

Basic types Yes
Enumerated types Yes
Structures Yes
Complex data Yes
Fixed-point data Yes
Multiword fixed-
point data

SIL only

char arrays Yes

Data types

Empty values Yes
Scalars Yes
Fixed-size arrays YesSize
Static variable-size
arrays

Yes

 SIL/PIL Execution Support and Limitations

34-31

Feature Supported

Dynamic variable-
size size arrays

No

35

Code Coverage

• “Code Coverage in SIL and PIL Simulations” on page 35-2
• “Configure SIL and PIL Code Coverage” on page 35-3
• “View Code Coverage Information at the End of SIL or PIL Simulations” on page

35-5
• “Configure Code Coverage Programmatically” on page 35-8
• “Code Coverage Summary and Annotations” on page 35-10
• “Code Coverage Tool Support” on page 35-15
• “Code Coverage for PIL” on page 35-16
• “Tips and Limitations” on page 35-18

35 Code Coverage

35-2

Code Coverage in SIL and PIL Simulations

During a top-model or Model block SIL or PIL simulation, you can collect code coverage
metrics for generated code using a third-party tool. Embedded Coder supports the
following tools:

• LDRA Testbed® from LDRA Software Technology. For information about installing
and using this tool, go to www.ldra.com.

The software supports LDRA Testbed code coverage for SIL and PIL. For information
about PIL support, see “PIL Support for LDRA Testbed” on page 35-16.

• BullseyeCoverage™ from Bullseye Testing Technology™. For information about
installing and using this tool, go to www.bullseye.com/cgi-bin/mwEval.

The software supports BullseyeCoverage code coverage for SIL and, in certain cases,
PIL. For information about PIL support, see “PIL Support for BullseyeCoverage” on
page 35-17.

For more information, see “Code Coverage Tool Support” on page 35-15.

For information about setting up code coverage and viewing results, see:

• “Configure SIL and PIL Code Coverage” on page 35-3
• “Configure Code Coverage Programmatically” on page 35-8
• “View Code Coverage Information at the End of SIL or PIL Simulations” on page

35-5

http://www.ldra.com
http://www.bullseye.com/cgi-bin/mwEval

 Configure SIL and PIL Code Coverage

35-3

Configure SIL and PIL Code Coverage
To configure a code coverage tool for a top-model or Model block SIL or PIL simulation:

1 Select Simulation > Model Configuration Parameters > Code Generation >
Verification.

2 From the Code coverage tool drop-down list, select a tool, for example,
BullseyeCoverage or LDRA Testbed.

3 Click Configure Coverage to open the Code Coverage Settings dialog box.
4 In the Installation folder field, specify the location where your coverage tool is

installed. If you click Browse, the Select Installation Folder dialog box opens,
which allows you to navigate to the folder where your coverage tool is installed. The
software detects and displays the tool version.

By default, the software selects the following check boxes:

• Code coverage for this model — Generate coverage data for the current (top)
model.

• Code coverage for referenced models — Generate data for models referenced
by the current (top) model.

If your top model has Model blocks where the Code interface block parameter is
set to Top model, then the top model and referenced models must have the same
settings for these parameters. Otherwise, the software produces an error.

5 Click OK. You return to the Verification pane.
6 To view cumulative code coverage results within a code generation report, in the

Configuration Parameters > Code Generation > Report pane, select the
following check boxes:

35 Code Coverage

35-4

• Create code generation report
• Launch report automatically

7 Click OK. You return to the model window.

With LDRA Testbed:

• The evaluation of cumulative code coverage begins from the point when you last
added a new file to the existing set of source files. For example, existing code coverage
results are deleted when you:

• Run a simulation with a new model using the existing code generation folder.
• Run a simulation that results in additional source code files being instrumented.

• If you switch between SIL and PIL simulations of a model, the software generates
separate cumulative code coverage results for the SIL and PIL simulations.

For a model in a reference hierarchy, the software does not support simultaneous
function execution time measurement and code coverage.

For an example of code coverage metrics collection, see
rtwdemo_code_coverage_script.

 View Code Coverage Information at the End of SIL or PIL Simulations

35-5

View Code Coverage Information at the End of SIL or PIL
Simulations

If you specify code coverage for a SIL or PIL simulation, when the simulation is complete,
the code generation report opens automatically and you see hyperlinks in the Command
Window.

If you specified the LDRA Testbed, you see three links in the Command Window:

Starting SIL simulation for component: rtwdemo_sil_topmodel

Stopping SIL simulation for component: rtwdemo_sil_topmodel

Starting analysis of coverage data

Use the following links to view code coverage results:

 LDRA Testbed GUI

 LDRA Testbed Code Coverage Overview Report

 HTML code generation report with code coverage annotations

Completed code coverage analysis

>>

To:

• Go to the LDRA Testbed GUI, click the first link.
• Open the LDRA Testbed Report with your Web browser, click the second link.

35 Code Coverage

35-6

For information about using this report, refer to the LDRA Testbed documentation.
• View summary data and code annotations with coverage information in the

code generation report, click the third link. See “Code Coverage Summary and
Annotations” on page 35-10.

If you specified the BullseyeCoverage tool, you see two links in the Command Window:
Starting SIL simulation for component: rtwdemo_sil_topmodel

Stopping SIL simulation for component: rtwdemo_sil_topmodel

Processing code coverage data

Use the following links to view code coverage results:

 BullseyeCoverage browser (coverage for last run)

 HTML code generation report (cumulative coverage)

 View Code Coverage Information at the End of SIL or PIL Simulations

35-7

Completed code coverage analysis

>>

To:

• View the coverage report using the BullseyeCoverage Browser, click the first link.

The BullseyeCoverage Browser shows coverage data for instrumented files associated
with your latest top-model simulation. The coverage data shown in the browser is not
cumulative and pertains only to the most recent simulation. For information about
the BullseyeCoverage Browser, go to www.bullseye.com.

• View summary data and code annotations with coverage information in the
code generation report, click the second link. See “Code Coverage Summary and
Annotations” on page 35-10.

http://www.bullseye.com

35 Code Coverage

35-8

Configure Code Coverage Programmatically
You can configure code coverage for your model using command-line APIs. A typical
workflow with BullseyeCoverage is:

1 Using get_param, retrieve the object containing coverage settings for the current
model, for example, gcs.
>> covSettings = get_param(gcs, 'CodeCoverageSettings')

covSettings =

 cov.CodeCoverageSettings handle

 Package: cov

 Properties:

 TopModelCoverage: 'on'

 ReferencedModelCoverage: 'off'

 CoverageTool: 'BullseyeCoverage'

 Methods, Events, Superclasses

The property TopModelCoverage determines whether the software generates code
coverage data for just the top model, while ReferencedModelCoverage determines
whether the software generates coverage data for models referenced by the top
model. If neither property is 'on', then no code coverage data is generated during a
SIL simulation.

If LDRA Testbed is the specified code coverage tool, then the property
CoverageTool is 'LDRA Testbed'.

When you save your model, the properties TopModelCoverage,
ReferencedModelCoverage, and CoverageTool are also saved.

2 Check the class of covSettings.

>> class(covSettings)

ans =

cov.CodeCoverageSettings

3 Turn on coverage for referenced models.
>> covSettings.ReferencedModelCoverage='on';

4 Using set_param, apply the new coverage settings to the model.
 >>set_param(gcs,'CodeCoverageSettings', covSettings);

 Configure Code Coverage Programmatically

35-9

5 Assuming you have installed the BullseyeCoverage tool, specify the installation path.
>> cov.BullseyeCoverage.setPath('C:\Program Files\BullseyeCoverage')

For LDRA Testbed, use cov.LDRA.setPath('C:\...).
6 Check that the path is saved as a preference.

>> cov.BullseyeCoverage.getPath

For LDRA Testbed, use cov.LDRA.getPath.

35 Code Coverage

35-10

Code Coverage Summary and Annotations

If you specify a code coverage tool for a SIL or PIL simulation (see “Configure SIL and
PIL Code Coverage” on page 35-3), the software produces a code generation report that
provides summary data and code annotations with coverage information. Each code
annotation is associated with a code feature and indicates the nature of the feature
coverage during code execution. For more information, see:

• “LDRA Testbed Coverage” on page 35-10
• “BullseyeCoverage Information” on page 35-12

The code generation report also allows you to navigate easily between blocks in your
model and the corresponding sections in the source code. For more information, see
“Trace Model Objects to Generated Code” and “Trace Code to Model Objects Using
Hyperlinks”.

LDRA Testbed Coverage

The cumulative coverage data in a code generation report is derived from instrumented
files associated with your latest top-model simulation and coverage data collected from
simulations with other top models that share referenced models with your current top
model.

The software provides LDRA Testbed annotations in the code generation report to help
you to review code coverage.

 Code Coverage Summary and Annotations

35-11

Note: Do not use the code generation report alone to verify that you have achieved your
coverage goals. You must refer to the LDRA Testbed Report. See “View Code Coverage
Information at the End of SIL or PIL Simulations” on page 35-5.

This example shows three kinds of annotations. On lines 134, 139, 140, and 141, the
annotation indicates that statement coverage for each of these lines of code is not
complete.

Placing the cursor over the annotation =>b produces a tooltip.

This tooltip indicates that only one branch destination is covered. The code within
the curly brackets, which starts at column 45 of line 134, is not executed. As the if
statement on line 139 lies within this code, the corresponding annotation => states that
the branch is not covered.

The following table describes the LDRA Testbed code annotations that you might see in a
code generation report produced by a SIL and PIL simulations.

Code feature
Annotation

symbol
What happened during simulation

Fcn Function name returned through this exit
point.

Function
=> Function name never returned through this

exit point.
=> Condition not encountered.
=>t Condition evaluated true only.Branch/condition
=>f Condition evaluated false only.

35 Code Coverage

35-12

Code feature
Annotation

symbol
What happened during simulation

tf Condition evaluated both true and false.
=> Branch never encountered.

=>b
Branch to at least one destination covered and
branch to at least one other destination not
covered.

Branch/decision

b Branch fully exercised.

=>mc Condition did not independently affect outcome
of decision.Modified Condition/

Decision Coverage
(MC/DC) mc Condition independently affected outcome of

decision.
Statements associated with line covered.

Statement Not all statements associated with line
covered.

=>Σ
Zero coverage — probes within source code
line or files included by source code line not
exercised.

=>Σ Coverage probes within source code line or any
included file partially exercised.

Code that is
reformatted by LDRA
Testbed and does not
match the original
source code. For
example, source
code with #include
statements to include
other files, and source
code with #define
statements for macros.

For detailed coverage
information, refer to
the LDRA Testbed
report.

Σ

Coverage probes within source code line or
included files fully exercised.

BullseyeCoverage Information

The cumulative coverage data in a code generation report is derived from instrumented
files associated with your latest top-model simulation and coverage data collected from

 Code Coverage Summary and Annotations

35-13

simulations with other top models that share referenced models with your current top
model.

The software provides BullseyeCoverage annotations in the code generation report to
help you to review code coverage.

This example shows two kinds of annotations. At line 41, TF indicates that the if
decision had both true and false outcomes during the simulation. At line 52, =>F
indicates that the if decision was false only during the simulation.

The following table describes the BullseyeCoverage code annotations that you might see
in a code generation report produced by a SIL simulation.

Code feature
Annotation

symbol
What happened during simulation

=> Decision not executed.
Decision TF Decision evaluated both true and false.

35 Code Coverage

35-14

Code feature
Annotation

symbol
What happened during simulation

=>T Decision evaluated true only.
=>F Decision evaluated false only.
=> Function not called.

Function
Fcn Function called.
=> Switch command not used.

Switch label
Sw Switch command used.

Constant k Decision or condition was constant, which did not
allow any variation in coverage.

=> Condition not encountered.
tf Condition evaluated both true and false.

=>t Condition evaluated true only.
Condition

=>f Condition evaluated false only.
=> Try block never completed.

Try
Try Try block covered.
=> Catch block not covered.

Catch
Cat Catch block covered.

 Code Coverage Tool Support

35-15

Code Coverage Tool Support

Embedded Coder is tested with the following versions of the BullseyeCoverage and LDRA
Testbed tools.

Operating system BullseyeCoverage LDRA Testbed

Windows 8.4.23 a 9.3.0

Linux 8.4.19 Not supported
Mac Not supported Not supported

a. BullseyeCoverage is not supported with LCC compiler.

35 Code Coverage

35-16

Code Coverage for PIL

PIL Support for LDRA Testbed

The target connectivity API supports code coverage with LDRA Testbed for top-model
and Model block PIL.

For LDRA Testbed version 9.1.1, MathWorks instrumentation files are located in the
LDRA Testbed installation folder, for example:

• C:\LDRA_Toolsuite\Compiler_spec\MathWorks\MathWorks_Cinstr.DAT

• C:\LDRA_Toolsuite\Compiler_spec\MathWorks\MathWorks_CPPINSTR.DAT

There are minor differences in the code coverage information collected during SIL and
PIL simulations. In particular, with PIL, the software does not explicitly show function
exit point coverage. However, you can infer the coverage of function exit points by
examining statement coverage.

 Code Coverage for PIL

35-17

PIL Support for BullseyeCoverage

Code coverage with BullseyeCoverage is available for top-model and Model block PIL
provided your PIL application can write directly to the host file system. Your target for
the PIL application must provide fopen and fread access to the host file system.

If code coverage is not available when you run the PIL application on your target
hardware, you might be able to collect code coverage measurements by running the PIL
application on an instruction set simulator that supports direct file I/O with the host file
system.

35 Code Coverage

35-18

Tips and Limitations

Compiler and Platform Support for SIL

For SIL code coverage, the software supports the following compilers and platforms:

• On a Linux platform, gcc
• On a Windows platform, Microsoft Visual C++ (MSVC)

Note: For both SIL and PIL, the Watcom compiler is not supported. If you specify this
compiler, an error appears when you build your model.

For information on how to specify a compiler, see “Compiler or IDE Selection and
Configuration”.

Right-Click Subsystem Build Unsupported for Code Coverage

The software does not support right-click builds for subsystems if a code coverage tool is
specified.

BullseyeCoverage License Wait

When you build your model, you might have to wait for a BullseyeCoverage license. If
you want to see information about the wait, before you build your model, select Code
Generation > Debug > Verbose build.

Current Working Folder Cannot be UNC Path

If your MATLAB current working folder is a Universal Naming Convention (UNC) path,
code coverage fails.

Characters in matlabroot and File Path

If matlabroot or the path to your generated files contains a space or the . (period)
character, code coverage might fail.

 Tips and Limitations

35-19

Header Files with Identical Names

Consider a model that is configured for LDRA Testbed code coverage. During the build
process, if the software detects two header files with the same name in the folder for
generated code, the software generates an error.

Code Coverage for Source Files in Shared Utility Folders

The software supports code coverage for source files generated in shared utility folders.
If you configure code coverage for a model that uses shared utility code generation, when
you build the model, you also build all source files in the shared utilities folder with code
coverage enabled.

Whenever you build a model, the code coverage settings of the model must be consistent
with source files that you previously built in the shared utilities folder. Otherwise, the
software reports that code in the shared utilities folder is inconsistent with the current
model configuration and must be rebuilt. For example, if you run a SIL simulation for a
model with code coverage enabled and then run a SIL simulation for another model with
code coverage disabled, the software must rebuild all source files in the shared utilities
folder.

BullseyeCoverage Behavior with Inline Macros

The BullseyeCoverage tool, by default, does not provide code coverage data for inline
macros.

For example, if a model generates a file slprj/ert/_sharedutils/rt_SATURATE.h
that contains the macro

#define rt_SATURATE(sig,ll,ul) (((sig) >= (ul)) ? (ul) : (((sig) <=

(ll)) ? (ll) : (sig)))

and the macro is in sat_ert_rtw/sat.c, then the coverage report provides a
measurement for sat.c, but no coverage data for the conditions within the macro
rt_SATURATE.

To configure the BullseyeCoverage tool to provide code coverage data for inline macros:

1 Open the BullseyeCoverage Browser.
2 Select Tools > Options to open the Options dialog box.
3 On the Build tab, select the Instrument macro expansions check box.

35 Code Coverage

35-20

4 Click OK.
5 Rerun your simulation.

Alternatively, you can add the text -macro to the BullseyeCoverage configuration file.
For more information, go to www.bullseye.com/help/ref_covc.html.

SIL and PIL Simulations with Open LDRA Testbed

If you enable code coverage with the LDRA Testbed tool, you must verify that the LDRA
Testbed GUI is not open when you run your SIL or PIL simulation. If the set name in the
LDRA Testbed GUI differs from the set name used by the SIL or PIL simulation, the SIL
or PIL simulation fails.

PIL Zero Coverage LDRA Testbed Annotations

For a PIL simulation with LDRA Testbed code coverage specified, there might be some
source files where the recorded coverage is zero. In this case, the software provides
summary information indicating that:

• There is coverage to measure.
• The coverage is zero.

You do not see information for individual probes on each line. The displayed summary
information has an associated annotation tooltip:
0 out of N coverage probes were exercised (detailed breakdown unavailable)

Modify Legacy Code

If you modify legacy code and rerun a SIL or PIL simulation, the legacy code is
recompiled. However, the code from the model may be up-to-date. In this case, the code
generation report is not updated and does not show the modified legacy code. Instead,
the code coverage information for the modified legacy code is displayed with reference
to the original legacy code. You must regenerate the report. For more information, see
“Limitation”.

IDE Link Does Not Support LDRA Testbed

When you generate code for IDE Link, you cannot use LDRA Testbed for SIL or PIL
code coverage. Specifically, this limitation applies when you use the following settings
together:

http://www.bullseye.com/help/ref_covc.html

 Tips and Limitations

35-21

• Configuration Parameters > Code Generation > System target file:
idelink_ert.tlc

• Configuration Parameters > Code Generation > Verification > Code coverage
tool: LDRA Testbed.

Embedded IDEs and Embedded Targets

36

Getting Started with Embedded
Targets

36 Getting Started with Embedded Targets

36-2

Embedded Coder Supported Hardware

As of this release, Embedded Coder supports the following hardware.

Support Package Vendor Platforms Earliest Release
Available

Last Release
Available

Altera SoC Altera® Windows R2014b Current

Analog Devices DSPs Analog Devices™ Windows R2013a Current
ARM Cortex-A
Processors

ARM® Windows R2014a Current

ARM Cortex-based
VEX Microprocessors

VEX® Robotics Windows, Mac
OS

R2014a Current

ARM Cortex-M
Processors

ARM Windows R2013b Current

BeagleBone Black
Hardware

BeagleBoard Windows R2014b Current

Freescale FRDM-
KL25Z Board

Freescale™ Windows R2014b Current

Green Hills MULTI Green Hills®

Software
Windows, Linux R2012b R2014a

STMicroelectronics
STM32F4-Discovery
Board

STMicroelectronics®Windows R2013b Current

Texas Instruments
C2000 Processors

Texas
Instruments

Windows R2013b Current

Texas Instruments
C2000 F28M3x
Concerto Processors

Texas
Instruments

Windows R2014b Current

Texas Instruments
C6000 DSPs

Texas
Instruments

Windows R2014a Current

Wind River VxWorks
RTOS

Wind River Windows, Linux R2013b Current

 Embedded Coder Supported Hardware

36-3

Support Package Vendor Platforms Earliest Release
Available

Last Release
Available

Xilinx Zynq-7000
Platform

Xilinx® Windows R2013a Current

For a complete list of supported hardware, see Hardware Support.

http://www.mathworks.com/hardware-support/index.html?q=%20product:%22Embedded+Coder%22

37

Project and Build Configurations for
Embedded Targets

• “Model Setup” on page 37-2
• “IDE Projects” on page 37-13
• “Makefiles for Software Build Tool Chains” on page 37-15

37 Project and Build Configurations for Embedded Targets

37-2

Model Setup

In this section...

“Block Selection” on page 37-2
“Configure Target Hardware Resources” on page 37-3
“Configuration Parameters” on page 37-5
“Model Reference” on page 37-12

Block Selection

You can create models for targeting the same way you create other Simulink models—by
combining standard blocks and C-MEX S-functions.

You can use blocks from the following sources:

• The Embedded Coder Support Packages.
• The Embedded Targets library (embeddedtargetslib) in the Embedded Coder

product.
• Blocks from the System Toolboxes products
• Custom blocks

Avoid using blocks that do not generate code, including the following blocks.

Block Name/Category Library Description

Scope Simulink, DSP System
Toolbox software

Provides oscilloscope view of your
output. Do not use the Save data
to workspace option on the Data
history pane in the Scope Parameters
dialog.

To Workspace Simulink Return data to your MATLAB
workspace.

From Workspace Simulink Send data to your model from your
MATLAB workspace.

Spectrum Scope DSP System Toolbox Compute and display the short-
time FFT of a signal. It has internal

 Model Setup

37-3

Block Name/Category Library Description

buffering that can slow your process
without adding value.

To File Simulink Send data to a file on your host
machine.

From File Simulink Get data from a file on your host
machine.

Triggered to Workspace DSP System Toolbox Send data to your MATLAB
workspace.

Signal To Workspace DSP System Toolbox Send a signal to your MATLAB
workspace.

Signal From Workspace DSP System Toolbox Get a signal from your MATLAB
workspace.

Triggered Signal From
Workspace

DSP System Toolbox Get a signal from your MATLAB
workspace.

To Wave device DSP System Toolbox Send data to a .wav device.
From Wave device DSP System Toolbox Get data from a .wav device.

Configure Target Hardware Resources

This topic contains the following subtopics:

• “About Supported IDEs” on page 37-3
• “Configure Parameters Under the Target Hardware Resources Tab” on page 37-4

About Supported IDEs

This “Configure Target Hardware Resources” on page 37-3 section applies to the
following IDEs:

• Analog Devices VisualDSP++®

• Texas Instruments Code Composer Studio™ 3.3
• Texas Instruments Code Composer Studio 4 (makefile generation only)
• Texas Instruments Code Composer Studio 5 (makefile generation only)
• Wind River Diab/GCC (makefile generation only)

37 Project and Build Configurations for Embedded Targets

37-4

Configure Parameters Under the Target Hardware Resources Tab

Configure the parameters under the Target Hardware Resources tab of your Simulink
model for a specific tool chain and target hardware. Doing so updates other parameters
in the Configuration Parameters dialog to the default values for the software build tool
chain and target hardware you are using.

Note: The Target Preferences (Removed) block has been removed from the Simulink
block libraries for the Embedded Coder and Simulink Coder products.

Parameters in the Target Preferences block have been moved to the Target Hardware
Resources tab.

To configure your Simulink model for a specific tool chain and target hardware:

1 In a Simulink model, open the model Configuration Parameters by:

• Clicking the gear icon,

• Pressing Ctrl+E on your keyboard
• Selecting the Simulation > Model Configuration Parameters menu items

2 In the Configuration Parameters dialog, click Code Generation, and then click “+”
next to Code Generation. This action displays the sub-panes under Code Generation.

3 On the Code Generation pane, change System target file to idelink_ert.tlc or
idelink_grt.tlc.

The dialog displays a Coder Target pane under the Code Generation pane.
4 Select the Coder Target pane.
5 Select the Target Hardware Resources tab.
6 Set the following parameters to match the tool chain and target hardware you are

using:

• IDE/Tool Chain
• Board
• Processor

 Model Setup

37-5

7 Review the other parameters under the Target Hardware Resources tab.
8 Click Apply, and save the changes to your model.

Configuration Parameters

• “What are Configuration Parameters?” on page 37-5
• “Setting Model Configuration Parameters” on page 37-5

What are Configuration Parameters?

To see the model Configuration Parameters, open the Configuration Parameters
dialog. You can do this in the model editor by selecting Simulation > Model
Configuration Parameters, or by pressing Ctrl+E on your keyboard.

The Configuration Parameters dialog specifies the values for a model's active
configuration set. These parameters determine the type of solver used, the import and
export settings, and other values that determine how the model runs.

Setting Model Configuration Parameters

To set the Configuration Parameters to the right values for you to generate code from
your model, see “Configure Parameters Under the Target Hardware Resources Tab” on
page 37-4. This action initializes the model Configuration Parameters to the right
default values for you to generate code. You can then use the Configuration Parameters
dialog to make further modifications to the values. You can generate buildable code using
these default values.

The following subsections provide a quick overview of the panes and parameters with
which you are most likely to interact.

Code Generation Pane

When you set System target file to idelink_ert.tlc or idelink_grt.tlc, the
dialog adds an Coder Target pane to the list of panes under Code Generation.

37 Project and Build Configurations for Embedded Targets

37-6

Leave Language set to C. The idelink_ert.tlc and idelink_grt.tlc system target
files do not support C++ code generation.

For more information, see “Code Generation Pane: General”

 Model Setup

37-7

Coder Target Pane Parameters

The Coder Target entry provides options in these areas:

• Run-Time — Set options for run-time operations, like the build action
• Vendor Tool Chain — Set compiler, linker, and system stack size options
• Code Generation — Configure your code generation requirements
• Link Automation — Export an IDE link handle object, such as IDE_Obj, to your

MATLAB workspace
• Diagnostics — Determine how the code generation process responds when you use

source code replacement in the Custom Code pane.

For more information, see Code Generation Pane: Coder Target.

Build format

Select Project to create an IDE project, or select Makefile to create a makefile build
script.

37 Project and Build Configurations for Embedded Targets

37-8

Build action

Your selection for Build action determines what happens when you click Build or press
Ctrl+B. Your selection tells Simulink Coder software when to stop the code generation
and build process.

To run your model on the processor, select Build_and_execute. This selection is the
default build action.

The actions are cumulative—each action performs an additional step relative to the
preceding action on the list.

If you set Build format to Project, select one of the following options:

• Create_project — Directs Simulink Coder software to start the IDE and populate
a new project with the files from the build process. This option offers a convenient way
to build projects in the IDE.

• Archive_library — Directs Simulink Coder software to create an archive library
for this model. Use this option when you plan to use the model in a model reference
application. Model reference requires that you archive your the IDE projects for
models that you use in model referencing.

• Build — Builds the executable file, but does not download the file to the target
hardware.

• Build_and_execute — Directs Simulink Coder software to build, download, and
run your generated code as an executable on your target hardware.

• Create_processor_in_the_loop_project — Directs code generation process to
create PIL algorithm object code as part of the project build. This option requires an
Embedded Coder license.

If you set Build format to Makefile, select one of the following options:

• Create_makefile — Creates a makefile.
• Archive_library — Creates a makefile and the generated output will be an archive

library.
• Build — Creates a makefile and an executable.
• Build_and_execute — Creates a makefile and an executable. Then it evaluates the

execute instruction in the current configuration.

 Model Setup

37-9

Overrun notification

To enable the overrun indicator, choose one of three ways for the target to respond to an
overrun condition in your model:

• None — Ignore overruns encountered while running the model.
• Print_message — When the target encounters an overrun condition, it prints a

message to the standard output device, stdout.
• Call_custom_function — Respond to overrun conditions by calling the custom

function you identify in Function name.

Function name

When you select Call_custom_function from the Overrun notification list, you
enable this option. Enter the name of the function the target should use to notify you
that an overrun condition occurred. The function must exist in your code on the target
hardware.

Configuration

The Configuration parameter defines sets of build options that apply to the files
generated from your model.

The Release and Debug option apply build settings that are defined by your compiler.
For more information, refer to your compiler documentation.

Custom has the same default values as Release, but:

• Leaves Compiler options string empty.

Compiler options string

To determine the degree of optimization provided by the optimizing compiler, enter the
optimization level to apply to files in your project. For details about the compiler options,
refer to your IDE documentation. When you create new projects, the coder product does
not set optimization flags.

With Texas Instruments Code Composer Studio 3.3 and Analog Devices VisualDSP++,
the user interface displays Get From IDE and Reset buttons next to this parameter. If
you have an active project open in the IDE, you can click Get From IDE to import the
compiler option setting from the current project in the IDE. To reset the compiler option
to the default value, click Reset.

37 Project and Build Configurations for Embedded Targets

37-10

Linker options string

To specify the options provided by the linker during link time, you enter the linker
options as a string. For details about the linker options, refer to your IDE documentation.
When you create new projects, the coder product does not set linker options.

With Texas Instruments Code Composer Studio 3.3 and Analog Devices VisualDSP++,
the user interface displays Get From IDE and Reset buttons next to this parameter. If
you have an active project open in the IDE, you can click Get From IDE to import the
linker options string from the current project in the IDE. To clear the linker options, click
Reset.

System stack size (MAUs)

Enter the amount of memory that is available for allocating stack data, measured in
minimum addressable units (MAU). Block output buffers are placed on the stack until
the stack memory is fully allocated. After that, the output buffers go in global memory.
An MAU is typically 1 byte, but its size can vary by target hardware.

This parameter is used in targets to allocate the stack size for the generated application.
For example, with embedded processors that are not running an operating system, this
parameter determines the total stack space that can be used for the application. For
operating systems, this value specifies the stack space allocated per thread.

This parameter also applies to the “Maximum stack size (bytes)” parameter, located in
the Optimization > Signals and Parameters pane.

System heap size (MAUs)

Set the default heap size that the target hardware reserves for dynamic memory
allocation.

The target hardware uses this heap for functions like printf() and system services code.

The following IDEs use this parameter:

• Analog Devices VisualDSP++
• Wind River Diab/GCC (makefile generation only)

Profile real-time execution

To enable the real-time execution profile capability, select Profile real-time execution.
With this selected, the build process instruments your code to provide performance

 Model Setup

37-11

profiling at the task level or for atomic subsystems. When you run your code, the
executed code reports the profiling information in an HTML report.

Link Automation

When you build a model for a target, the coder product automatically creates or uses an
existing IDE link handle object (named IDE_Obj, by default) to connect to your IDE.

Although IDE_Obj is a handle for a specific instance of the IDE, it also contains
information about the IDE instance to which it refers, such as the target the IDE
accesses. In this pane, the Export IDE link handle to base workspace option lets you
instruct the coder product to export the object to your MATLAB workspace, giving it the
name you assign in IDE link handle name.

You can also use the IDE link handle object to interact with the IDE using IDE
Automation Interface commands.

Maximum time allowed to build project (s)

Specifies how long the software waits for the IDE to build the software.

Maximum time allowed to complete IDE operation (s)

Specifies how long the software waits for IDE functions, such as read or write, to
return completion messages. If you do not specify a timeout, the default value is 10
seconds.

Export IDE link handle to base workspace

Directs the software to export the IDE_Obj object to your MATLAB workspace.

IDE link handle name

Specifies the name of the IDE_Obj object that the build process creates.

Source file replacement

Selects the diagnostic action to take if the software detects conflicts when you replace
source code with custom code. The diagnostic message responds to both source file
replacement in the Configuration Parameters under Code Generation > Coder Target
parameters and under Code Generation > Custom Code.

The following settings define the messages you see and how the code generation process
responds:

37 Project and Build Configurations for Embedded Targets

37-12

• none — Does not generate warnings or errors when it finds conflicts.
• warning — Displays a warning. warn is the default value.
• error — Terminates the build process and displays an error message that identifies

which file has the problem and suggests how to resolve it.

The build operation continues if you select warning and the software detects custom
code replacement problems. You see warning messages as the build progresses.

Select error the first time you build your project after you specify custom code to use.
The error messages can help you diagnose problems with your custom code replacement
files. Use none when the replacement process works and you do not want to see multiple
messages during your build.

Model Reference

The idelink_ert.tlc and idelink_grt.tlc system target files provide support for
generating code from models that use Model Reference. A referenced model will generate
an archive library.

To enable Model Reference builds:

1 Open your referenced model.
2 Select Simulation > Model Configuration Parameters from the model menus.
3 From the list of panes under Code Generation, choose Coder Target.
4 In the right pane, under Run-Time, select Archive_library from the Build

action list.

If your top-model uses a reference model that does not have the Build action set to
Archive_library, the build process automatically changes the Build action to
Archive_library and issues a warning about the change.

Configuration Parameters in Reference Models

Use the same Coder Target pane settings in Configuration Parameters for the models in
the model hierarchy.

 IDE Projects

37-13

IDE Projects
In this section...

“Support for Third Party Products” on page 37-13
“Code Generation and Build” on page 37-13

Support for Third Party Products

For more information about support for third-party IDEs and targets, see:

• Supported and Compatible Compilers
• Hardware Support

Code Generation and Build

Building Your Model

In your model, click Build Model . The software performs the actions
you selected for Build action in the model Configuration Parameters, under Code
Generation > Coder Target.

IDE Project Generator Features

The IDE Project Generator component provides or supports the following features for
developing IDE projects and generating code:

• Automatically create IDE projects for your generated code during the code generation
process.

• Customize code generation using options in the model Configuration Parameters.
• Configure the automatic project build process.
• Automatically download and run your generated projects on your target hardware.

IDE Link Handle Objects

IDE Project Generator automatically creates and uses an IDE link handle object to
communicate with your IDE and target hardware.

http://www.mathworks.com/support/compilers/R2013a/index.html;jsessionid=cbcc6d00b0c1f68f591d714e1a1f
http://www.mathworks.com/hardware-support/index.html?q=%20product:%22Embedded+Coder%22

37 Project and Build Configurations for Embedded Targets

37-14

To create the IDE link handle object, IDE Project Generator uses one of the following
constructor functions:

• adivdsp for Analog Devices VisualDSP++
• ticcs for Texas Instruments Code Composer Studio

For a command line example of how to use a constructor function, see the corresponding
reference page for each function.

 Makefiles for Software Build Tool Chains

37-15

Makefiles for Software Build Tool Chains

In this section...

“What is the XMakefile Feature” on page 37-15
“Using Makefiles to Generate and Build Software” on page 37-17
“Making an XMakefile Configuration Operational” on page 37-20
“Creating a New XMakefile Configuration” on page 37-20
“XMakefile User Configuration dialog” on page 37-26

What is the XMakefile Feature

• “Overview” on page 37-15
• “Available XMakefile Configurations” on page 37-15
• “Feature Support” on page 37-17

Overview

You can use makefiles instead of IDE projects during the automated software build
process. This approach is described in “Using Makefiles to Generate and Build Software”
on page 37-17.

The XMakefile feature lets you choose the configuration of a specific software build
tool chain to use during the automated build process. The configuration contains paths
and settings for your make utility, compiler, linker, archiver, pre-build, post-build, and
execute tools.

You can also create a new configuration for a new tool chain, as described in “Creating a
New XMakefile Configuration” on page 37-20.

Your requirements for specific features may determine whether you choose makefiles or
IDE projects. See “Feature Support” on page 37-17.

Available XMakefile Configurations

The following list describes the configurations in the XMakefile dialog that this product
supports:

• adivdsp_blackfin: Analog Devices VisualDSP++ & Analog Devices Blackfin®

37 Project and Build Configurations for Embedded Targets

37-16

• adivdsp_sharc: Analog Devices VisualDSP++ & Analog Devices SHARC®

• adivdsp_tigersharc: Analog Devices VisualDSP++ & Analog Devices
TigerSHARC®

• gcc_target: GNU Compiler Collection & Host Operating System or Embedded
Operating System

• ticcs_c2000_ccsv3: Texas Instruments Code Composer Studio 3 & Texas
Instruments C2000

• ticcs_c2000_ccsv4: Texas Instruments Code Composer Studio 4 & Texas
Instruments C2000

• ticcs_c2000_ccsv5: Texas Instruments Code Composer Studio 5.1 & Texas
Instruments C2000

• ticcs_c5500_ccsv3: Texas Instruments Code Composer Studio 3 & Texas
Instruments C5500

• ticcs_c5500_ccsv4: Texas Instruments Code Composer Studio 4 & Texas
Instruments C5500

• ticcs_c5500_ccsv5: Texas Instruments Code Composer Studio 5.1 & Texas
Instruments C5500

• ticcs_c6000_ccsv3: Texas Instruments Code Composer Studio 3 & Texas
Instruments C6000

• ticcs_c6000_ccsv4: Texas Instruments Code Composer Studio 4 & Texas
Instruments C6000

• ticcs_c6000_ccsv5: Texas Instruments Code Composer Studio 5.1 & Texas
Instruments C6000

• ticcs_c6000_dspbios_ccsv3: Texas Instruments Code Composer Studio 3 &
Texas Instruments DSP/BIOS on C6000

• ticcs_c6000_dspbios_ccsv4: Texas Instruments Code Composer Studio 4 &
Texas Instruments DSP/BIOS on C6000

• ticcs_c6000_dspbios_ccsv5: Texas Instruments Code Composer Studio 5.1 &
Texas Instruments DSP/BIOS on C6000

• wrsdiab_arm9_vxworks67_rtp: Wind River Systems DIAB Compiler & ARM 9 &
VxWorks 6.7 & real-time process applications

• wrsdiab_arm9_vxworks67_rtp_so: Wind River Systems DIAB Compiler & ARM 9
& VxWorks 6.7 & real-time process applications with shared object

• wrsdiab_hostsim_vxworks67_rtp: Wind River Systems DIAB Compiler &
VxWorks Host Simulator & VxWorks 6.7 & real-time process applications

 Makefiles for Software Build Tool Chains

37-17

• wrsdiab_hostsim_vxworks67_rtp_so: Wind River Systems DIAB Compiler &
VxWorks Host Simulator & VxWorks 6.7 & real-time process applications with shared
object

• wrsdiab_hostsim_vxworks68_rtp: Wind River Systems DIAB Compiler &
VxWorks Host Simulator & VxWorks 6.8 & real-time process applications

• wrsdiab_hostsim_vxworks68_rtp_so: Wind River Systems DIAB Compiler &
VxWorks Host Simulator & VxWorks 6.8 & real-time process applications with shared
object

• wrsgnu_arm9_vxworks67_rtp: Wind River Systems GNU Compiler & VxWorks
Host Simulator & VxWorks 6.7 & real-time process applications

• wrsgnu_hostsim_vxworks67_rtp: Wind River Systems GNU Compiler & VxWorks
Host Simulator & VxWorks 6.7 & real-time process applications with shared object

• wrsgnu_hostsim_vxworks68_rtp: Wind River Systems GNU Compiler & VxWorks
Host Simulator & VxWorks 6.8 & real-time process applications with shared object

• xilinx_ise_14_x: Xilinx ISE Design Suite & ARM Cortex-A9 running Linux on
Xilinx Zynq®-7000 platform

For more information about supported versions of third-party software, see “Support for
Third Party Products” on page 37-13

Feature Support

With makefiles, you cannot use features that rely on direct communications between
your MathWorks software and third-party IDEs.

You cannot use the following features with makefiles:

• IDE Project Generation
• IDE Automation Interface
• IDE debugger communications during Processor-in-the-loop (PIL) simulation

Using Makefiles to Generate and Build Software

In addition to this chapter, see the Makefile Generator Tutorial example for more
information about using makefiles to generate code.

Configuring Your Model to Use Makefiles

Update your model Configuration Parameters to use a makefile instead of an IDE when
you build software from the model:

37 Project and Build Configurations for Embedded Targets

37-18

1 Configure your model for your IDE, tool chain, and target hardware, as described in
“Configure Target Hardware Resources” on page 37-3.

2 In the Configuration Parameters dialog, under the Code Generation tab, select
Coder Target.

3 Set Build format to Makefile. For more information, see “Build format” on page
37-7.

4 Set Build action to Build_and_execute. For more information, see “Build action”
on page 37-8.

Choosing an XMakefile Configuration

Configure how to generate makefiles:

1 Enter xmakefilesetup on the MATLAB Command Window. The software opens an
XMakefile User Configuration dialog.

2 Set the Template parameter to the option that matches the Configuration
parameter.

Note: In most cases, the only option for Template is gmake. However, if you have
installed a Support Package, Template can have multiple options.

3 For Configuration, select the option that describes your software build toolchain
and target platform. Click Apply.

 Makefiles for Software Build Tool Chains

37-19

Note: Changing some elements of the XMakefile dialog disables other elements until you
apply the changes. Click Apply or OK after changing:

• Template

• Configurations
• User Templates
• User Configurations
• Tool Directories

Note: With the XMakefile User Configuration dialog, if you have an Embedded Coder
license and do not have a Simulink Coder license, the Configuration list includes two
unsupported options: gcc_target or msvs_host. Disregard those two configurations.
Choose one of the other configurations.

Things to consider while setting Configuration:

• Selecting Display operational configurations only hides configurations that
contain incomplete or invalid information. For a configuration to be operational, the
vendor tool chain must be installed, and the configuration must have the valid paths
for each component of the vendor tool chain. For more information, see “Making an
XMakefile Configuration Operational” on page 37-20.

• To display the configurations, including non-operational configurations, clear Display
operational configurations only.

• The list of configurations can include non-editable configurations defined in the
software and editable configurations defined by you.

• To create a new editable configuration, use the New button.
• For more information, see “XMakefile User Configuration dialog” on page 37-26.

Building Your Model

In your model, click Build Model.

37 Project and Build Configurations for Embedded Targets

37-20

This action creates a makefile and performs the other actions you specified in Build
action.

By default, this process outputs files in the <builddir>/<buildconfiguration>
folder. For example, in model_name/CustomMW.

Making an XMakefile Configuration Operational

When the XMakefile utility starts, it checks each configuration file to verify that
the specified paths for the vendor tool chain are valid. If the paths are not valid, the
configuration is non-operational. Typically, the cause of this problem is a difference
between the path in the configuration and the actual path of the vendor toolchain.

To make a configuration operational:

1 Clear Display operational configurations only to display non-operational
configurations.

2 Select the non-operational configuration from the Configuration options.
3 When you click Apply, a new dialog prompts you for the folder path of the missing

resources the configuration requires.

Use mapped network drives instead of UNC paths to specify directory locations.
Using UNC paths with compilers that do not support them causes build errors.

Creating a New XMakefile Configuration

• “Overview” on page 37-20
• “Create a Configuration” on page 37-21
• “Modify the Configuration” on page 37-22
• “Test the Configuration” on page 37-24

Overview

This example shows you how to add support for a software development toolchain to the
XMakefile utility. This example uses the Intel Compiler and an IDE.

Note: To specify directory locations, use mapped network drives instead of UNC paths.
UNC paths cause build errors with compilers that do not support them.

 Makefiles for Software Build Tool Chains

37-21

Create a Configuration

When you click New, the new configuration inherits values and behavior from
the current configuration. To create a configuration for the Intel Compiler, clone a
configuration from one of these configurations: montavista_arm and gcc_target.

Open the XMakefile User Configuration UI by typing xmakefilesetup at the MATLAB
prompt. This action displays the following dialog.

Select an existing configuration, such as montavista_arm or gcc_target. Click the
New button.

A pop-up dialog prompts you for the name of the new configuration. Enter
intel_compiler and click OK.

The dialog displays a new configuration called intel_compiler, based on the previous
configuration.

37 Project and Build Configurations for Embedded Targets

37-22

Modify the Configuration

Adjust the compiler, linker, and archiver settings of the newly created configuration.
This example assumes the location of the Intel compiler is C:\Program Files\Intel
\Compiler\.
Make Utility

You do not need to make changes. This configuration uses the gmake tool that ships with
MATLAB.

Compiler

For Compiler, enter the location of icl.exe in the Intel installation.

 Makefiles for Software Build Tool Chains

37-23

Linker

For Linker, enter the location of the linker executable, xilink.exe.

For Arguments, add the /LIBPATH path to the Intel libraries.

Archiver

For Archiver, enter the location of the archiver, xilib.exe. Confirm that File
extensions for library files includes .lib.

37 Project and Build Configurations for Embedded Targets

37-24

Other tabs

For this example, ignore the remaining tabs. In other circumstances, you can use them to
configure additional build actions. In a later step of this example, you will configure the
software to automatically build and run the generated code.

Test the Configuration

Open the “sumdiff” model by entering sumdiff on the MATLAB prompt.

 Makefiles for Software Build Tool Chains

37-25

Configure the summdiff model for use with an IDE. Follow the steps in “Configure
Target Hardware Resources” on page 37-3, set the IDE/Tool Chain parameter, set
Board to Custom, and Processor to Intel x86/Pentium.

On the Tool Chain Automation page, set Operating System to None or select Windows.
Click OK.

Open the Configuration Parameters for the summdiff model by pressing Ctrl+E. Set
Build format to Makefile and Build action to Build_and_execute.

Save the model to a temporary location, such as C:\Temp\IntelTest\.

Set that location as a Current Folder by typing cd C:\temp\IntelTest\ at the
MATLAB prompt.

Build the model by pressing Ctrl+B. The MATLAB Command Window displays
something like:
TLC code generation complete.

Creating HTML report file sumdiff_codegen_rpt.html

Creating project: c:\temp\IntelTest\sumdiff_idenameide\sumdiff.mk

Project creation done.

Building project...

Build done.

Downloading program: c:\temp\IntelTest\sumdiff_idenameide\sumdiff

Download done.

37 Project and Build Configurations for Embedded Targets

37-26

A command window comes up showing the running model. Terminate the generated
executable by pressing Ctrl+C.

XMakefile User Configuration dialog

• “Active” on page 37-26
• “Make Utility” on page 37-28
• “Compiler” on page 37-28
• “Linker” on page 37-29
• “Archiver” on page 37-30
• “Pre-build” on page 37-30
• “Post-build” on page 37-31
• “Execute” on page 37-31
• “Tool Directories” on page 37-32

Active

Template

Set the Template parameter to the option that matches the Configuration parameter.

Note: In most cases, the only option for Template is gmake. However, if you have
installed a Support Package, Template can have multiple options.

 Makefiles for Software Build Tool Chains

37-27

The template defines the syntax rules for writing the contents of the makefile or
buildfile. The default template is gmake, which works with the GNU make utility.

To add templates to this parameter, save them as .mkt files to the location specified by
the User Templates parameter. For more information, see “User Templates” on page
37-28.

Configuration

Select the configuration that best describes your toolchain and target hardware.

You cannot edit or delete the configurations provided by MathWorks. You can, however,
edit and delete the configurations that you create.

Use the New button to create an editable copy of the currently selected configuration.

Use the Delete button to delete a configuration you created.

Note: You cannot edit or delete the configurations provided by MathWorks.

Note: Use mapped network drives instead of UNC paths to specify directory locations.
Using UNC paths with compilers that do not support them causes build errors.

Display operational configurations only

When you open the XMakefile User Configuration dialog, the software verifies that each
configuration provided by MathWorks contains valid paths to the executable files it uses.
If the paths are valid, the configuration is operational. If the paths are not valid, the
configuration is not operational.

This setting only applies to configurations provided by MathWorks, not configurations
you create.

To display valid configurations, select Display operational configurations only.

To display the configurations, including non-operational configurations, clear Display
operational configurations only.

For more information, see “Making an XMakefile Configuration Operational” on page
37-20.

37 Project and Build Configurations for Embedded Targets

37-28

User Templates

Set the path of the folder to which you can add template files. Saving templates files with
the .mkt extension to this folder adds them to the Templates options.

User Configurations

Set the location of configuration files you create with the New button.

Make Utility

Make utility

Set the path and filename of the make utility executable.

Arguments

Define the command-line arguments to pass to the make utility. For more information,
consult the third-party documentation for your make utility.

Optional include

Set the path and file name of an optional makefile to include.

Compiler

Compiler

Set the path and file name of the compiler executable.

 Makefiles for Software Build Tool Chains

37-29

Arguments

Define the command-line arguments to pass to the compiler. For more information,
consult the third-party documentation for your compiler.

Source

Define the file name extension for the source files. Use commas to separate multiple file
extensions.

Header

Define the file name extension for the header files. Use commas to separate multiple file
extensions.

Object

Define the file name extension for the object files.

Linker

Linker

Set the path and file name of the linker executable.

Arguments

Define the command-line arguments to pass to the linker. For more information, consult
the third-party documentation for your linker.

File extensions for library files

Define the file name extension for the file library files. Use commas to separate multiple
file extensions.

Generated output file extension

Define the file name extension for the generated libraries or executables.

37 Project and Build Configurations for Embedded Targets

37-30

Archiver

Archiver

Set the path and file name of the archiver executable.

Arguments

Define the command-line arguments to pass to the archiver. For more information,
consult the third-party documentation for your archiver.

Generated output file extension

Define the file name extension for the generated libraries.

Pre-build

Enable Prebuild Step

Select this check box to define a prebuild tool that runs before the compiler.

Prebuild tool

Set the path and file name of the prebuild tool executable.

Arguments

Define the command-line arguments to pass to the prebuild tool. For more information,
consult the third-party documentation for your prebuild tool.

 Makefiles for Software Build Tool Chains

37-31

Post-build

Enable Postbuild Step

Select this check box to define a postbuild tool that runs after the compiler or linker.

Postbuild tool

Set the path and file name of the postbuild tool executable.

Arguments

Define the command-line arguments to pass to the postbuild tool. For more information,
consult the third-party documentation for your postbuild tool.

Execute

Use Default Execute Tool

Select this check box to use the generated derivative as the execute tool when the build
process is complete. Uncheck it to specify a different tool. The default value, echo, simply
displays a message that the build process is complete.

Note: On the Linux operating system, multirate multitasking executables require root
privileges to schedule POSIX threads with real-time priority. If you are using makefiles
to build multirate multitasking executables on your Linux development system, you

37 Project and Build Configurations for Embedded Targets

37-32

cannot use Execute tool to run the executable. Instead, use the Linux command, sudo,
to run the executable.

Execute tool

Set the path and file name of the execute tool executable or built-in command.

Arguments

Define the command-line arguments to pass to the execute tool. For more information,
consult the third-party documentation for your execute tool.

Tool Directories

Installation

Use the Tool Directories tab to change the toolchain path of an operational configuration.

For example, if you installed two versions of a vendor build tool in separate folders, you
can use the Installation path to change which one the configuration uses.

38

Verification and Profiling Generated
Code

• “PIL Simulation for IDE and Toolchain Targets” on page 38-2
• “Code Execution Profiling for IDE and Toolchain Targets” on page 38-19
• “Perform Execution Time Profiling for IDE and Toolchain Targets” on page 38-22
• “Perform Stack Profiling with IDE and Toolchain Targets” on page 38-27

38 Verification and Profiling Generated Code

38-2

PIL Simulation for IDE and Toolchain Targets
In this section...

“Overview” on page 38-2
“PIL Approaches” on page 38-3
“Communications” on page 38-7
“Running Your PIL Application to Perform Simulation and Verification” on page
38-13
“Performing a Model Block PIL Simulation via SCI Using Makefiles” on page 38-13
“Definitions” on page 38-17
“PIL Issues and Limitations” on page 38-17

Overview

Verification consists broadly of running generated code on a processor and verifying that
the code does what you intend. Embedded Coder provides processor-in-the-loop (PIL)
simulation to meet this need. PIL compares the numeric output of your model under
simulation with the numeric output of your model running as an executable on a target
hardware.

With PIL, you run your generated code on a target hardware or instruction set simulator.
To verify your generated code, you compare the output of model simulation modes,
such as Normal or Accelerator, with the output of the generated code running on the
processor. You can switch between simulation and PIL modes. This flexibility allows
you to verify the generated code by executing the model as compiled code in the target
environment. You can model and test your embedded software component in Simulink
and then reuse your regression test suites across simulation and compiled object code.
This process avoids the time-consuming process of leaving the Simulink software
environment to run tests again on object code compiled for the production hardware.

Embedded Coder supports the following PIL approaches:

• Model block PIL
• Top-model PIL
• PIL block

When you use makefiles with PIL, use the “model block PIL” approach. With makefiles,
the other two approaches, “top-model PIL” and “PIL block”, and are not supported.

 PIL Simulation for IDE and Toolchain Targets

38-3

PIL Approaches

• “Model Block PIL” on page 38-3
• “Top-Model PIL” on page 38-4
• “PIL Block” on page 38-5

Model Block PIL

Use model block PIL to:

• Verify code generated for referenced models (model reference code interface).
• Provide a test harness model (or a system model) to generate test vector or stimulus

inputs.
• Switch a model block between normal, SIL, or PIL simulation modes.

To perform a model block PIL simulation, start with a top-model that contains a model
block. The top-model serves as a test harness, providing inputs and outputs for the model
block. The model block references the model you plan to run on target hardware. During
PIL simulation, the referenced model runs on the target hardware.

For more information about using the model block, see Model Variants and “Model
Reference”.

By default, your MathWorks software uses the IDE debugger for PIL communications
with the target hardware. To achieve faster communications, consider using one of the
alternatives presented in “Communications” on page 38-7.

To use model block PIL:

1 Create and share a configuration reference between the top model and the referenced
model, as described in “Share a Configuration for Multiple Models”.

2 Right-click the Model block, and select ModelReference Parameters.
3 When the software displays the Function Block Parameters: Model dialog box,

set Simulation mode to Processor-in-the-loop (PIL) and click OK.
4 Open the model block.
5 In the referenced model (model block) Configuration Parameters (Ctrl+E), under

Code Generation > Coder Target, set Build action set to Archive_library.
This action avoids a warning when you start the simulation.

6 Save the changes to both models.

38 Verification and Profiling Generated Code

38-4

7 In the top-model menu bar, select Simulation > Run. This action builds the
referenced model in the model block, downloads it to your target hardware, and runs
the PIL simulation.

Note: In the top-model Configuration Parameters (Ctrl+E), under Code Generation >
Coder Target, leave Build action set to Build_and_execute. Do not change Build
action to Create_Processor_In_the_Loop_Project.

Top-Model PIL

Use top-model PIL to:

• Verify code generated for a top-model (standalone code interface).
• Load test vectors or stimulus inputs from the MATLAB workspace.
• Switch the entire model between normal and SIL or PIL simulation modes.

Setting Model Configuration Parameters to Generate the PIL Application

Configure your model to generate the PIL executable from your model:

1 Configure your model to run on target hardware, as described in “Configure Target
Hardware Resources” on page 37-3.

2 From the model toolstrip, select Simulation > Model Configuration Parameters.
3 In Configuration Parameters, select Code Generation.
4 Set System Target File to idelink_ert.tlc.
5 From the list of panes under Code Generation, choose Coder Target.
6 Set Build format to Project.
7 Set Build action to Create_processor_in_the_loop_project.
8 Click OK to close the Configuration Parameters dialog box.

For more information, see “Code Generation: Coder Target Pane”.

Running the Top-Model PIL Application

To create a PIL block, perform the following steps:

1 In the model toolstrip, set the Simulation mode to Processor-in-the-loop.

 PIL Simulation for IDE and Toolchain Targets

38-5

2 In the model toolstrip, click Run.

A new Simulink Editor opens with the new PIL model block in it. The third-party
IDE compiles and links the PIL executable file. Follow the progress of the build
process in the MATLAB Command Window.

PIL Block

Use the PIL block to:

• Verify code generated for a top-model (standalone code interface) or subsystem (right-
click build standalone code interface).

• Represent a component running in SIL or PIL mode. The test harness model or a
system model provides test vector or stimulus inputs.

Preparing Your Model to Generate a PIL Block

Start with a model that contains the algorithm blocks you want to verify on the processor
as compiled object code. To create a PIL application and PIL block from your algorithm
subsystem, follow these steps:

1 Identify the algorithm blocks to cosimulate.
2 Convert those blocks into an unmasked subsystem in your model.

For information about how to convert your process to a subsystem, refer to Creating
Subsystems in Using Simulink or in the online Help system.

3 Open the newly created subsystem.
4 Configure your subsystem to run on target hardware, as described in “Configure

Target Hardware Resources” on page 37-3.

38 Verification and Profiling Generated Code

38-6

Setting Model Configuration Parameters to Generate the PIL Application

After you create your subsystem, set the Configuration Parameters for your model to
enable the model to generate a PIL block.

Configure your model to enable it to generate PIL algorithm code and a PIL block from
your subsystem:

1 From the model menu bar, select Simulation > Model Configuration
Parameters. This action opens the Configuration Parameters dialog box.

2 In the Configuration Parameters dialog box, select Code Generation.
3 Set System Target File to idelink_ert.tlc.
4 From the list of panes under Code Generation, choose Coder Target.
5 Set Build format to Project.
6 Set Build action to Create_processor_in_the_loop_project.
7 Click OK to close the Configuration Parameters dialog box.

For more information, see “Code Generation: Coder Target Pane”.

Creating the PIL Block from a Subsystem

To create a PIL block, perform the following steps:

1 Right-click the masked subsystem in your model and select C/C++ Code > Build
This Subsystem from the context menu.

A new Simulink Editor opens and the new PIL block appears in it. The third-party
IDE compiles and links the PIL executable file.

This step builds the PIL algorithm object code and a PIL block that corresponds to
the subsystem, with the same inputs and outputs. Follow the progress of the build
process in the MATLAB Command Window.

2 Copy the new PIL block from the new model to your model. To simulate the
subsystem processes concurrently, place it parallel to your masked subsystem.
Otherwise, replace the subsystem with the PIL block.

To see a PIL block in a parallel masked subsystem, search the product help for
Getting Started with Application Development and select the example that matches
your IDE.

 PIL Simulation for IDE and Toolchain Targets

38-7

Note: Models can have multiple PIL blocks for different subsystems. They cannot have
more than one PIL block for the same subsystem. Including multiple PIL blocks for the
same subsystem causes errors and inaccurate results.

Communications

• “TCP/IP” on page 38-8
• “Additional Steps for TI C6000 Processors” on page 38-9
• “Serial Communication Interface (SCI) for Texas Instruments C2000” on page

38-10
• “IDE Debugger” on page 38-11

Choose one of the following communication methods for transferring code and data
during PIL simulations:

Method Speed Comments

IDE Debugger Slow • Supports PIL communications with an
executable running an embedded target
hardware.

• Supports the largest number of targets.
• Requires a physical connection between host

and target hardware.
• Only works with builds from IDE projects.

Does not work with builds from makefiles.
TCP/IP Fast • Supports PIL communications with an

executable running on a Linux or Windows
host.

• Supports embedded targets running Linux,
TI DSP/BIOS, and Wind River VxWorks.

• Requires network connection between host
and target hardware.

• Works with builds from IDE projects and
from makefiles.

Serial Communication
Interface (SCI)

Fast • Supports PIL communications with an
executable running an embedded target
hardware.

38 Verification and Profiling Generated Code

38-8

Method Speed Comments

• Supports TI C2802x, C2803x, 2806x, c280x,
C281x, C2834x, C28x3x microcontrollers.

• Requires an SCI connection between host
and target hardware.

• Works with builds from IDE projects and
from makefiles.

TCP/IP

You can use TCP/IP for PIL communications with target hardware running:

• Linux
• Texas Instruments DSP/BIOS
• Wind River VxWorks

Using TCP/IP for PIL communications is typically faster than using a debugger,
particularly for large data sets, such as with video and audio applications.

It also works well when you build an application on a remote Linux target using the
remoteBuild function.

You can use TCP/IP with the following PIL approaches:

• Top-model PIL
• Model block PIL

TCP/IP does not work with the Subsystem PIL approach.

To enable and configure TCP/IP with PIL:

1 Set up a PIL simulation according to the PIL approach you have chosen.
2 In the MATLAB Command Window, use setpref to specify the IP address of the

PIL server (servername).

If you are running the PIL server on a remote target, specify the IP address of the
target hardware. For example:
setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','servername','144.212.109.114');

If you are running PIL server locally, on your host Windows or Linux system, enter
'localhost' instead of an IP address:

 PIL Simulation for IDE and Toolchain Targets

38-9

setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','servername','localhost');

3 Specify the TCP/IP port number to use for PIL data communication. Use one of the
free ports in your system. For example:
setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','portnum', 17025);

4 Enable PIL communications over TCP/IP:
setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','enabletcpip', true);

To disable PIL communications over TCP/IP, change the value to false. This action
automatically enables PIL communications over an IDE debugger, if an IDE is
available.

5 Open the Configuration Parameters in your model. On the Coder Target pane, set
the Operating System parameter to the operating system your target hardware is
running.

Note: You cannot use TCP/IP for PIL when the value of Operating System is None.

6 Regenerate the code or PIL block.

To disable PIL communications over TCP/IP, enter:
setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','enabletcpip', false);

Additional Steps for TI C6000 Processors

Add an IP Config block to the following location in your model:

• For top-model PIL, add it at the top level of your model.
• For model block PIL, add it to the referenced model to which you are pointing.
• For Subsystem PIL, place it in the subsystem.

Configure the IP Config block settings as described in C6000 IP Config.

To determine the IP address assigned to the PIL server on the C6000 target:

1 Enter an arbitrary IP address the first time you specify the IP address.
2 Build and run the code for your model.
3 In the CCS command window, observe the actual IP address assigned to the C6000

processor by the DHCP server.

38 Verification and Profiling Generated Code

38-10

4 Enter the actual IP address the second time you specify the IP address.

Serial Communication Interface (SCI) for Texas Instruments C2000

You can use SCI for processor-in-the-loop (PIL) simulations with Texas Instruments
C2000 processors that support Serial Communications Interface (SCI). For other targets,
configure PIL to communicate through TCP/IP or an IDE debugger.

SCI typically provides faster communications than an IDE debugger, particularly for
large data sets.

To enable and configure SCI with PIL:

1 Set up a PIL simulation according to the PIL approach you have chosen. For more
information, see “PIL Approaches” on page 38-3.

2 In the MATLAB Command Window, use setpref to specify the Configuration
Parameters:

a Select the SCI port on your host computer for communicating with the target
hardware. For example, to use COM1, enter the following command:
setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences', 'COMPort','COM1');

b Set the baud rate of the SCI port. For example, if both the host computer and
the target support 11,5200 baud, enter:
setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','BaudRate', 115200);

c Enable PIL communications over SCI:
setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','enableserial',true);

3 Configure the serial communications settings on your host computer to match the
preceding values. For example, in Windows 7:

a Open the Windows Device Manager. (Press the Windows key on your keyboard
and search for “Device Manager”.)

b Expand Ports (COM & LPT1).
c Right-click the communications port you previously specified in MATLAB, such

as Communications Port (COM1), and select Properties.
d Go to the Port Settings tab, and match the value of Bits per second with the

baud rate you previously specified in MATLAB. This value should match the
baud rate you set in MATLAB. For example, 'BaudRate',115200.

4 Regenerate the code or PIL block.

 PIL Simulation for IDE and Toolchain Targets

38-11

Note: In serial PIL simulation, the changes that you make to the BaudRate or
COMPort parameters in MathWorks_Embedded_IDE_Link_PIL_Preferences are not
detected, if the following conditions are met:

• You have already built your PIL application.
• You have set the Configuration Parameters >Model Referencing >Rebuild

option to a value other than Always.
• You have not made changes to the model.

To apply your COM port or baudrate changes, either change the value in the
Configuration Parameters >Model Referencing >Rebuild option to Always, or
resave the model to force a new build of the PIL application.

To disable PIL communications over SCI, enter:
setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','enableserial',false);

Note: If you change the following parameters while using TCP/IP or serial
communication for PIL, the software does not regenerate the PIL and communication
code.

• TCP/IP Communication Parameters: IP Address and Port number
• Serial Communication Parameters: COM Port and BaudRate

To work around this issue, remove the slprj folder, generated code, and the generated
MEX file. Then, regenerate the PIL code.

See “Performing a Model Block PIL Simulation via SCI Using Makefiles” on page
38-13

IDE Debugger

To enable PIL communications over an IDE debugger, disable PIL communications over
TCP/IP and SCI by entering the following commands:
setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','enabletcpip',false);

setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','enableserial',false);

Then regenerate the code or PIL block.

38 Verification and Profiling Generated Code

38-12

Using IDE debugger for PIL communication only works when you build your code from
IDE projects. Using IDE debugger for PIL communication does not work with builds from
makefiles.

Configuring Breakpoints

You can use the setStartApplicationPause API to set breakpoints in
the PIL application on the first PIL block simulation. If you do not use the
setStartApplicationPause API, you can configure breakpoints after the initial run.
The breakpoints remain active for subsequent runs.

You can enter the following static API method to pause after loading the application and
manually configure breakpoints:

rtw.connectivity.Launcher.setStartApplicationPause(pauseAmount)

About this method:

• This method tells the MATLAB session to pause immediately after the PIL launcher
starts the PIL application.

• pauseAmount is a pause time in seconds. To disable the pause, enter 0.

When you do not specify a pause, the software displays the following message:
To pause during PIL application start, run: >> rtw.connectivity.Launcher.

setStartApplicationPause(120)

The default pause is 120 sec. You can change this value.

When you specify a pause, a Start PIL Application Pause message box appears and
displays following message:
Pausing during PIL application start for 120s (click OK to continue).

To disable this pause, see the hyperlink in the MATLAB command window.

• The MATLAB Command Window shows the following text:

To remove the pause during PIL application start,

run: >> rtw.connectivity.Launcher. setStartApplicationPause(0)

where rtw.connectivity.Launcher. setStartApplicationPause(0) is a
hyperlink.

• The pause times out, or you can clear it early by closing the message box.
• During the pause, you cannot access MATLAB and thus cannot configure breakpoints

programmatically via the IDE Automation Interface API.

 PIL Simulation for IDE and Toolchain Targets

38-13

• For the PIL block, the debugger stays open between simulation runs. When you
perform an initial simulation run, you can automatically configure breakpoints via
the IDE Automation Interface API before starting the second simulation.

Running Your PIL Application to Perform Simulation and Verification

After you add PIL block to your model, add the required pause in seconds, using the
following command in the MATLAB command prompt:

rtw.connectivity.Launcher.setStartApplicationPause(120)

Then click Simulation > Run or press Ctrl+T to run the PIL simulation and view the
results.

Note The pause command is to make sure that the automatic download of PIL completes,
before the model starts executing.

Performing a Model Block PIL Simulation via SCI Using Makefiles

This example shows you the complete workflow for performing a processor-in-the loop
(PIL) simulation that uses Serial Communications Interface (SCI) for communications.

Prerequisites

Follow the board vendor’s instructions for setting up a Texas Instruments C2000-based
board that supports SCI. Connect the board to your host computer using a serial cable.

Configure Your Model for Target Hardware

1 Enter fuelsys_pil in MATLAB. This action opens the fuelsys_pil model with the
title, “Verifying the Fixed-Point Fuel Control System”.

2 Configure fuelsys_pil. Follow the steps in “Configure Target Hardware
Resources” on page 37-3 setting:

• IDE/Tool Chain to the version of CCS you are using.
• Board to a board that supports using SCI, such as SD F28335 eZdsp.

3 Click Yes.

If you are working with CCSv3, configure fuelsys_pil to use makefiles:

38 Verification and Profiling Generated Code

38-14

1 Select Simulation > Model Configuration Parameters.
2 In the Configuration Parameters dialog box, expand Code Generation and select

Coder Target.
3 On the Coder Target pane, set Build format to Makefile.

If you are working with CCSv4/5, you do not need to configure the model to use
makefiles. Initializing the configuration parameters for CCSv4/5 automatically sets
Build format to Makefile.

Configure Your Model for the Model Block PIL Approach

1 In the fuelsys_pil, copy the fuelsys_ctr model and paste it into the vacant space
below. Connect it to the input/output signals provided.

 PIL Simulation for IDE and Toolchain Targets

38-15

2 Right-click the upper fuelsys_ctr model, labeled “Model”, and select
ModelReference Parameters.

3 In the Function Block Parameters: Model dialog box, set the Simulation mode
parameter to Processor-in-the-loop (PIL). Click the OK button.

4 Open the upper fuelsys_ctr model, labeled “Model”.
5 From the menu in the open fuelsys_ctr model, select Simulation > Model

Configuration Parameters (or press Ctrl+E).

38 Verification and Profiling Generated Code

38-16

6 In the Configuration Parameters dialog box, in the Solver pane, set the Type
parameter to Fixed-step, and set Solver to ode3 (Bogacki-Shampine).

7 In the MATLAB Command Window, enter:
set_param('fuelsys_ctr', 'ModelReferenceSymbolNameMessage', 'none')

8 In the Code Generation > Interface pane, clear the Software environment
absolute time check box.

9 In the Code Generation > Coder Target pane, set the Run time Build action
parameter to Archive library.

10 Save the changes to your model, and leave the model open.
11 Open the top model, fuelsys_pil. Open the Configuration Parameters dialog box, in

the Solver pane, verify that the Type parameter is set to Fixed-step, and reset
Solver to ode3 (Bogacki-Shampine).

Note: For information other PIL approaches, see “PIL Approaches” on page 38-3.

Enable and configure SCI

1 Use setpref to specify the Configuration Parameters in MATLAB :
setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','COMPort','COM1');

setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','BaudRate',115200);

setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','enableserial',true);

2 Configure the serial communications settings on your host computer to match the
preceding values. For example, in Windows 7:

a Open the Windows Device Manager. (Press the Windows key on your keyboard
and search for “Device Manager”.)

b Expand Ports (COM & LPT1).
c Right-click the communications port you previously specified in MATLAB, such

as Communications Port (COM1), and select Properties.
d Go to the Port Settings tab, and match the value of Bits per second with the

baud rate you previously specified in MATLAB. This value should match the
baud rate you set in MATLAB. For example, 'BaudRate',115200.

Configure the Software to Use Makefiles

Set up the xmakefile for CCSv4/5 as described in the section “Using Makefiles with Code
Composer Studio 4/5”.

 PIL Simulation for IDE and Toolchain Targets

38-17

Run the PIL Simulation

1 Make sure the SD F28335 eZdsp board is connected to your host computer via serial
and USB cables and powered up.

2 Add the required pause in seconds, using the following command in the MATLAB
command prompt:

run: >> rtw.connectivity.Launcher.setStartApplicationPause(120)

3 Simulate the fuelsys_pil model (press Ctrl+T).

Definitions

PIL Algorithm

The algorithmic code, which corresponds to a subsystem or portion of a model, to test
during the PIL simulation. The PIL algorithm is in compiled object form to enable
verification at the object level.

PIL Application

The executable application that runs on the processor platform. Your coder product
creates a PIL application by augmenting your algorithmic code with the PIL execution
framework. The PIL execution framework code compiles as part of your embedded
application.

The PIL execution framework code includes the string.h header file so that the PIL
application can use the memcpy function. The PIL application uses memcpy to exchange
data between the Simulink model and the simulation processor.

PIL Block

When you build a subsystem from a model for PIL, the process creates a PIL block
optimized for PIL simulation. When you run the simulation, the PIL block acts as the
interface between the model and the PIL application running on the processor. The PIL
block inherits the signal names and shape from the source subsystem in your model.
Inheritance is convenient for copying the PIL block into the model to replace the original
subsystem for simulation.

PIL Issues and Limitations

Consider the following issues when you work with PIL blocks.

38 Verification and Profiling Generated Code

38-18

Constraints

When using PIL in your models, keep in mind the following constraints:

• Models can have multiple PIL blocks for different subsystems. They cannot have more
than one PIL block for the same subsystem. Including multiple PIL blocks for the
same subsystem causes errors and inaccurate results.

• A model can contain a single model block running PIL mode.
• A model can contain a subsystem PIL block or a model block in PIL mode, but not

both.

Generic PIL Issues

Refer to PIL Feature Support and Limitations for general information about using the
PIL block with embedded link products.

With Texas Instruments CCS, PIL with DSP/BIOS Enabled Does Not Support System Stack
Profiling

Enabling DSP/BIOS for Texas Instruments processors disables the stack profiling option.
To use stack profiling with PIL, open the Target Hardware Resources pane in model
Configuration Parameters, and set the Operating System parameter to None. For
help opening the Target Hardware Resources pane, see “Configure Target Hardware
Resources” on page 37-3.

Simulink Coder grt.tlc-Based Targets Not Supported

PIL does not support grt.tlc system target files.

To use PIL, set System target file in the Configuration Parameters > Code Generation
pane to idelink_ert.tlc.

 Code Execution Profiling for IDE and Toolchain Targets

38-19

Code Execution Profiling for IDE and Toolchain Targets

In this section...

“Execution Time Profiling” on page 38-19
“Stack Profiling” on page 38-19

Execution Time Profiling

You can measure the execution times during a standalone execution or processor-in-the-
loop (PIL) simulation. You can generate execution time profiles for synchronous tasks,
asynchronous tasks, and atomic subsystems. Use this feature to check whether your code
runs in real time on your target hardware. For details, see “Perform Execution Time
Profiling for IDE and Toolchain Targets” on page 38-22.

You can use this profiling for generated code in the following cases:

• Code Generation > System target file is ert.tlc and Code Generation >
Target hardware is not None, for example, ARM Cortex-A9 (QEMU) or ARM
Cortex-M3 (QEMU).

• Code Generation > System target file is idelink_ert.tlc

The following table provides execution time profiling support information.

Mode Coder Target > Tool Chain Automation > Build format
parameter value

Standalone execution or PIL
simulation

Project

PIL simulation Makefile

Stack Profiling

With stack profiling, you can determine how generated code uses the processor system
stack. Using the profile method, you can initialize and test the size and usage of the
stack. See “Perform Stack Profiling with IDE and Toolchain Targets” on page 38-27.
This information can help you optimize both the size of the stack and how your code uses
the stack.

38 Verification and Profiling Generated Code

38-20

You can use this profiling for generated code in the following cases:

• Code Generation > System target file is ert.tlc and Code Generation >
Target hardware is not None, for example, ARM Cortex–A9 (QEMU) or ARM
Cortex–M3 (QEMU).

• Code Generation > System target file is idelink_ert.tlc

Note: Stack profiling is not supported on embedded targets that run an operating system
or RTOS.

To provide stack profiling, profile writes a known pattern to the addresses in the
stack. After you run your application for a while, and then stop your application,
profile examines the contents of the stack addresses. profile counts each address
that does not contain the known pattern. The total number of addresses that have been
used, compared to the total number of addresses that you allocated, becomes the stack
usage profile. This profile process does not determine how often your application changes
an address.

You can profile the stack with the manually written code in a project and the code that
you generate from a model.

When you use profile to initialize and test the stack operation, the software returns
a report that contains information about stack size, usage, addresses, and direction.
With this information, you can modify your code to use the stack efficiently. The
following program listing shows the stack usage results from running an application on a
simulator.

profile(IDE_Obj,'stack','report')

Maximum stack usage:

System Stack: 532/1024 (51.95%) MAUs used.

 name: System Stack

 startAddress: [512 0]

 endAddress: [1535 0]

 stackSize: 1024 MAUs

growthDirection: ascending

The following table describes the entries in the report.

 Code Execution Profiling for IDE and Toolchain Targets

38-21

Report Entry Units Description

System Stack Minimum Addressable Unit
(MAU)

Maximum number of MAUs
used and the total MAUs
allocated for the stack.

name String for the stack name Lists the name assigned to
the stack.

startAddress Decimal address and page Lists the address of the stack
start and the memory page.

endAddress Decimal address and page Lists the address of the end
of the stack and the memory
page.

stackSize Addresses Reports number of address
locations, in MAUs, allocated
for the stack.

growthDirection Not applicable Reports whether the stack
grows from the lower address
to the higher address
(ascending) or from higher
to lower (descending).

38 Verification and Profiling Generated Code

38-22

Perform Execution Time Profiling for IDE and Toolchain Targets

In this section...

“Execution Profiling During Standalone Execution” on page 38-22
“Execution Profiling During PIL Simulation” on page 38-25

Execution Profiling During Standalone Execution

During standalone execution, instrumentation in the generated code collects execution
time samples, which are stored in target hardware memory. After halting target
hardware execution, you can use the profile function to transfer the execution data
from target hardware memory to the MATLAB workspace for viewing and analysis.

You can perform profiling by task or subsystem. A profiling sample represents a task or
subsystem execution instance. Each sample requires two memory locations, one for the
start time and one for the end time. Therefore, you must specify a buffer size that is twice
the number of required profiling samples. Sample collection begins with the start of code
execution and ends when the buffer is full.

Task Profiling

To configure a model for task execution profiling:

1 In your model, select Simulation > Model Configuration Parameters.
2 Select the Code Generation > Coder Target pane.
3 Set Build format to Project and set Build action to Build_and_execute.
4 Select Profile real-time execution.
5 In the Profile by list, select Tasks.
6 Specify Number of profiling samples to collect, the size of the buffer that stores

execution data. Enter a value that is twice the number of profiling samples you
require.

7 Click OK.

To view the execution profile for your model:

 Perform Execution Time Profiling for IDE and Toolchain Targets

38-23

1

Click Build Model on the model toolstrip. This action builds, loads,
and runs your code on the processor.

2 To stop the running program, select Debug > Halt in the IDE or use IDE_obj.halt
from the MATLAB command line. Gathering profiling data from a running program
can yield inaccurate results.

3 At the MATLAB command prompt, enter

profile(IDE_Obj,'execution','report')

to view the MATLAB software graphic of the execution report and the HTML
execution report.

For more information about other reporting options, see the product help for the
profile function.

The following profiling plot is from an application that runs with three rates — the
base rate and two slower rates. Gaps in the Sub-Rate 2 task bars indicate preempted
operations.

Subsystem Profiling

To configure a model for subsystem execution profiling:

1 Configure your model for your IDE, tool chain, and target hardware, as described in
“Configure Target Hardware Resources” on page 37-3.

38 Verification and Profiling Generated Code

38-24

2 On the Coder Target pane, set Build format to Project and set Build action to
Build_and_execute.

3 Select Profile real-time execution.
4 In the Profile by list, select Atomic subsystems.
5 Specify Number of profiling samples to collect, the size of the buffer that stores

execution data. Enter a value that is twice the number of profiling samples you
require.

6 Click OK.

To view the execution profile for your model:

1

Click Build Model on the model toolstrip. This action builds, loads,
and runs your code on the processor.

2 To stop the running program, select Debug > Halt in the IDE or use
IDE_obj.halt from the MATLAB command line. Gathering profiling data from a
running program can yield inaccurate results.

3 At the MATLAB command prompt, enter:

profile(IDE_Obj, 'execution','report')

to view the MATLAB software graphic of the execution report and the HTML
execution report.

The following profiling plot is from an application with three subsystems — For
Iterator Subsystem, For Iterator Subsystem1, and Idle Task Subsystem.

 Perform Execution Time Profiling for IDE and Toolchain Targets

38-25

Execution Profiling During PIL Simulation

During a processor-in-the-loop (PIL) simulation, you can profile execution
times of synchronous tasks. The software stores the profile data in a
coder.profile.ExecutionTime object, located in the MATLAB workspace. After
halting the PIL simulation, you can view and analyze the data.

Gathering Execution Profile Data

1 Configure a model for PIL simulation, as described in “PIL Simulation for IDE and
Toolchain Targets” on page 38-2.

2 In your model, select Simulation > Model Configuration Parameters.
3 In the Configuration Parameters dialog box, select Code Generation, and then

Verification.
4 Select the Measure task execution time check box.
5 Provide a valid MATLAB variable name in the Workspace edit box. The software

uses this name when it creates the coder.profile.ExecutionTime object.
6 Click OK to close the Configuration Parameters dialog box.

38 Verification and Profiling Generated Code

38-26

7 Run the PIL simulation, as described in “PIL Simulation for IDE and Toolchain
Targets” on page 38-2.

The software creates the coder.profile.ExecutionTime object and stores the
execution profile data in it.

8 Halt the PIL simulation.

Analyzing the Execution Profile Data

After halting the PIL simulation, you can view or analyze the data in the
coder.profile.ExecutionTime object. For more information, see:

• “View and Compare Code Execution Times”
• “Analyze Code Execution Data”

Depending on the target, the execution profile data is measured in seconds or timer ticks.

Targets Units

Texas Instruments C2000, C5000, and C6000 processors with Code
Composer Studio IDE

Seconds

Texas Instruments C6000 processors running DSP/BIOS with Code
Composer Studio IDE

Timer Ticks

Analog Devices Blackfin, SHARC, and TigerSHARC processors
with VisualDSP++ IDE

Timer Ticks

ARM processors running Wind River VxWorks Timer Ticks

The coder.profile.ExecutionTime class has property TimerTicksPerSecond for
getting and setting the data units. You can use this property on the execution profile
data object after halting the PIL simulation. When the data unit is timer ticks, using the
TimerTicksPerSecond property converts the data units to seconds.

 Perform Stack Profiling with IDE and Toolchain Targets

38-27

Perform Stack Profiling with IDE and Toolchain Targets

To profile the system stack operation:

1 Load an application.
2 Set up the stack to enable profiling.
3 Run your application.
4 Request the stack profile information.

Follow these steps to profile the stack as your application interacts with it. This
particular example uses Texas Instruments Code Composer Studio 3.3. However, you can
generalize from this example to another supported IDE.

1 Load the application to profile.
2 Use the profile method with the setup input keyword to initialize the stack to a

known state.

profile(IDE_Obj,'stack','setup')

With the setup input argument, profile writes a known pattern into the
addresses that compose the stack.

3 Run your application.
4 Stop your running application. Stack use results gathered from an application that is

running may be inaccurate.
5 Use the profile method to capture and view the results of profiling the stack.

profile(IDE_Obj,'stack','report')

The following example shows how to set up and profile the stack. The IDE link handle
object, IDE_Obj, must exist in your MATLAB workspace and your application must be
loaded on your processor. This example comes from a TI C6713 simulator.
profile(IDE_Obj,'stack','setup') % Set up processor stack

%by write A5 to the stack addresses.

Maximum stack usage:

System Stack: 0/1024 (0%) MAUs used.

 name: System Stack

 startAddress: [512 0]

 endAddress: [1535 0]

 stackSize: 1024 MAUs

38 Verification and Profiling Generated Code

38-28

growthDirection: ascending

run(IDE_Obj)

halt(IDE_Obj)

profile(IDE_Obj,'stack','report') % Request stack use report.

Maximum stack usage:

System Stack: 356/1024 (34.77%) MAUs used.

 name: System Stack

 startAddress: [512 0]

 endAddress: [1535 0]

 stackSize: 1024 MAUs

growthDirection: ascending

39

Processor-Specific Optimizations for
Embedded Targets

39 Processor-Specific Optimizations for Embedded Targets

39-2

Replace Code for Embedded Targets

In this section...

“Using a Processor-Specific Code Replacement Library to Optimize Code” on page
39-2
“Process of Determining Optimization Effects Using Real-Time Profiling Capability” on
page 39-2

Using a Processor-Specific Code Replacement Library to Optimize Code

You can optimize the code the code generator produces for a specific processor by
configuring the code generator to use a code replacement library (CRL) during code
generation. If you have an Embedded Coder license, you can develop and apply custom
code replacement libraries.

For more information about replacing code, using code replacement libraries that
MathWorks provides, see “What Is Code Replacement?” and “Replace Code Generated
from Simulink Models”. For information about developing code replacement libraries, see
“What Is Code Replacement Customization?” and “Develop a Code Replacement Library”.

Process of Determining Optimization Effects Using Real-Time Profiling
Capability

You can use the real-time profiling capability to examine the results of applying the
processor-specific library functions and operators to your generated code. After you
select a processor-specific code replacement library, use the real-time execution profiling
capability to examine the change in program execution time.

Use the following process to evaluate the effects of applying a processor-specific code
replacement library when you generate code:

1 Enable real-time profiling in your model. Refer to “Code Execution Profiling”.
2 Generate code for your project without specifying a code replacement library (the

default Code replacement library setting is None).
3 Profile the code, and save the report.
4 Rebuild your project using a processor-specific code replacement library.
5 Profile the code, and save the second report.

 Replace Code for Embedded Targets

39-3

6 Compare the profile report from running your application with the processor-specific
library selected to the profile results in the first report with no code replacement
library selected.

For an example of verifying the code optimization, search help for "Optimizing Embedded
Code via Code Replacement Library" and select the example that matches your IDE.

40

Working with Texas Instruments Code
Composer Studio 3.3 IDE

• “Set Up” on page 40-2
• “Code Composer Studio” on page 40-3
• “Getting Started” on page 40-5
• “IDE Automation Interface” on page 40-9
• “IDE Project Generator” on page 40-53
• “Exporting Filter Coefficients from FDATool” on page 40-62
• “Using Makefiles with Code Composer Studio 3.x” on page 40-77
• “Reported Limitations and Tips” on page 40-81
• “Setting Up Code Composer Studio (ert.tlc System Target File)” on page 40-88
• “IDE Link Frequently Asked Question: Why do I get an error when I invoke TICCS?”

on page 40-90

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-2

Set Up

Before you use Embedded Coder with Code Composer Studio (CCS IDE) for the
first time, use the checkEnvSetup function to check for third-party tools and set
environment variables. Run checkEnvSetup again whenever you configure CCS IDE to
interact with a new board or processor, or upgrade the related third-party tools.

To verify that CCSv3 is installed on your machine and has at least one board configured,
enter

ccsboardinfo

in the MATLAB Command Window. With CCS installed and configured, MATLAB
software returns information about the boards that CCS recognizes on your machine, in a
form similar to the following listing.
Board Board Proc Processor Processor

 Num Name Num Name Type

 --- -------------------------------- --- -------------

1 C6xxx Simulator (Texas Instrum .0 6701 TMS320C6701

0 C6x13 DSK (Texas Instruments) 0 CPU TMS320C6x1x

If MATLAB software does not return information about the boards, open your CCS
installation and use the Setup Utility in CCS to configure at least one board.

As a final test, start CCS to verify that it runs. For Embedded Coder to operate with
CCS, the CCS IDE must be able to run on its own.

 Code Composer Studio

40-3

Code Composer Studio

In this section...

“Using Code Composer Studio with Embedded Coder Software” on page 40-3
“Default Project Configuration” on page 40-3

Using Code Composer Studio with Embedded Coder Software

Texas Instruments (TI) facilitates development of software for TI DSPs by offering
Code Composer Studio (CCS) Integrated Development Environment (IDE). Used in
combination with Embedded Coder software and Simulink Coder software, CCS provides
an integrated environment that, once installed, does not require coding.

Executing code generated from Simulink Coder software on a particular target requires
that you tailor the code to the specific hardware target. Target-specific code includes
I/O device drivers and interrupt service routines (ISRs). The software must use CCS
to compile and link the generated source code in order to load and execute on a TI
DSP. To help you to build an executable, Embedded Coder software uses Embedded
Coder software to start the code building process within CCS. After you download your
executable to your target and run it, the code runs wholly on the target hardware. You
can access the running process only from the CCS debugging tools or across a link using
Embedded Coder software. A wide range of Texas Instruments DSPs are supported:

• TI’s C2000™
• TI’s C5000™
• TI’s C6000

Default Project Configuration

CCS offers two standard project configurations, Release and Debug. Project
configurations define sets of project build options. When you specify the build options at
the project level, the options apply to the files in your project. For more information about
the build options, refer to your TI documentation. The models you build with Embedded
Coder software use a custom configuration that provides a third combination of build and
optimization settings — CustomMW.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-4

Default Build Options in the CustomMW Configuration

The default settings for CustomMW are the same as the Release project configuration in
CCS, except for the compiler options.

Your CCS documentation provides complete details on the compiler build options. You
can change the individual settings or the build configuration within CCS.

 Getting Started

40-5

Getting Started

In this section...

“Overview” on page 40-5
“Verifying Your Code Composer Studio Installation” on page 40-8

Overview

• “IDE Automation Interface” on page 40-6
• “IDE Project Generator” on page 40-7
• “Verification” on page 40-7

Embedded Coder software enables you to use MATLAB functions to communicate with
Code Composer Studio software and with information stored in memory and registers
on a processor. With the ticcs objects, you can transfer information to and from Code
Composer Studio software and with the embedded objects you get information about
data and functions stored in your signal processor memory and registers, as well as
information about functions in your project.

Embedded Coder lets you build, test, and verify automatically generated code using
MATLAB, Simulink, Simulink Coder, and the Code Composer Studio integrated
development environment. You can use Embedded Coder to verify code executing within
the Code Composer Studio software environment using a model in Simulink software.
This processor-in-the-loop testing environment uses code automatically generated from
Simulink models by Embedded Coder software. A range of Texas Instruments targets are
supported:

• TI’s C2000
• TI’s C5000
• TI’s C6000

With Embedded Coder , you can use MATLAB software and Simulink software to
interactively analyze, profile and debug processor-specific code execution behavior within
CCS. In this way, Embedded Coder automates deployment of the complete embedded
software application and makes it easy for you to assess possible differences between the
model simulation and processor code execution results.

Embedded Coder consists of these components:

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-6

• IDE Project Generator—add embedded framework code to the C code generated from
Simulink models, and package as a complete IDE project

• IDE Automation Interface—use functions in the MATLAB command window to access
and manipulate data and files in the IDE and on the processor

• Verification—verify how your programs run on your processor

With Embedded Coder, you create objects that connect MATLAB software to Code
Composer Studio software.

Note Embedded Coder uses objects. You work with them the way you use other MATLAB
objects. You can set and get their properties, and use their methods to change them or
manipulate them and the IDE to which they refer.

The next sections describe briefly the components of Embedded Coder software.

IDE Automation Interface

The IDE Automation Interface component is a collection of methods that use the Code
Composer Studio API to communicate between MATLAB software and Code Composer
Studio. With the interface, you can do the following:

• Automate complex tasks in the development environment by writing MATLAB
software scripts to communicate with the IDE, or debug and analyze interactively in a
live MATLAB software session.

• Automate debugging by executing commands from the powerful Code Composer
Studio software command language.

• Exchange data between MATLAB software and the processor running in Code
Composer Studio software.

• Set breakpoints, step through code, set parameters and retrieve profiling reports.
• Automate project creation, including adding source files, include paths, and

preprocessor defines.
• Configure batch building of projects.
• Debug projects and code.
• Execute API Library commands.

The IDE Automation Interface provides an application program interface (API) between
MATLAB software and Code Composer Studio. Using the API, you can create new

 Getting Started

40-7

projects, open projects, transfer data to and from memory on the processor, add files to
projects, and debug your code.

IDE Project Generator

The IDE Project Generator component is a collection of methods that use the Code
Composer Studio API to create projects in Code Composer Studio and generate code with
Embedded Coder. With the interface, you can do the following:

• Automated project-based build process

Automatically create and build projects for code generated by Embedded Coder.
• Customize code generation

Use Embedded Coder with a Embedded Coder system target file (STF) to generate
processor-specific and optimized code.

• Customize the build process
• Automate code download and debugging

Rapidly and effortlessly debug generated code in the Code Composer Studio software
debugger, using either the instruction set simulator or real hardware.

• Create and build CCS projects from Simulink software models. IDE Project Generator
uses Simulink Coder software or Embedded Coder software to build projects that
work with C2000™ software, C5000™ software, and C6000™ software processors.

• Highly customized code generation with the system target file idelink_ert.tlc
and idelink_grt.tlc that enable you to use the Configuration Parameters in your
model to customize your generated code.

• Automate the process of building and downloading your code to the processor, and
running the process on your hardware.

Verification

Verifying your processes and algorithms is an essential part of developing applications.
The components of Embedded Coder combine to provide the following verification tools
for you to apply as you develop your code:

• Processor-in-the-loop simulation (PIL)
• Execution profiling
• Stack profiling

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-8

Verifying Your Code Composer Studio Installation

To verify that CCS is installed on your machine and has at least one board configured,
enter

ccsboardinfo

in the MATLAB Command Window. With CCS installed and configured, MATLAB
software returns information about the boards that CCS recognizes on your machine, in a
form similar to the following listing.
Board Board Proc Processor Processor

 Num Name Num Name Type

 --- -------------------------------- --- -------------

1 C6xxx Simulator (Texas Instrum .0 6701 TMS320C6701

0 C6x13 DSK (Texas Instruments) 0 CPU TMS320C6x1x

If MATLAB software does not return information about boards, open your CCS
installation and use the Setup Utility in CCS to configure at least one board.

As a final test, start CCS to verify that it runs. For Embedded Coder to operate with
CCS, the CCS IDE must be able to run on its own.

Embedded Coder uses objects to create:

• Connections to the Code Composer Studio Integrated Development Environment
(CCS IDE)

• Connections to the RTDX™ (RTDX) interface. This object is a subset of the object that
refers to the CCS IDE.

Concepts to know about the objects in this toolbox are covered in these sections:

• “Constructing ticcs Objects” on page 40-42
• “ticcs Properties and Property Values” on page 40-43
• “Overloaded Functions for ticcs Objects” on page 40-43

Refer to MATLAB Classes and Objects in your MATLAB documentation for more details
on object-oriented programming in MATLAB software.

Many of the objects use COM server features to create handles for working with the
objects. Refer to your MATLAB documentation for more information about COM as used
by MATLAB software.

 IDE Automation Interface

40-9

IDE Automation Interface

In this section...

“Getting Started with IDE Automation Interface” on page 40-9
“Getting Started with RTDX” on page 40-25
“Constructing ticcs Objects” on page 40-42
“ticcs Properties and Property Values” on page 40-43
“Overloaded Functions for ticcs Objects” on page 40-43
“ticcs Object Properties” on page 40-44
“Function List” on page 40-50

Getting Started with IDE Automation Interface

• “Introducing the IDE Automation Interface” on page 40-9
• “Selecting Your Processor” on page 40-13
• “Creating and Querying Objects for CCS IDE” on page 40-14
• “Loading Files into CCS” on page 40-16
• “Working with Projects and Data” on page 40-18
• “Closing the Links or Cleaning Up CCS IDE” on page 40-24

Introducing the IDE Automation Interface

To use an interactive example that shows how to automate interaction between IDE
Link component and Texas Instruments Code Composer Studio V3.3 using MATLAB®
commands, see “Automation Interface Tutorial”.

Embedded Coder provides a connection between MATLAB software and a processor
in CCS. You can use objects to control and manipulate a signal processing application
using the computational power of MATLAB software. This approach can help you debug
and develop your application. Another possible use for automation is creating MATLAB
scripts that verify and test algorithms that run in their final implementation on your
production processor.

Before using the functions available with the objects, you must select a processor because
objects you create are specific to a designated processor and a designated instance of
CCS IDE. For multiprocessor boards or multiple board configurations of CCS, select the
specific processor.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-10

When you have one board with a single processor, the object defaults to the existing
processor. For the objects, the simulator counts as a board; if you have both a board and a
simulator that CCS recognizes, you must specify the processor explicitly.

To get you started using objects for CCS software, Embedded Coder includes a tutorial
that introduces you to working with data and files. As you work through this tutorial,
you perform the following tasks that step you through creating and using objects for CCS
IDE:

1 Select your processor.
2 Create and query objects to CCS IDE.
3 Use MATLAB software to load files into CCS IDE.
4 Work with your CCS IDE project from MATLAB software.
5 Close the connections you opened to CCS IDE.

The tutorial provides a working process (a workflow) for using Embedded Coder and
your signal processing programs to develop programs for a range of Texas Instruments
processors.

During this tutorial, you load and run a digital signal processing application on a
processor you select. The tutorial shows both writing to memory and reading from
memory in the ““Working with Projects and Data” on page 40-18” portion of the
tutorial.

You can use the read and write methods, as described in this tutorial, to read and write
data to and from your processor.

The tutorial covers the object methods and functions for Embedded Coder. The functions
listed in the first table apply to CCS IDE independent of the objects — you do not
need an object to use these functions. The methods listed in the second and third table
requires a ticcs object that you use in the method syntax:

Functions for Working With Embedded Coder

The following functions do not require a ticcs object as an input argument:

Function Description

ccsboardinfo Return information about the boards that CCS IDE
recognizes as installed on your PC.

 IDE Automation Interface

40-11

Function Description

ticcs Construct an object to communicate with CCS
IDE. When you construct the object you specify the
processor board and processor.

Methods for Working with ticcs Objects

The methods in the following table require a ticcs object as an input argument:

Method Description

add Add files to active project in IDE.
address Memory address and page value of symbol

in IDE.
build Build or rebuild current project.
display (IDE Object) Display the properties of an object to CCS

IDE and RTDX.
halt Terminate execution of a process running

on the processor.
info Return information about the processor or

information about open RTDX channels.
insert Insert debug point in file.
isrtdxcapable Test whether your processor supports

RTDX communications.
isvisible Determine whether IDE appears on

desktop.
isrunning Test whether the processor is executing a

process.
list Return various information listings from

Code Composer Studio software.
load Load program file onto processor.
read Retrieve data from memory on the

processor.
regread Read values from processor registers.
regwrite Write data values to registers on processor.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-12

Method Description

remove Remove file, project, or breakpoint.
restart Restore the program counter (PC) to the

entry point for the current program.
run Execute the program loaded on the

processor.
visible Set whether CCS IDE window is visible on

the desktop while CCS IDE is running.
write Write data to memory on the processor.

Running Code Composer Studio Software on Your Desktop — Visibility

When you create a ticcs object , Embedded Coder starts CCS in the background.

When CCS IDE is running in the background, it does not appear on your desktop, in your
task bar, or on the Applications page in the Task Manager. It does appear as a process,
cc_app.exe, on the Processes tab in Microsoft Windows Task Manager.

You can make the CCS IDE visible with the function visible. The function isvisible
returns the status of the IDE—whether it is visible on your desktop. To close the IDE
when it is not visible and MATLAB software is not running, use the Processes tab in
Microsoft Windows Task Manager and look for cc_app.exe.

If a link to CCS IDE exists when you close CCS, the application does not close. Microsoft
Windows software moves it to the background (it becomes invisible). Only after you
clear links to CCS IDE, or close MATLAB software, does closing CCS IDE unload the
application. You can see if CCS IDE is running in the background by checking in the
Microsoft Windows Task Manager. When CCS IDE is running, the entry cc_app.exe
appears in the Image Name list on the Processes tab.

When you close MATLAB software while CCS IDE is not visible, MATLAB software
closes CCS if it started the IDE. This happens because the operating system treats
CCS as a subprocess in MATLAB software when CCS is not visible. Having MATLAB
software close the invisible IDE when you close MATLAB software prevents CCS from
remaining open. You do not need to close it using Microsoft Windows Task Manager.

If CCS IDE is not visible when you open MATLAB software, closing MATLAB software
leaves CCS IDE running in an invisible state. MATLAB software leaves CCS IDE in the
visibility and operating state in which it finds it.

 IDE Automation Interface

40-13

Interactive Learning

You have the option of running this tutorial from the MATLAB Command Window or
entering the functions as described in the following tutorial sections.

To run the tutorial in MATLAB software, click run ccstutorial. This command
opens the tutorial in an interactive mode where the tutorial program provides prompts
and text descriptions to which you respond to move to the next portion of the lesson.
The interactive tutorial covers the same information provided by the following tutorial
sections. You can view the tutorial file by clicking ccstutorial.m.

Selecting Your Processor

Links for CCS IDE provides two tools for selecting a board and processor in
multiprocessor configurations. One is a command line tool called ccsboardinfo which
prints a list of the available boards and processors. So that you can use this function in a
script, ccsboardinfo can return a MATLAB software structure that you use when you
want your script to select a board without your help.

Note The board and processor you select is used throughout the tutorial.

1 To see a list of the boards and processors installed on your PC, enter the following
command at the MATLAB software prompt:

ccsboardinfo

MATLAB software returns a list that shows you the boards and processors that CCS
IDE recognizes as installed on your system.

2 To use the Selection Utility, boardprocsel, to select a board, enter

[boardnum,procnum] = boardprocsel

When you use boardprocsel, you see a dialog similar to the following. Note that
some entries vary depending on your board set.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-14

3 Select a board name and processor name from the lists.

You are selecting a board and processor number that identifies your particular
processor. When you create the object for CCS IDE in the next section of this
tutorial, the selected board and processor become the processor of the object.

4 Click Done to accept your board and processor selection and close the dialog.

boardnum and procnum now represent the Board name and Processor name you
selected — boardnum = 1 and procnum = 0

Creating and Querying Objects for CCS IDE

In this tutorial section, you create the connection between MATLAB software and CCS
IDE. This connection, or object, is a MATLAB software object that you save as variable
IDE_Obj.

You use function ticcs to create objects. When you create objects, ticcs input
arguments let you define other object property values, such as the global timeout. Refer
to the ticcs reference documentation for more information on these input arguments.

Use the generated object IDE_Obj to direct actions to your processor. In the following
tasks, IDE_Obj appears in function syntax that interacts with CCS IDE and the
processor:

1 Create an object that refers to your selected board and processor. Enter the following
command at the prompt.

IDE_Obj=ticcs('boardnum',boardnum,'procnum',procnum)

 IDE Automation Interface

40-15

If you were to watch closely, and your machine is not too fast, you see Code
Composer Studio software appear briefly when you call ticcs. If CCS IDE was not
running before you created the new object, CCS starts and runs in the background.

2 Enter visible(IDE_Obj,1) to force CCS IDE to be visible on your desktop.

Usually, you need to interact with Code Composer Studio software while you
develop your application. The first function in this tutorial, visible, controls the
state of CCS on your desktop. visible accepts Boolean inputs that make CCS
either visible on your desktop (input to visible = 1) or invisible on your desktop
(input to visible = 0). For this tutorial, use visible to set the CCS IDE visibility
to 1.

3 Next, enter display(IDE_Obj) at the prompt to see the status information.

TICCS Object:

 Processor type : Cxx

 Processor name : CPU

 Running? : No

 Board number : 0

 Processor number : 0

 Default timeout : 10.00 secs

 RTDX channels : 0

Embedded Coder provides methods to read the status of a board and processor:

• info — Return a structure of testable board conditions.
• display — Print information about the processor.
• isrunning — Return the state (running or halted) of the processor.
• isrtdxcapable — Return whether the hardware supports RTDX.

4 Type linkinfo = info(IDE_Obj).

The IDE_Obj link status information provides information about the hardware as
follows:

linkinfo =

 procname: 'CPU_1'

 isbigendian: 0

 isrtdxcapable: 0

 family: 320

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-16

 subfamily: 103

 revfamily: 11

 targettype: 'simulator'

 siliconrev: 0

 timeout: 10

 boardname: 'Cxxxx Device Simulator'

5 Check whether the processor is running by entering

runstatus = isrunning(IDE_Obj)

MATLAB software responds, indicating that the processor is stopped, as follows:

runstatus =

 0

6 At last, verify that the processor supports RTDX communications by entering

usesrtdx = isrtdxcapable(IDE_Obj)

usesrtdx =

 1

Loading Files into CCS

You have established the connection to a processor and board and have created and
queried objects. Next, the processor needs something to do.

In this part of the tutorial, you load the executable code for the processor CPU in CCS
IDE. Embedded Coder includes a CCS project file. Through the next tasks in the tutorial,
you locate the tutorial project file and load it into CCS IDE. The open method directs
CCS to load a project file or workspace file.

Note CCS has workspace and workspace files that are different from the MATLAB
workspace files and workspace. Remember to monitor both workspaces.

After you have executable code running on your processor, you can exchange data blocks
with it. Exchanging data is the purpose of the objects provided by Embedded Coder
software.

1 To load the project file to your processor, enter the following command at the
MATLAB software prompt. getdemoproject is a specialized function for loading

 IDE Automation Interface

40-17

Embedded Coder example files. It is not supported as a standard Embedded Coder
function.
demopjt= getDemoProject(IDE_Obj,'ccstutorial')

demopjt.ProjectFile

ans =

C:\Temp\EmbIDELinkCCDemos_v4.1\ccstutorial\cxx\cxxx\ccstut.pjt

demoPjt.DemoDir

ans =

C:\Temp\EmbIDELinkCCDemos_v4.1\ccstutorial\cxx\cxxx

Your paths may be different if you use a different processor. Note where the software
stored the example files on your machine. In general, Embedded Coder software
stores the example project files in

EmbIDELinkCCDemos_v#.#

Embedded Coder creates this folder in a location where you have write permission.
There are two locations where Embedded Coder software tries to create the example
folder, in the following order:

a In a temporary folder on your C drive, such as C:\temp\.
b If Embedded Coder software cannot use the temp folder, you see a dialog that

asks you to select a location to store the examples.
2 Enter the following command at the MATLAB command prompt to build the

processor executable file in CCS IDE.

build(IDE_Obj,'all',20)

You may get an error related to one or more missing .lib files. If you installed CCS
IDE in a folder other than the default installation folder, browse in your installation
folder to find the missing file or files. Refer to the path in the error message as an
indicator of where to find the missing files.

3 Change your working folder to the example folder and enter
load(IDE_Obj,'projectname.out') to load the processor execution file, where
projectname is the tutorial you chose, such as ccstut_67x.

You have a loaded program file and associated symbol table to the IDE and
processor.

4 To determine the memory address of the global symbol ddat, enter the following
command at the prompt:

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-18

ddata = address(IDE_Obj,'ddat')

ddata =

 1.0e+009 *

 2.1475 0

Your values for ddata may be different depending on your processor.

Note The symbol table is available after you load the program file into the processor,
not after you build a program file.

5 To convert ddata to a hexadecimal string that contains the memory address and
memory page, enter the following command at the prompt:

dec2hex(ddata)

MATLAB software displays the following response, where the memory page is
0x00000000 and the address is 0x80000010.

ans =

80000010

00000000

Working with Projects and Data

After you load the processor code, you can use Embedded Coder functions to examine and
modify data values in the processor.

When you look at the source file listing in the CCS IDE Project view window, there
should be a file named ccstut.c. Embedded Coder ships this file with the tutorial and
includes it in the project.

ccstut.c has two global data arrays — ddat and idat — that you declare and
initialize in the source code. You use the functions read and write to access these
processor memory arrays from MATLAB software.

Embedded Coder provides three functions to control processor execution — run, halt,
and restart.

 IDE Automation Interface

40-19

1 To see these commands, use the following function to add a breakpoint to line 68 of
ccstut.c.

insert(IDE_Obj,'ccstut.c',68)

Line 68 is

printf("Embedded Coder: Tutorial - Memory Modified by Matlab!\n");

For information about adding breakpoints to a file, refer to insert in the online
Help system. Then proceed with the tutorial.

2 To see the new functions, try the following functions.

halt(IDE_Obj) % Halt the processor.

restart(IDE_Obj) % Reset the PC to start of program.

run(IDE_Obj,'runtohalt',30); % Wait for program execution to stop at

 % breakpoint (timeout = 30 seconds).

When you switch to viewing CCS IDE, you see that your program stopped at the
breakpoint you inserted, and the program printed the following messages in the CCS
IDE Stdout tab. Nothing prints in the MATLAB command window:

Embedded Coder: Tutorial - Initialized Memory

Double Data array = 16.3 -2.13 5.1 11.8

Integer Data array = -1-508-647-7000 (call me anytime!)

3 Before you restart your program (currently stopped at line 68), change some values
in memory. Perform one of the following procedures based on your processor.

C5xxx processor family — Enter the following functions to see the read and
write functions.

a Enter ddatv = read(IDE_Obj,address(IDE_Obj,'ddat'),'double',4).

MATLAB software responds with

ddatv =

 16.3000 -2.1300 5.1000 11.8000

b Enter idatv = read(IDE_Obj,address(IDE_Obj,'idat'),'int16',4).

Now MATLAB software responds

idatv =

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-20

-1 508 647 7000

If you used 8-bit integers (int8), the returned values would be incorrect.

idatv=read(IDE_Obj,address(IDE_Obj,'idat'),'int8',4)

idatv =

1 0 -4 1

c You can change the values stored in ddat by entering
write(IDE_Obj,address(IDE_Obj,'ddat'),double([pi 12.3

exp(-1)...

sin(pi/4)]))

The double argument directs MATLAB software to write the values to the
processor as double-precision data.

d To change idat, enter

write(IDE_Obj,address(IDE_Obj,'idat'),int32([1:4]))

Here you write the data to the processor as 32-bit integers (convenient for
representing phone numbers, for example).

e Start the program running again by entering the following command:

run(IDE_Obj,'runtohalt',30);

The Stdout tab in CCS IDE reveals that ddat and idat contain new values.
Next, read those new values back into MATLAB software.

f Enter ddatv = read(IDE_Obj,address(IDE_Obj,'ddat'),'double',4).

ddatv =

3.1416 12.3000 0.3679 0.7071

ddatv contains the values you wrote in step c.
g Verify that the change to idatv occurred by entering the following command at

the prompt:

idatv = read(IDE_Obj,address(IDE_Obj,'idat'),'int16',4)

 IDE Automation Interface

40-21

MATLAB software returns the new values for idatv.

idatv =

1 2 3 4

h Use restart to reset the program counter for your program to the beginning.
Enter the following command at the prompt:

restart(IDE_Obj);

C6xxx processor family — Enter the following commands to see the read and
write functions.

a Enter ddatv = read(IDE_Obj,address(IDE_Obj,'ddat'),'double',4).

MATLAB software responds with

ddatv =

 16.3000 -2.1300 5.1000 11.8000

b Enter idatv = read(IDE_Obj,address(IDE_Obj,'idat'),'int16',4).

MATLAB software responds

idatv =

-1 508 647 7000

If you used 8-bit integers (int8), the returned values would be incorrect.

idatv=read(IDE_Obj,address(IDE_Obj,'idat'),'int8',4)

idatv =

1 0 -4 1

c Change the values stored in ddat by entering
write(IDE_Obj,address(IDE_Obj,'ddat'),double([pi 12.3

exp(-1)...

sin(pi/4)]))

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-22

The double argument directs MATLAB software to write the values to the
processor as double-precision data.

d To change idat, enter the following command:

write(IDE_Obj,address(IDE_Obj,'idat'),int32([1:4]))

In this command, you write the data to the processor as 32-bit integers
(convenient for representing phone numbers, for example).

e Next, start the program running again by entering the following command:

run(IDE_Obj,'runtohalt',30);

The Stdout tab in CCS IDE reveals that ddat and idat contain new values.
Read those new values back into MATLAB software.

f Enter ddatv = read(IDE_Obj,address(IDE_Obj,'ddat'),'double',4).

ddatv =

3.1416 12.3000 0.3679 0.7071

Verify that ddatv contains the values you wrote in step c.
g Verify that the change to idatv occurred by entering the following command:

idatv = read(IDE_Obj,address(IDE_Obj,'idat'),'int32',4)

MATLAB software returns the new values for idatv.

idatv =

1 2 3 4

h Use restart to reset the program counter for your program to the beginning.
Enter the following command at the prompt:

restart(IDE_Obj);

4 Embedded Coder offers more functions for reading and writing data to your
processor. These functions let you read and write data to the processor registers:
regread and regwrite. They let you change variable values on the processor in
real time. The functions behave slightly differently depending on your processor.

 IDE Automation Interface

40-23

Select one of the following procedures to see regread and regwrite used with your
processor.

C5xxx processor family — Most registers are memory-mapped and available
using read and write. However, the PC register is not memory mapped. To access
this register, use the special functions — regread and regwrite. The following
commands show how to use these functions to read and write to the PC register.

a To read the value stored in register PC, enter the following command at the
prompt to indicate to MATLAB software the data type to read. The input string
binary indicates that the PC register contains a value stored as an unsigned
binary integer.

IDE_Obj.regread('PC','binary')

MATLAB software displays

ans =

33824

b To write a new value to the PC register, enter the following command. This
time, the binary input argument tells MATLAB software to write the value to
the processor as an unsigned binary integer. Notice that you used hex2dec to
convert the hexadecimal string to decimal.

IDE_Obj.regwrite('PC',hex2dec('100'),'binary')

c Verify that the PC register contains the value you wrote.

IDE_Obj.regread('PC','binary')

C6xxx processor family — regread and regwrite let you access the processor
registers directly. Enter the following commands to get data into and out of the A0
and B2 registers on your processor.

a To retrieve the value in register A0 and store it in a variable in your MATLAB
workspace. Enter the following command:

treg = IDE_Obj.regread('A0','2scomp');

treg contains the two's complement representation of the value in A0.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-24

b To retrieve the value in register B2 as an unsigned binary integer, enter the
following command:

IDE_Obj.regread('B2','binary');

c Next, enter the following command to use regwrite to put the value in treg
into register A2.

IDE_Obj.regwrite('A2',treg,'2scomp');

CCS IDE reports that A0, B2, and A2 have the values you expect. Select View
> CPU Registers > Core Registers from the CCS IDE menu bar to list the
processor registers.

Closing the Links or Cleaning Up CCS IDE

Objects that you create in Embedded Coder software have COM handles to CCS. Until
you delete these handles, the CCS process (cc_app.exe in the Microsoft Windows
Task Manager) remains in memory. Closing MATLAB software removes these COM
handles, but there may be times when you want to delete the handles without closing the
application.

Use clear to remove objects from your MATLAB workspace and to delete handles they
contain. clear all deletes everything in your workspace. To retain your MATLAB
software data while deleting objects and handles, use clear objname. This applies to
IDE link handle objects you created with ticcs. To remove the objects created during
the tutorial, the tutorial program executes the following command at the prompt:

clear cvar cfield uintcvar

This tutorial also closes the project in CCS with the following command:

close(IDE_Obj,projfile,'project')

To delete your link to CCS, enter clear IDE_Obj at the prompt.

Your development tutorial using Code Composer Studio IDE is done.

During the tutorial you

1 Selected your processor.
2 Created and queried links to CCS IDE to get information about the link and the

processor.

 IDE Automation Interface

40-25

3 Used MATLAB software to load files into CCS IDE, and used MATLAB software to
run that file.

4 Worked with your CCS IDE project from MATLAB software by reading and writing
data to your processor, and changing the data from MATLAB software.

5 Created and used the embedded objects to manipulate data in a C-like way.
6 Closed the links you opened to CCS IDE.

Getting Started with RTDX

• “Using RTDX” on page 40-26
• “Creating the ticcs Objects” on page 40-30
• “Configuring Communications Channels” on page 40-32
• “Running the Application” on page 40-33
• “Closing the Connections and Channels or Cleaning Up” on page 40-39
• “Listing Functions” on page 40-41

Texas Instruments Real-Time Data Exchange (RTDX) provides “real-time, continuous
visibility into the way target applications operate in the real world. RTDX allows system
developers to transfer data between target devices and a host without interfering with
the target application.”

You can use RTDX with Embedded Coder software and Code Composer Studio to
accelerate development and deployment to Texas Instruments C2000 processors. RTDX
helps you test and analyze your processing algorithms in your MATLAB workspace.
RTDX lets you interact with your process in real time while it's running on the processor.
For example, you can:

• Send and retrieve data from memory on the processor
• Change the operating characteristics of the program
• Make changes to algorithms as required without stopping the program or setting

breakpoints in the code

Enabling real-time interaction lets you more easily see your process or algorithm in
action, the results as they develop, and the way the process runs.

This tutorial assumes you have Texas Instruments Code Composer Studio software and
at least one target development board. You can use the hardware simulator in CCS IDE
to run this tutorial.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-26

After you complete the tutorial, you can start using RTDX with your applications and
hardware.

Note: To use RTDX with the XDS100 USB JTAG Emulator and the C28027 chip, add the
following line to the linker command file:

_RTDX_interrupt_mask = ~0x000000008;

Using RTDX

Digital signal processing development efforts begin with an idea for processing data; an
application area, such as audio or wireless communications or multimedia computing;
and a platform or hardware to host the signal processing. Usually these processing
efforts involve applying strategies like signal filtering, compression, and transformation
to change data content; or isolate features in data; or transfer data from one form to
another or one place to another.

Developers create algorithms they need to accomplish the desired result. After they have
the algorithms, they use models and target hardware development tools to test their
algorithms, to determine whether the processing achieves the goal, and whether the
processing works on the proposed platform.

Embedded Coder and the links for RTDX and CCS IDE ease the job of taking algorithms
from the model realm to the real world of the processor on which the algorithm runs.

RTDX and links for CCS IDE provide a communications pathway to manipulate data
and processing programs on your processor. RTDX offers real-time data exchange in
two directions between MATLAB software and your processor process. Data you send
to the processor do little to alter running processes. Plotting data you retrieve from the
processor lets you see how your algorithms are performing in real time.

To introduce the techniques and tools available in Embedded Coder for using RTDX,
the following procedures use many of the methods in the link software to configure the
processor, open and enable channels, send data to the processor, and clean up after you
finish your testing. Among the functions covered are:

Functions From Objects for CCS IDE

Function Description

ticcs Create connections to CCS IDE and RTDX.

 IDE Automation Interface

40-27

Function Description

cd Change the CCS IDE working folder from
MATLAB software.

open Load program files in CCS IDE.
run Run processes on the processor.

Functions From the RTDX Class

Function Description

close Close the RTDX links between MATLAB
software and your processor.

configure Determine how many channel buffers to
use and set the size of each buffer.

disable Disable the RTDX links before you close
them.

display Return the properties of an object in
formatted layout. When you omit the
closing semicolon on a function, disp (a
built-in function) provides the default
display for the results of the operation.

enable Enable open channels so you can use
them to send and retrieve data from your
processor.

isenabled Determine whether channels are enabled
for RTDX communications.

isreadable Determine whether MATLAB software can
read the specified memory location.

iswritable Determine whether MATLAB software can
write to the processor.

msgcount Determine how many messages are waiting
in a channel queue.

open Open channels in RTDX.
readmat Read data matrices from the processor into

MATLAB software as an array.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-28

Function Description

readmsg Read one or more messages from a channel.
writemsg Write messages to the processor over a

channel.

This tutorial provides the following workflow to show you how to use many of the
functions in the links. By performing the steps provided, you work through many of
the operations yourself. The tutorial follows the general task flow for developing digital
signal processing programs through testing with the links for RTDX.

Within this set of tasks, numbers 1, 2, and 4 are fundamental to function syntax that
interacts development projects. Whenever you work with MATLAB software and objects
for RTDX, you perform the functions and tasks outlined and presented in this tutorial.
The differences lie in Task 3. Task 3 is the most important for using Embedded Coder to
develop your processing system.

1 Create an RTDX link to your desired processor and load the program to the
processor.

The projects begin this way. Without the links you cannot load your executable to the
processor.

2 Configure channels to communicate with the processor.

Creating the links in Task 1 did not open communications to the processor. With the
links in place, you open as many channels as you need to support the data transfer
for your development work. This task includes configuring channel buffers to hold
data when the data rate from the processor exceeds the rate at which MATLAB
software can capture the data.

3 Run your application on the processor. You use MATLAB software to investigate the
results of your running process.

4 Close the links to the processor and clean up the links and associated debris left over
from your work.

Closing channels and cleaning up the memory and links you created prepares CCS
IDE, RTDX, and Embedded Coder for the next time you start development on a
project.

This tutorial uses an executable program named rtdxtutorial_6xevm.out as
your application. When you use the RTDX links and CCS IDE to develop your own

 IDE Automation Interface

40-29

applications, replace rtdxtutorial_6xevm.out in Task 3 with the filename and path
to your digital signal processing application.

You can view the tutorial file used here by clicking rtdxtutorial. To run this tutorial in
MATLAB software, click run rtdxtutorial.

Note To be able to open and enable channels over a link to RTDX, the program loaded on
your processor must include functions or code that define the channels.

Your C source code might look something like this to create two channels, one to write
and one to read.

rtdx_CreateInputChannel(ichan); % processor reads from this.

rtdx_CreateOutputChannel(ochan); % processor writes to this.

These are the entries we use in int16.c (the source code that generates
rtdxtutorial_6xevm.out to create the read and write channels.

If you are working with a model in Simulink software and using code generation, use the
To Rtdx and From Rtdx blocks in your model to add the RTDX communications channels
to your model and to the executable code on your processor.

One more note about this tutorial. Throughout the code we use both the dot notation
(direct property referencing) to access functions and link properties and the function
form.

For example, use the following command to open and configure ichan for write mode.

IDE_Obj.rtdx.open('ichan','w');

You could use an equivalent syntax, the function form, that does not use direct property
referencing.

open(IDE_Obj.rtdx,'ichan','w');

Or, use

open(rx,'ichan','w');

if you created an alias rx to the RTDX portion of IDE_Obj, as shown by the following
command:

rx = IDE_Obj.rtdx;

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-30

Creating the ticcs Objects

With your processing model converted to an executable for your desired processor, you
are ready to use the objects to test and run your model on your processor. Embedded
Coder and the objects do not distinguish the source of the executable — whether you used
Embedded Coder, CCS IDE, or some other development tool to program and compile your
model to an executable does not alter the object connections. So long as your .out file is
acceptable to the processor you select, Embedded Coder provides the connection to the
processor.

Before continuing with this tutorial, you must load a valid GEL file to configure the
EMIF registers of your processor and perform required processor initialization steps.
Default GEL files provided by CCS are stored in ..\IDE_Obj\gel in the folder where
you installed CCS software. Select File > Load_GEL in CCS IDE to load the default
GEL file that matches your processor family, such as init6x0x.gel for the Cxxxx
processor family, and your configuration.

Note: If you are performing the steps in this tutorial, create demoPjt as described in
“Loading Files into CCS” on page 40-16 before continuing.

Begin the process of getting your model onto the processor by creating a an object that
refers to CCS IDE. Start by clearing function syntax that interacts existing handles and
setting echo on so you see functions execute as the program runs:

1 clear all; echo on;

clear all removes debugging breakpoints and resets persistent variables because
function breakpoints and persistent variables are cleared whenever the MATLAB
file changes or is cleared. Breakpoints within your executable remain after clear.
Clearing the MATLAB workspace does not alter your executable.

2 Now construct the link to your board and processor by entering

IDE_Obj=ticcs('boardnum',0);

boardnum defines which board the new link accesses. In this example, boardnum is
0. Embedded Coder connects the link to the first, and in this case only, processor on
the board. To find the boardnum and procnum values for the boards and simulators
on your system, use ccsboardinfo. When you enter the following command at the
prompt

 IDE Automation Interface

40-31

ccsboardinfo

3 To open and load the processor file, change the path for MATLAB software to be able
to find the file.
projname = C:\Temp\EmbIDELinkCCDemos_v4.1\rtdxtutorial\cxx\cxxxp\rtdxtut_sim.pjt

outFile = C:\Temp\EmbIDELinkCCDemos_v4.1\rtdxtutorial\cxx\cxxxp\rtdxtut_sim.out

processor_dir = demoPjt.DemoDir

processor_dir = C:\Temp\EmbIDELinkCCDemos_v4.1\rtdxtutorial\cxx\cxxxp

cd(IDE_Obj,processor_dir); % Go to processor directory

cd(IDE_Obj,tgt_dir); % Or IDE_Obj.cd(tgt_dir)

dir(IDE_Obj); % Or IDE_Obj.dir

To load the project file to your processor, enter the following commands at the
MATLAB software prompt. getDemoProject is a specialized function for loading
Embedded Coder example files. It is not supported as a standard Embedded Coder
function.
demoPjt = getDemoProject(IDE_Obj,'ccstutorial');

demoPjt.ProjectFile

ans = C:\Temp\EmbIDELinkCCDemos_v4.1\ccstutorial\cxx\cxxxp\ccstut.pjt

demoPjt.DemoDir

ans = C:\Temp\EmbIDELinkCCDemos_v4.1\ccstutorial\cxx\cxxxp

Notice where the example files are stored on your machine. In general, Embedded
Coder software stores the example project files in
EmbIDELinkCCDemos_v#.#

For example, if you are using version 4.1 of Embedded Coder software, the project
examples are stored in EmbIDELinkCCDemos_v4.1\. Embedded Coder software
creates this folder in a location on your machine where you have write permission.
Usually, there are two locations where Embedded Coder software tries to create the
example folder, in the order shown.

a In a temporary folder on the C drive, such as C:\temp\.
b If Embedded Coder software cannot use the temp folder, you see a dialog that

asks you to select a location to store the examples.
4 You have reset the folder path to find the tutorial file. Now open the .out file that

matches your processor type.
IDE_Obj.open('rtdxtutorial_xxx.out')

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-32

Because open is overloaded for the CCS IDE and RTDX links, this may seem a bit
strange. In this syntax, open loads your executable file onto the processor identified
by IDE_Obj. Later in this tutorial, you use open with a different syntax to open
channels in RTDX.

In the next section, you use the new link to open and enable communications
between MATLAB software and your processor.

Configuring Communications Channels

Communications channels to the processor do not exist until you open and enable them
through Embedded Coder and CCS IDE. Opening channels consists of opening and
configuring each channel for reading or writing, and enabling the channels.

In the open function, you provide the channel names as strings for the channel name
property. The channel name you use is not random. The channel name string must match
a channel defined in the executable file. If you specify a string that does not identify an
existing channel in the executable, the open operation fails.

In this tutorial, two channels exist on the processor — ichan and ochan. Although the
channels are named ichan for input channel and ochan for output channel, neither
channel is configured for input or output until you configure them from MATLAB
software or CCS IDE. You could configure ichan as the output channel and ochan as the
input channel. The links would work just the same. For simplicity, the tutorial configures
ichan for input and ochan for output. One more note—reading and writing are defined
as seen by the processor. When you write data from MATLAB software, you write to the
channel that the processor reads, ichan in this case. Conversely, when you read from the
processor, you read from ochan, the channel that the processor writes to:

1 Configure buffers in RTDX to store the data until MATLAB software can read it
into your workspace. Often, MATLAB software cannot read data as quickly as the
processor can write it to the channel.
IDE_Obj.rtdx.configure(1024,4); % define 4 channels of 1024 bytes each

Channel buffers are optional. Adding them provides a measure of insurance that
data gets from your processor to MATLAB software without getting lost.

2 Define one of the channels as a write channel. Use 'ichan' for the channel name and
'w' for the mode. Either 'w' or 'r' fits here, for write or read.
IDE_Obj.rtdx.open('ichan','w');

3 Now enable the channel you opened.

 IDE Automation Interface

40-33

IDE_Obj.rtdx.enable('ichan');

4 Repeat steps 2 and 3 to prepare a read channel.

IDE_Obj.rtdx.open('ochan','r');

IDE_Obj.rtdx.enable('ochan');

5 To use the new channels, enable RTDX by entering

IDE_Obj.rtdx.enable;

You could do this step before you configure the channels — the order does not
matter.

6 Reset the global time-out to 20s to provide a little room for error. ticcs applies a
default timeout value of 10 s. In some cases this may not be enough.

IDE_Obj.rtdx.get('timeout')

ans =

 10

IDE_Obj.rtdx.set('timeout', 20); % Reset timeout = 20 seconds

7 Check that the timeout property value is now 20s and that your object has a valid
configuration for the rest of the tutorial.

IDE_Obj.rtdx

RTDX Object:

 API version: 1.0

 Default timeout: 20.00 secs

 Open channels: 2

Running the Application

To this point you have been doing common housekeeping functions. You load the
processor, configure the communications, and set up other properties you need.

This tutorial shows you some of the Embedded Coder functions you can use to prototype
and experiment with your application. To see the RTDX readmat, readmsg, and
writemsg functions, you write data to your processor. Then, after the data has been
processed, you read data from the processor.

1 Restart the program you loaded on the processor. restart sets the program counter
(PC) to the beginning of the executable code on the processor.

IDE_Obj.restart

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-34

Restarting the processor does not start the program executing. You use run to start
program execution.

2 Type IDE_Obj.run('run');

Using 'run' for the run mode tells the processor to continue to execute the loaded
program continuously until it receives a halt directive. In this mode, control returns
to MATLAB software so you can work in MATLAB software while the program runs.
Other options for the mode are

• 'runtohalt' — start to execute the program and wait to return control
to MATLAB software until the process reaches a breakpoint or execution
terminates.

• 'tohalt' — change the state of a running processor to 'runtohalt' and wait to
return until the program halts. Use tohalt mode to stop the running processor
cleanly.

3 Type the following functions to enable the write channel and verify the change:

IDE_Obj.rtdx.enable('ichan');

IDE_Obj.rtdx.isenabled('ichan')

If MATLAB software responds ans = 0 your channel is not enabled and you cannot
proceed with the tutorial. Try to enable the channel again and verify the status.

4 Write some data to the processor. Check that you can write to the processor, then use
writemsg to send the data. You do not need to enter the if-test code shown.
if IDE_Obj.rtdx.iswritable('ichan'), % Used in a script application.

 disp('writing to processor...') % Optional to display progress.

 indata=1:10

 IDE_Obj.rtdx.writemsg('ichan', int16(indata))

end % Used in scripts for channel testing.

The if statement simulates writing the data from within a MATLAB software
script. The script uses iswritable to check that the input channel is functioning.
If iswritable returns 0 the script would skip the write and exit the program, or
respond in some way. When you are writing or reading data to your processor in a
script or MATLAB file, checking the status of the channels can help you avoid errors
during execution.

As your application runs you may find it helpful to display progress messages. In
this case, the program directed MATLAB software to print a message as it reads the
data from the processor by adding the function

 IDE Automation Interface

40-35

disp('writing to processor...')

Function IDE_Obj.rtdx.writemsg('ichan', int16(indata)) results in 20
messages stored on the processor. Here's how.

When you write indata to the processor, the following code running on the processor
takes your input data from ichan, adds one to the values and copies the data to
memory:

while (!RTDX_isInputEnabled(&ichan))

{/* wait for channel enable from MATLAB */}

RTDX_read(&ichan, recvd, sizeof(recvd));

puts("\n\n Read Completed ");

for (j=1; j<=20; j++) {

 for (i=0; i<MAX; i++) {

 recvd[i] +=1;

 }

 while (!RTDX_isOutputEnabled(&ochan))

 { /* wait for channel enable from MATLAB */ }

 RTDX_write(&ochan, recvd, sizeof(recvd));

 while (RTDX_writing != NULL)

 { /* wait for data xfer INTERRUPT DRIVEN for Cxxxx */ }

}

Program int16_rtdx.c contains this source code. You can find the file in a folder in
the ..\tidemos\rtdxtutorial folder.

5 Type the following to check the number of available messages to read from the
processor.

num_of_msgs = IDE_Obj.rtdx.msgcount('ochan');

num_of_msgs should be zero. Using this process to check the amount of data lets
you or your program know how much data to expect.

6 Type the following to verify that your read channel ochan is enabled for
communications.

IDE_Obj.rtdx.isenabled('ochan')

You should get back ans = 0 — you have not enabled the channel yet.
7 Now enable and verify 'ochan'.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-36

IDE_Obj.rtdx.enable('ochan');

IDE_Obj.rtdx.isenabled('ochan')

To show that ochan is ready, MATLAB software responds ans = 1. If not, try
enabling ochan again.

8 Type

pause(5);

The pause function gives the processor extra time to process the data in indata and
transfer the data to the buffer you configured for ochan.

9 Repeat the check for the number of messages in the queue. There should be 20
messages available in the buffer.

num_of_msgs = IDE_Obj.rtdx.msgcount('ochan')

With num_of_msgs = 20, you could use a looping structure to read the messages
from the queue in to MATLAB software. In the next few steps of this tutorial you
read data from the ochan queue to different data formats within MATLAB software.

10 Read one message from the queue into variable outdata.
outdata = IDE_Obj.rtdx.readmsg('ochan','int16')

outdata =

 2 3 4 5 6 7 8 9 10 11

Notice the 'int16' represent option. When you read data from your processor you
need to tell MATLAB software the data type you are reading. You wrote the data in
step 4 as 16-bit integers so you use the same data type here.

While performing reads and writes, your process continues to run. You did not need
to stop the processor to get the data or send the data, unlike using most debuggers
and breakpoints in your code. You placed your data in memory across an RTDX
channel, the processor used the data, and you read the data from memory across an
RTDX channel, without stopping the processor.

11 You can read data into cell arrays, rather than into simple double-precision
variables. Use the following function to read three messages to cell array outdata,
an array of three, 1-by-10 vectors. Each message is a 1-by-10 vector stored on the
processor.

outdata = IDE_Obj.rtdx.readmsg('ochan','int16',3)

 IDE Automation Interface

40-37

outdata =

[1x10 int16] [1x10 int16] [1x10 int16]

12 Cell array outdata contains three messages. Look at the second message, or matrix,
in outdata by using dereferencing with the array.
outdata{1,2}

outdata =

 4 5 6 7 8 9 10 11 12 13

13 Read two messages from the processor into two 2-by-5 matrices in your MATLAB
workspace.
outdata = IDE_Obj.rtdx.readmsg('ochan','int16',[2 5],2)

outdata =

 [2x5 int16] [2x5 int16]

To specify the number of messages to read and the data format in your workspace,
you used the siz and nummsgs options set to [2 5] and 2.

14 You can look at both matrices in outdata by dereferencing the cell array again.
outdata{1,:}

ans =

 6 8 10 12 14

 7 9 11 13 15

ans =

 7 9 11 13 15

 8 10 12 14 16

15 For a change, read a message from the queue into a column vector.
outdata = IDE_Obj.rtdx.readmsg('ochan','int16',[10 1])

outdata =

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

16 Embedded Coder provides a function for reading messages into matrices–readmat.
Use readmat to read a message into a 5-by-2 matrix in MATLAB software.
outdata = readmat(IDE_Obj.rtdx,'ochan','int16',[5 2])

outdata =

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-38

 9 14

 10 15

 11 16

 12 17

 13 18

Because a 5-by-2 matrix requires ten elements, MATLAB software reads one
message into outdata to fill the matrix.

17 To check your progress, see how many messages remain in the queue. You have read
eight messages from the queue so 12 should remain.

num_of_msgs = IDE_Obj.rtdx.msgcount('ochan')

num_of_msgs =

 12

18 To see the connection between messages and a matrix in MATLAB software, read
data from 'ochan' to fill a 4-by-5 matrix in your workspace.
outdata = IDE_Obj.rtdx.readmat('ochan','int16',[4 5])

outdata =

 10 14 18 13 17

 11 15 19 14 18

 12 16 11 15 19

 13 17 12 16 20

Filling the matrix required two messages worth of data.
19 To verify that the last step used two messages, recheck the message count. You

should find 10 messages waiting in the queue.

num_of_msgs = IDE_Obj.rtdx.msgcount('ochan')

20 Continuing with matrix reads, fill a 10-by-5 matrix (50 matrix elements or five
messages).
outdata = IDE_Obj.rtdx.readmat('ochan','int16',[10 5])

outdata =

 12 13 14 15 16

 13 14 15 16 17

 14 15 16 17 18

 15 16 14 18 19

 16 17 18 19 20

 17 18 19 20 21

 18 19 20 21 22

 19 20 21 22 23

 20 21 22 23 24

 21 22 23 24 25

21 Recheck the number of messages in the queue to see that five remain.

 IDE Automation Interface

40-39

22 flush lets you remove messages from the queue without reading them. Data in the
message you remove is lost. Use flush to remove the next message in the read queue.
Then check the waiting message count.

IDE_Obj.rtdx.flush('ochan',1)

num_of_msgs = IDE_Obj.rtdx.msgcount('ochan')

num_of_msgs =

 4

23 Empty the remaining messages from the queue and verify that the queue is empty.

IDE_Obj.rtdx.flush('ochan','all')

With the all option, flush discards the messages in the ochan queue.

Closing the Connections and Channels or Cleaning Up

One of the most important programmatic processes you should do in every RTDX
session is to clean up at the end. Cleaning up includes stopping your processor, disabling
the RTDX channels you enabled, disabling RTDX and closing your open channels.
Performing this series of tasks prevents trouble caused by unexpected interactions with
remaining handles, channels, and links from earlier development work.

Best practices suggest that you include the following tasks (or an subset that meets your
development needs) in your development scripts and programs.

We use several functions in this section; each has a purpose — the operational details in
the following list explain how and why we use each one. They are

• close — close the specified RTDX channel. To use the channel again, you must open
and enable the channel. Compare close to disable. close('rtdx') closes the
communications provided by RTDX. After you close RTDX, you cannot communicate
with your processor.

• disable — remove RTDX communications from the specified channel, but does not
remove the channel, or link. Disabling channels may be useful when you do not want
to see the data that is being fed to the channel, but you may want to read the channel
later. By enabling the channel later, you have access to the data entering the channel
buffer. Note that data that entered the channel while it was disabled is lost.

• halt — stop a running processor. You may still have one or more messages in the
host buffer.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-40

Use the following procedure to shut down communications between MATLAB software
and the processor, and end your session:

1 Begin the process of shutting down the processor and RTDX by stopping the
processor. Type the following functions at the prompt.

if (isrunning(IDE_Obj)) % Use this test in scripts.

 IDE_Obj.halt; % Halt the processor.

end % Done.

Your processor may already be stopped at this point. In a script, you might put
the function in an if-statement as we have done here. When you direct a stopped
processor to halt, the function returns immediately.

2 You have stopped the processor. Now disable the RTDX channels you opened to
communicate with the processor.

IDE_Obj.rtdx.disable('all');

If required, using disable with channel name and processor identifier input
arguments lets you disable only the channel you choose. When you have more than
one board or processor, you may find disabling selected channels meets your needs.

When you finish your RTDX communications session, disable RTDX so that
Embedded Coder releases your open channels before you close them.

IDE_Obj.rtdx.disable;

3 Use the following function syntaxes to close your open channels. Either close selected
channels by using the channel name in the function, or use the all option to close
the open channels.

• IDE_Obj.rtdx.close('ichan') to close your input channel in this tutorial.
• IDE_Obj.rtdx.close('ochan') to close your output channel in the tutorial.
• IDE_Obj.rtdx.close('all') to close your open RTDX channels, regardless of

whether they are part of this tutorial.

Consider using the all option with the close function when you finish your RTDX
work. Closing channels reduces unforeseen problems caused by channel objects that
exist but do not get closed when you end your session.

4 When you created your RTDX object (IDE_Obj = ticcs('boardnum',1)) at
the beginning of this tutorial, the ticcs function opened CCS IDE and set the
visibility to 0. To avoid problems that occur when you close the interface to RTDX

 IDE Automation Interface

40-41

with CCS visibility set to 0, make CCS IDE visible on your desktop. The following if
statement checks the CCS IDE visibility and changes it if required.
if IDE_Obj.isvisible,

 IDE_Obj.visible(1);

end

Visibility can cause problems. When CCS IDE is running invisibly on your desktop,
do not use clear all to remove your links for CCS IDE and RTDX. Without a
ticcs object that references the CCS IDE you cannot access CCS IDE to change the
visibility setting, or close the application. To close CCS IDE when you do not have
an existing object, either create a new object to access the CCS IDE, or use Microsoft
Windows Task Manager to end the process cc_app.exe, or close the MATLAB
software.

5 You have finished the work in this tutorial. Enter the following commands to close
your remaining references to CCS IDE and release the associated resources.
clear ('all'); % Calls the link destructors to remove all links.

echo off

clear all without the parentheses removes the variables from your MATLAB
workspace.

You have completed the tutorial using RTDX. During the tutorial you

1 Opened connections to CCS IDE and RTDX and used those connections to load an
executable program to your processor.

2 Configured a pair of channels so you could transfer data to and from your processor.
3 Ran the executable on the processor, sending data to the processor for processing and

retrieving the results.
4 Stopped the executing program and closed the links to CCS IDE and RTDX.

This tutorial provides a working process for using Embedded Coder and your signal
processing programs to develop programs for a range of Texas Instruments processors.
While the processor may change, the essentials of the process remain the same.

Listing Functions

To review a complete list of functions and methods that operate with ticcs objects,
either CCS IDE or RTDX, enter either of the following commands at the prompt.

help ticcs

help rtdx

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-42

If you already have a ticcs object IDE_Obj, you can use dot notation to return the
methods for CCS IDE or RTDX by entering one of the following commands at the prompt:

• IDE_Obj.methods

• IDE_Obj.rtdx.methods

In either instance MATLAB software returns a list of the available functions for the
specified link type, including both public and private functions. For example, to see the
functions (methods) for links to CCS IDE, enter:

help ticcs

Constructing ticcs Objects

When you create a connection to CCS IDE using the ticcs command, you are creating
a “ticcs object for accessing the CCS IDE and RTDX interface”. The ticcs object
implementation relies on MATLAB software object-oriented programming capabilities.

The discussions in this section apply to the ticcs objects in Embedded Coder.

Like other MATLAB software structures, objects in Embedded Coder have predefined
fields called object properties.

You specify object property values by one of the following methods:

• Setting the property values when you create the ticcs object
• Creating an object with default property values, and changing these property values

later

For examples of setting ticcs object properties, refer to ticcs.

Constructor for ticcs Objects

The easiest way to create an object is to use the function ticcs to create an object with
the default properties. Create an object named IDE_Obj to refer to CCS IDE by entering

IDE_Obj = ticcs

MATLAB software responds with a list of the properties of the object IDE_Obj you
created along with the associated default property values.

ticcs object:

 IDE Automation Interface

40-43

 API version : 1.0

 Processor type : Cxx

 Processor name : CPU

 Running? : No

 Board number : 0

 Processor number : 0

 Default timeout : 10.00 secs

 RTDX channels : 0

Inspecting the output reveals two objects listed—a CCS IDE object and an RTDX object.
CCS IDE and RTDX objects cannot be created separately. By design they maintain a
member class relationship; the RTDX object is a class, a member of the CCS object class.
In this example, IDE_Obj is an instance of the class CCS. If you enter

rx = IDE_Obj.rtdx

rx is a handle to the RTDX portion of the CCS object. As an alias, rx replaces
IDE_Obj.rtdx in functions such as readmat or writemsg that use the RTDX
communications features of the CCS link. Typing rx at the command line now produces

rx

RTDX channels : 0

The object properties are described in the function reference, and in more detail in ticcs
Object Properties. These properties are set to default values when you construct objects.

ticcs Properties and Property Values

Objects in Embedded Coder software have properties associated with them. Each
property is assigned a value. You can set the values of most properties, either when you
create the link or by changing the property value later. However, some properties have
read-only values. And a few property values, such as the board number and the processor
to which the link attaches, become read-only after you create the object. You cannot
change those after you create your link.

Overloaded Functions for ticcs Objects

Several functions in this Embedded Coder have the same name as functions in other
MathWorks toolboxes or in MATLAB software. These behave similarly to their original
counterparts, but you apply these functions directly to an object. This concept of having

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-44

functions with the same name operate on different types of objects (or on data) is called
overloading of functions.

For example, the set command is overloaded for ticcs objects. After you specify your
link by assigning values to its properties, you can apply the functions in this toolbox
(such as readmat for using RTDX to read an array of data from the processor) directly to
the variable name you assign to your object, without specifying your object parameters
again.

ticcs Object Properties

• “Quick Reference to ticcs Object Properties” on page 40-44
• “Details About ticcs Object Properties” on page 40-45

Embedded Coder provides an interface to your processor hardware so you can
communicate with processors for which you are developing systems and algorithms. Each
ticcs object comprises two objects—a CCS IDE object and an RTDX interface object. The
objects are not separable; the RTDX object is a subclass of the CCS IDE object. Each of
the objects has multiple properties. To configure the interface objects for CCS IDE and
RTDX, you set parameters that define details such as the desired board, the processor,
the timeout period applied for communications operations, and a number of other values.
Because Embedded Coder uses objects to create the interface, the parameters you set are
called properties and you treat them as properties when you set them, retrieve them, or
modify them.

This section details the properties for the ticcs objects for CCS IDE and RTDX. First
the section provides tables of the properties, for quick reference. Following the tables, the
section offers in-depth descriptions of each property, its name and use, and whether you
can set and get the property value associated with the property. Descriptions include a
few examples of the property in use.

MATLAB software users may find much of this handling of objects familiar. Objects in
Embedded Coder, behave like objects in MATLAB software and the other object-oriented
toolboxes. For C++ programmers, discussion of object-oriented programming is likely to
be a review.

Quick Reference to ticcs Object Properties

The following table lists the properties for the ticcs objects in Embedded Coder. The
second column tells you which object the property belongs to. Knowing which property
belongs to each object in a ticcs object tells you how to access the property.

 IDE Automation Interface

40-45

Property Name Applies to Which
Connection?

User Settable? Description

apiversion CCS IDE No Reports the version number of
your CCS API.

boardnum CCS IDE Yes/initially Specifies the index number of a
board that CCS IDE recognizes.

ccsappexe CCS IDE No Specifies the path to the CCS
IDE executable. Read-only
property.

numchannels RTDX No Contains the number of open
RTDX channels for a specific
link.

page CCS IDE Yes/default Stores the default memory page
for reads and writes.

procnum CCS IDE Yes/at start only Stores the number CCS Setup
Utility assigns to the processor.

timeout CCS IDE Yes/default Contains the global timeout
setting for the link.

version RTDX No Reports the version of your
RTDX software.

Some properties are read only — you cannot set the property value. Other properties,
you can change. If the entry in the User Settable column is “Yes/initially”, you can set the
property value only when you create the link. Thereafter it is read only.

Details About ticcs Object Properties

To use the links for CCS IDE and RTDX interface you set values for:

• boardnum — specify the board with which the link communicates.
• procnum — specify the processor on the board. If the board has multiple processors,

procnum identifies the processor to use.
• timeout — specify the global timeout value. (Optional. Default is 10 s.)

Details of the properties associated with connections to CCS IDE and RTDX interface
appear in the following sections, listed in alphabetical order by property name.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-46

Many of these properties are object linking and embedding (OLE) handles. The MATLAB
software COM server creates the handles when you create objects for CCS IDE and
RTDX. You can manipulate the OLE handles using get, set, and invoke to work
directly with the COM interface with which the handles interact.

apiversion

Property appversion contains a string that reports the version of the application
program interface (API) for CCS IDE that you are using when you create a link. You
cannot change this string. When you upgrade the API, or CCS IDE, the string changes
to match. Use display to see the apiversion property value for a link. This example
shows the appversion value for link IDE_Obj.

display(IDE_Obj)

TICCS Object:

 API version : 1.0

 Processor type : Cxx

 Processor name : CPU

 Running? : No

 Board number : 0

 Processor number : 0

 Default timeout : 10.00 secs

 RTDX channels : 0

Note that the API version is not the same as the CCS IDE version.

boardnum

Property boardnum identifies the board referenced by the IDE link handle object for
CCS. When you create a link, you use boardnum to specify the board you are using.
To get the value for boardnum, use ccsboardinfo or the CCS Setup utility from Texas
Instruments software. The CCS Setup utility assigns the number for each board installed
on your system.

ccsappexe

Property ccsappexe contains the path to the CCS IDE executable file cc_app.exe.
When you use ticcs to create a link, MATLAB software determines the path to the CCS
IDE executable and stores the path in this property. This is a read-only property. You
cannot set it.

 IDE Automation Interface

40-47

numchannels

Property numchannels reports the number of open RTDX communications channels for
an RTDX link. Each time you open a channel for a link, numchannels increments by
one. For new links numchannels is zero until you open a channel for the link.

To see the value for numchannels create a link to CCS IDE. Then open a channel to
RTDX. Use display to see the RTDX link properties.

IDE_Obj=ticcs

TICCS Object:

 API version : 1.0

 Processor type : Cxx

 Processor name : CPU

 Running? : No

 Board number : 0

 Processor number : 0

 Default timeout : 10.00 secs

 RTDX channels : 0

rx=IDE_Obj.rtdx

 RTDX channels : 0

open(rx,'ichan','r','ochan','w');

get(IDE_Obj.rtdx)

ans =

 numChannels: 2

 Rtdx: [1x1 COM]

 RtdxChannel: {'' '' ''}

 procType: 103

 timeout: 10

page

Property page contains the default value CCS IDE uses when the user does not specify
the page input argument in the syntax for a function that access memory.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-48

procnum

Property procnum identifies the processor referenced by the IDE link handle object for
CCS. When you create an object, you use procnum to specify the processor you are using .
The CCS Setup Utility assigns a number to each processor installed on each board. To
determine the value of procnum for a processor, use ccsboardinfo or the CCS Setup
utility from Texas Instruments software.

To identify a processor, you need both the boardnum and procnum values. For
boards with one processor, procnum equals zero. CCS IDE numbers the processors on
multiprocessor boards sequentially from 0 to the number of processors. For example, on a
board with four processors, the processors are numbered 0, 1, 2, and 3.

rtdx

Property rtdx is a subclass of the ticcs link and represents the RTDX portion of the
IDE link handle object for CCS. As shown in the example, rtdx has properties of its own
that you can set, such as timeout, and that report various states of the link.

get(IDE_Obj.rtdx)

ans =

 version: 1

 numChannels: 0

 Rtdx: [1x1 COM]

 RtdxChannel: {'' [] ''}

 procType: 103

 timeout: 10

In addition, you can create an alias to the rtdx portion of a link, as shown in this code
example.

rx=IDE_Obj.rtdx

 RTDX channels : 0

Now you can use rx with the functions in Embedded Coder, such as get or set. If you
have two open channels, the display looks like the following example:

get(rx)

ans =

 IDE Automation Interface

40-49

 numChannels: 2

 Rtdx: [1x1 COM]

 RtdxChannel: {2x3 cell}

 procType: 98

 timeout: 10

rtdxchannel

Property rtdxchannel, along with numchannels and proctype, is a read-only
property for the RTDX portion of the IDE link handle object for CCS. To see the value of
this property, use get with the link. Neither set nor invoke work with rtdxchannel.

rtdxchannel is a cell array that contains the channel name, handle, and mode for each
open channel for the link. For each open channel, rtdxchannel contains three fields, as
follows:

.rtdxchannel{i,1} Channel name of the ith-channel, i from 1 to the number
of open channels

.rtdxchannel{i,2} Handle for the ith-channel

.rtdxchannel{i,3} Mode of the ith-channel, either 'r' for read or 'w' for
write

With four open channels, rtdxchannel contains four channel elements and three fields
for each channel element.

timeout

Property timeout specifies how long CCS IDE waits for a process to finish. Two
timeout periods can exist — one global, one local. You set the global timeout when
you create the IDE link handle object for CCS. The default global timeout value 10 s.
However, when you use functions to read or write data to CCS IDE or your processor,
you can set a local timeout that overrides the global value. If you do not set a specific
timeout value in a read or write process syntax, the global timeout value applies to the
operation. Refer to the help for the read and write functions for the syntax to set the local
timeout value for an operation.

version

Property version reports the version number of your RTDX software. When you
create a ticcs object, version contains a string that reports the version of the RTDX
application that you are using. You cannot change this string. When you upgrade

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-50

the API, or CCS IDE, the string changes to match. Use display to see the version
property value for a link. This example shows the apiversion value for object rx.

get(rx) % rx is an alias for IDE_Obj.rtdx.

ans =

 version: 1

 numChannels: 0

 Rtdx: [1x1 COM]

 RtdxChannel: {'' [] ''}

 procType: 103

 timeout: 10

Function List

The following is a complete list of functions for working with CCS v.3.3. It includes
Automation Interface and other types of functions.

• activate

• add

• address

• animate

• build

• ccsboardinfo

• cd

• checkEnvSetup

• close

• configure

• dir

• disable

• display (IDE Object)

• enable

• flush

• getbuildopt

• halt

 IDE Automation Interface

40-51

• info

• insert

• xmakefilesetup

• isenabled

• isreadable

• isrtdxcapable

• isrunning

• isvisible

• iswritable

• list

• load

• msgcount

• new

• open

• profile

• read

• readmat

• readmsg

• regread

• regwrite

• reload

• remove

• reset

• restart

• run

• save

• setbuildopt

• symbol

• ticcs

• visible

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-52

• write

• writemsg

 IDE Project Generator

40-53

IDE Project Generator

In this section...

“Introducing IDE Project Generator” on page 40-53
“IDE Project Generator and Board Selection” on page 40-53
“Generate an IDE Project” on page 40-55
“Model Reference” on page 40-58

Introducing IDE Project Generator

IDE Project Generator provides the following features for developing project and
generating code:

• Support automated project building for Texas Instruments Code Composer Studio
software that lets you create projects from code generated by Embedded Coder
products. The project automatically populates CCS projects in the CCS development
environment.

• Configure code generation using model Configuration Parameters and processor
preferences block options

• Select from two system target files to generate code specific to your processor
• Configure project build process
• Automatically download and run your generated projects on your processor

Note: You cannot generate code for C6000 processors in big-endian mode. Code
generation supports only little-endian processor data byte order.

IDE Project Generator and Board Selection

IDE Project Generator uses ticcs objects to connect to the IDE. Each time you build
a model to generate a project, the build process starts by issuing the ticcs method, as
shown here:

IDE_Obj=ticcs('boardnum',boardnum,'procnum',procnum)

The software attempts to connect to the board (boardnum) and processor (procnum)
associated with the Board name and Processor number parameters located on the
Target Hardware Resources pane in the model Configuration Parameters.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-54

The result of the ticcs method changes, depending on the boards you configured in
CCS. The following table describes how the software selects the board to connect to in
your board configuration.

CCS Board Configuration State Response by Software

Code Composer Studio or Embedded Coder
software not installed.

Returns an error message asking you
to verify that you installed both Code
Composer Studio and Embedded Coder.

Code Composer Studio software does not
have configured boards.

Returns an error message that the software
could not find boards in your configuration.
Use Setup Code Composer Studio to
configure at least one board.

Code Composer Studio software has one
configured board.

Attaches to the board regardless of the
value of the Board parameter. You see a
warning message telling you which board
the software selected.

Code Composer Studio software has one
board configured that does not match the
value of the Board parameter.(*)

Returns a warning message that the
software could not find the board specified
in the block and connected to the board
listed in the warning message. The
software connects to the first board in your
CCS configuration.

Code Composer Studio has more than one
board configured. The value of the Board
parameter is one of the configured boards.

Connects to the specified board.

Code Composer Studio has more than one
board configured. The value of the Board
parameter is not one of the configured
boards.(*)

Returns a message asking you to select a
board from the list of configured boards.
You have two choices:

• Select a board to use for project
generation, and click OK. Your selection
does not change the value of the Board
parameter. The software connects to the
selected board.

• Click Abort to stop the project build
and code generation process. The
software does not connect to the IDE or
board.

 IDE Project Generator

40-55

(*)You may encounter the situation where you do not have the valid board configured in
CCS because of one of the following conditions:

• You changed your board configuration and saved the model. When you reopen the
model, the board specified in Board name in the block is not in your configuration.

• You are working with a model from a source whose board configuration is not the
same as yours.

Use ccsboardinfo at the MATLAB prompt to verify or review your configured boards.

Generate an IDE Project

• “Creating the Model” on page 40-56
• “Specify Configuration Parameters for Your Model” on page 40-56

In this tutorial you will use the Embedded Coder software to:

• Build a model.
• Generate a project from the model.
• Build the project and run the binary on a processor.

Note The model shows project generation. You cannot not build and run the model on
your processor without additional blocks.

To generate a project from a model, complete the following tasks:

1 Create a model application.
2 Configure your model for your IDE, tool chain, and target hardware, as described in

“Configure Target Hardware Resources” on page 37-3.
3 In the Configuration Parameters, also set:

• Solver parameters such as simulation start and solver options
• Software options such as processor configuration and processor compiler selection

4 Generate your project.
5 Review your project in CCS.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-56

Creating the Model

To build a model, follow these steps:

1 Open the Simulink Library Browser.
2 Use Simulink blocks to create a model, or open one of the example models for Texas

Instruments Code Composer Studio.
3 Name and save your model before continuing.

Specify Configuration Parameters for Your Model

The following sections describe how to configure the build and run parameters for your
model. Generating a project, or building and running a model on the processor, starts
with configuring model options in the Configuration Parameters dialog in Simulink
software.
Setting Solver Parameters

After you have designed and implemented your digital signal processing model in
Simulink software, complete the following steps to set the Configuration Parameters for
the model:

1 Configure your model for your IDE, tool chain, and target hardware, as described in
“Configure Target Hardware Resources” on page 37-3.

2 Select the Solver pane in the Configuration Parameters dialog.
3 Set Start time to 0.0 and Stop time to inf (model runs without stopping). If you

set a stop time, your generated code does not honor the setting. Set this to inf for
completeness.

4 Under Solver options, set Type to fixed-step and set Solver to discrete (no
continuous states). For PIL, set Type and Solver to any setting.

5 For Fixed step size (fundamental sample time), enter Auto, and set Tasking
mode for periodic sample times to SingleTasking.

Note Generated code does not honor Simulink software stop time from the simulation.
Stop time is interpreted as inf. To implement a stop in generated code, add a Stop
Simulation block in your model.

When you use PIL, you can set the Solver options to any selection from the Type and
Solver lists.

 IDE Project Generator

40-57

Ignore the Data Import/Export, Diagnostics, and Optimization panes in the
Configuration Parameters dialog. The default settings are valid for your new model.

Setting Code Generation Parameters

To configure your software to use the right processor files and to compile and run your
model executable file, configure the Code Generation pane in the Configuration
Parameters dialog.

1 In the Configuration Parameters dialog, select the Code Generation pane.
2 Use the Browse button to set System target file to idelink_grt.tlc.

Setting Coder Target Parameters

To configure code generation options and to compile and run your model executable file,
configure the Coder Target pane in the Configuration Parameters dialog.

1 In the Configuration Parameters dialog, expand the node for the Code Generation
pane and select the Coder Target pane.

2 Set the following options in the pane under Vendor Tool Chain:

• Configuration should be Custom.
• Set Compiler options string and Linker options string should be blank.

3 Under Link Automation, verify that Export IDE link handle to base
workspace is selected and provide a name for the handle in Coder Target handle
name (optional).

4 Set the following Run-Time options:

• Build action: Build_and_execute.
• Interrupt overrun notification method: None.

You have configured the your software options that let you generate a project for you
processor. You may have noticed that you did not configure a few of the Configuration
Parameters panes, such as Comments, Symbols, and Optimization.

For your new model, the default values for the options in these panes are right. For
other models you develop, you may want to set the options in these panes to provide
information during the build and to run TLC debugging when you generate code. Refer
to your product documentation for more information about setting the Configuration
Parameters.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-58

Building Your Project

After you set the Configuration Parameters and configure the coder product to create the
files you need, you direct the build process to create your project:

1 Press OK to close the Configuration Parameters dialog.
2 Click Ctrl+B to generate your project into CCS IDE.

When you click Build with Create_project selected for Build action, the
automatic build process starts CCS IDE, populates a new project in the development
environment, builds the project, loads the binary on the processor, and runs it.

3 To stop processor execution, use the Halt option in CCS or enter IDE_Obj.halt at
the MATLAB command prompt. (Where “IDE_Obj” is the IDE link handle name you
specified previously in Configuration Parameters.)

Model Reference

Model reference lets your model include other models as modular components. This
technique provides useful features because it:

• Simplifies working with large models by letting you build large models from smaller
ones, or even large ones.

• Lets you generate code for the modules in the model, and later, regenerate code for
modules that change.

• Lets you develop the modules independently.
• Lets you reuse modules and models by reference, rather than including the model

or module multiple times in your model. Also, multiple models can refer to the same
model or module.

Your product documentation provides much more information about model reference.

How Model Reference Works

Model reference behaves differently in simulation and in code generation. For this
discussion, you need to know the following terms:

• Top-model — The root model block or model. It refers to other blocks or models. In the
model hierarchy, this is the topmost model.

• Referenced models — Blocks or models that other models reference, such as models
the top-model refers to. The models or blocks below the top-model in the hierarchy are
reference models.

 IDE Project Generator

40-59

The following sections describe briefly how model reference works. More details are
available in your product documentation in the online Help system.

Model Reference in Simulation

When you simulate the top-model, the coder product detects that your model contains
referenced models. Simulink software generates code for the referenced models and uses
the generated code to build shared library files for updating the model diagram and
simulation. It also creates an executable (a MEX file, .mex) for each reference model that
is used to simulate the top-model.

When you rebuild reference models for simulations or when you run or update a
simulation, Simulink software rebuilds the model reference files. Whether reference files
or models are rebuilt depends on:

• Whether and how you change the models.
• The Rebuild parameter on the Model Reference pane in the Configuration

Parameters dialog.

Model Reference in Code Generation

Embedded Coder software requires executables to generate code from models. If you
have not simulated your model at least once, the coder product creates a .mex file for
simulation.

Next, for each referenced model, the code generation process calls make_rtw and builds
each referenced model. This build process creates a library file for each of the referenced
models in your model.

After building the referenced models, the coder product calls make_rtw on the top-model,
linking to the library files it created for the associated referenced models.

Using Model Reference

With few limitations or restrictions, Embedded Coder provides full support for
generating code from models that use model reference.

Build Action Setting

The most important requirement for using model reference with the TI's processors is to
set the Build action for the Model blocks in the simulation to Archive_library.

To set the build action

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-60

1 Open your model.
2 Select Simulation > Model Configuration Parameters from the model menus.

The Configuration Parameters dialog opens.
3 Expand the node for the Code Generation pane. Then select the Coder Target pane.
4 In the right pane, under Run-Time, select Archive_library from the Build

action list.

If your top-model uses a reference model that does not have the build action set to
Archive_library, the build process automatically changes the build action to
Archive_library and issues a warning about the change.

As a result of selecting the Archive_library setting, other options are disabled:

• DSP/BIOS is disabled for the referenced models. Only the top-model supports DSP/
BIOS operation.

• Interrupt overrun notification method, Export IDE link handle to base
workspace, and System stack size are disabled for the referenced models.

Other Block Limitations

Model reference with Embedded Coder does not allow you to use the following blocks or
S-functions in reference models:

• Blocks from the C62x DSP Library (in c6000lib) (because these are noninlined S-
functions)

• Blocks from the C64x DSP Library (in c6000lib) (because these are noninlined S-
functions)

• Noninlined S-functions
• Driver blocks, such as the ADC or DAC blocks from a Embedded Coder block library

Configuring processors to Use Model Reference

Processors that you plan to use in Model Referencing must meet some general
requirements.

• The System target file on the Code Generation pane of the Configuration
Parameters dialog must match the target hardware.

• When you generate code from a model that references another model, you need to
configure both the top-level model and the referenced models for the same code
generation processor.

 IDE Project Generator

40-61

• The External mode option is not supported in model reference processor builds.
Embedded Coder product does not support External mode. If you select this option, it
is ignored during code generation.

• To support model reference builds, your TMF must support use of the shared utilities
folder, as described in Supporting Shared Utility Directories in the Build Process in
the Simulink Coder documentation.

To use an existing processor, or a new processor, with Model Reference, you set the
ModelReferenceCompliant flag for the processor. For information on how to set this
option, refer to ModelReferenceCompliant in the online Help system.

If you start with a model that was created prior to version 2.4 (R14SP3), to make your
model compatible with the model reference processor, use the following command to set
the ModelReferenceCompliant flag to On:

set_param(bdroot,'ModelReferenceCompliant','on')

Models that you develop with versions 2.4 and later of Embedded Coder automatically
include the model reference capability. You do not need to set the flag.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-62

Exporting Filter Coefficients from FDATool

In this section...

“About FDATool” on page 40-62
“Preparing to Export Filter Coefficients to Code Composer Studio Projects” on page
40-63
“Exporting Filter Coefficients to Your Code Composer Studio Project” on page 40-66
“Preventing Memory Corruption When You Export Coefficients to Processor Memory” on
page 40-71

About FDATool

Signal Processing Toolbox™ software provides the Filter Design and Analysis tool
(FDATool) that lets you design a filter and then export the filter coefficients to a
matching filter implemented in a CCS project.

Using FDATool with CCS IDE enables you to:

• Design your filter in FDATool
• Use CCS to test your filter on a processor
• Redesign and optimize the filter in FDATool
• Test your redesigned filter on the processor

For instructions on using FDATool, refer to the section “Filter Design and Analysis Tool”
in the Signal Processing Toolbox documentation.

Procedures in this chapter show how to use the FDATool export options to export filter
coefficients to CCS. Using these procedures, you can perform the following tasks:

• Export filter coefficients from FDATool in a header file—“Exporting Filter Coefficients
from FDATool to the CCS IDE Editor” on page 40-67

• Export filter coefficients from FDATool to processor memory—“Replacing Existing
Coefficients in Memory with Updated Coefficients” on page 40-72

Caution For the best results, export coefficients in a header file. Exporting coefficients
directly to processor memory can generate unexpected results or corrupt memory.

 Exporting Filter Coefficients from FDATool

40-63

Also see the reference pages for the following functions. These primary functions allow
you use to access variables and write them to processor memory from the MATLAB
Command window.

• address — Return the address of a symbol so you can read or write to it.
• ticcs — Create a connection between MATLAB software and CCS IDE so you can

work with the project in CCS from the MATLAB Command window.
• write — Write data to memory on the processor.

Preparing to Export Filter Coefficients to Code Composer Studio Projects

• “Features of a Filter” on page 40-63
• “Selecting the Export Mode” on page 40-64
• “Choosing the Export Data Type” on page 40-64

Features of a Filter

When you create a filter in FDATool, the filter includes defining features identified in the
following table.

Defining Feature Description

Structure Structure defines how the elements of a digital filter—gains,
adders/subtractors, and delays—combine to form the filter. See
the Signal Processing Toolbox documentation in the Online Help
system for more information about filter structures.

Design Method Defines the mathematical algorithm used to determine the filter
response, length, and coefficients.

Response Type and
Specifications

Defines the filter passband shape, such as lowpass or bandpass,
and the specifications for the passband.

Coefficients Defines how the filter structure responds at each stage of the filter
process.

Data Type Defines how to represent the filter coefficients and the resulting
filtered output. Using a floating-point or fixed-point coefficient
alters the filter response and output data values.

When you export your filter, FDATool exports only the number of and value of the filter
coefficients and the data type used to define the coefficients.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-64

Selecting the Export Mode

You can export a filter by generating an ANSI C header file, or by writing the filter
coefficients directly to processor memory. The following table summarizes when and how
to use the export modes.

To… Use Export
Mode…

When to Use Suggested Use

Add filter
coefficients to
a project in
CCS

C header

file

You implemented a
filter algorithm in your
program, but you did
not allocate memory on
your processor for the
filter coefficients.

• Add the generated ANSI C header
file to a project. Building and loading
this project into your processor
allocates static memory locations on
the processor and writes your filter
coefficients to those locations.

• Edit the file so the header file allocates
extra processor memory and then add
the header file to your project. Refer
to “Allocating Extra Memory for Filter
Coefficients” on page 40-71 in the
next section.

(For a sample generated header file,
refer to“Reviewing ANSI C Header File
Contents” on page 40-70.)

Modify
the filter
coefficients in
an embedded
application
loaded on a
processor

Write

directly

to memory

You loaded a program
on your processor. The
program allocated
space in your processor
memory to store the
filter coefficients.

• Optimize your filter design in FDATool.

Then,
• Write the updated filter coefficients

directly to the allocated processor
memory. Refer to section “Preventing
Memory Corruption When You Export
Coefficients to Processor Memory” on
page 40-71 for more information.

Choosing the Export Data Type

The export process provides two ways you can specify the data type to use to represent
the filter coefficients. Select one of the options shown in the following table when you
export your filter.

 Exporting Filter Coefficients from FDATool

40-65

Specify Data Type for Export Description

Export suggested Uses the data type that FDATool suggests to
preserve the fidelity of the filter coefficients and the
performance of your filter in the project

Export as Lets you specify the data type to use to export the
filter coefficients

FDATool exports filter coefficients that use the following data types directly without
modifications:

• Signed integer (8, 16, or 32 bits)
• Unsigned integer (8, 16, or 32 bits)
• Double-precision floating point (64 bits)
• Single-precision floating point (32 bits)

Filters in FDATool in the Signal Processing Toolbox software use double-precision
floating point. You cannot change the data type.

If you have installed DSP System Toolbox software, you can use the filter quantization
options in FDATool to set the word and fraction lengths that represent your filter
coefficients. For information about using the quantization options, refer to Filter Design
and Analysis Tool in the Filter Design Toolbox documentation in the Online help system.

If your filter uses one of the supported data types, Export suggested specifies that data
type.

If your filter does not use one of the supported data types, FDATool converts the
unsupported data type to one of the supported types and then suggests that data type.
For more information about how FDATool determines the data type to suggest, refer to
“How FDATool Determines the Export Suggested Data Type” on page 40-66.

Follow these best-practice guidelines when you implement your filter algorithm in source
code and design your filter in FDATool:

• Implement your filter using one of the data types FDATool exports without
modifications.

• Design your filter in FDATool using the data type you used to implement your filter.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-66

To Choose the Export Data Type

When you export your filter, follow this procedure to select the export data type so that
the exported filter coefficients closely match the coefficients of your filter in FDATool.

1 In FDATool, select Targets > Code Composer Studio IDE to open the Export to
Code Composer Studio IDE dialog.

2 Perform one of the following actions:

• Select Export suggested to export the coefficients in the suggested data type.
• Select Export as and choose the data type your filter requires from the list.

Caution If you select Export as, the exported filter coefficients can be very
different from the filter coefficients in FDATool. As a result, your filter cutoff
frequencies and performance may not match your design in FDATool.

How FDATool Determines the Export Suggested Data Type

By default, FDATool represents filter coefficients as double-precision floating-point data.
When you export your filter coefficients, FDATool suggests the same data type.

If you set custom word and fraction lengths to represent your filter coefficients, the
export process suggests a data type to maintain the best fidelity for the filter.

The export process converts your custom word and fraction lengths to a suggested export
data type, using the following rules:

• Round the word length up to the nearest larger supported data type. For example,
round an 18-bit word length up to 32 bits.

• Set the fraction length to the maintain the same difference between the word and
fraction length in the new data type as applies in the custom data type.

For example, if you specify a fixed-point data type with word length of 14 bits and
fraction length of 11 bits, the export process suggests an integer data type with word
length of 16 bits and fraction length of 13 bits, retaining the 3 bit difference.

Exporting Filter Coefficients to Your Code Composer Studio Project

• “Exporting Filter Coefficients from FDATool to the CCS IDE Editor” on page
40-67

 Exporting Filter Coefficients from FDATool

40-67

• “Reviewing ANSI C Header File Contents” on page 40-70

Exporting Filter Coefficients from FDATool to the CCS IDE Editor

In this section, you export filter coefficients to a project by generating an ANSI C header
file that contains the coefficients. The header file defines global arrays for the filter
coefficients. When you compile and link the project to which you added the header file,
the linker allocates the global arrays in static memory locations in processor memory.

Loading the executable file into your processor allocates enough memory to store
the exported filter coefficients in processor memory and writes the coefficients to the
allocated memory.

Use the following steps to export filter coefficients from FDATool to the CCS IDE text
editor.

1 Start FDATool by entering fdatool at the MATLAB command prompt.

fdatool % Starts FDATool.

2 Design a filter with the same structure, length, design method, specifications, and
data type you implemented in your source code filter algorithm.

The following figure shows a Direct-form II IIR filter example that uses second-order
sections.

3 Click Store Filter to store your filter design. Storing the filter allows you to recall
the design to modify it.

4 To export the filter coefficients, select Targets > Code Composer Studio IDE from
the FDATool menu bar.

The Export to Code Composer Studio IDE dialog opens, as shown in the following
figure.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-68

5 Set Export mode to C header file.

6 In Variable names in C header file, enter variable names for the Numerator,
Denominator, Numerator length, and Denominator length parameters where
the coefficients will be stored.

The dialog shows only the variables you need to export to define your filter.

Note: You cannot use reserved ANSI C programming keywords, such as if or int as
variable names, or include invalid characters such as spaces or semicolons (;).

7 In Data type to use in export, select Export suggested to accept the
recommended export data type. FDATool suggests a data type that retains filter
coefficient fidelity.

 Exporting Filter Coefficients from FDATool

40-69

You may find it useful to select the Export as option and select an export data type
other than the one suggested.

Caution If you deviate from the suggested data type, the exported filter coefficients
can be very different from the filter coefficients in FDATool. As a result, your filter
cutoff frequencies and performance may not match your design in FDATool.

For more information about how FDATool decides which data type to suggest, refer
to “How FDATool Determines the Export Suggested Data Type” on page 40-66.

8 If you know the board number and processor number of your target, enter
DSP Board # and DSP Processor # values to identify your board.

When you have only one board or simulator, Embedded Coder software sets
DSP Board # and DSP Processor # values for your board automatically.

If you have more than one board defined in CCS Setup:

• Click Select target to open the Selection Utility dialog.
• From the list of boards and list of processors, select the board name and processor

name to use.
• Click Done to set the DSP Board # and DSP Processor # values.

9 Click Generate to generate the ANSI header file. FDATool prompts you for a file
name and location to save the generated header file.

The default location to save the file is your MATLAB working folder. The default file
name is fdacoefs.h.

10 Click OK to export the header file to the CCS editor.

If CCS IDE is not open, this step starts the IDE.

The export process does not add the file to your active project in the IDE.
11 Drag your generated header file into the project that implements the filter.
12 Add a #include statement to your project source code to include the new header file

when you build your project.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-70

13 Generate a .out file and load the file into your processor. Loading the file allocates
locations in static memory on the processor and writes the filter coefficients to those
locations.

To see an example header file, refer to “Reviewing ANSI C Header File Contents” on page
40-70.

Reviewing ANSI C Header File Contents

The following program listing shows the exported header (.h) file that FDATool
generates. This example shows a direct-form II filter that uses five second-order sections.
The filter is stable and has linear phase.

Comments in the file describe the filter structure, number of sections, stability, and the
phase of the filter. Source code shows the filter coefficients and variables associated with
the filter design, such as the numerator length and the data type used to represent the
coefficients.
/*

 * Filter Coefficients (C Source) generated by the Filter Design and Analysis Tool

 *

 * Generated by MATLAB(R) 7.8 and the Signal Processing Toolbox 6.11.

 *

 * Generated on: xx-xxx-xxxx 14:24:45

 *

 */

/*

 * Discrete-Time IIR Filter (real)

 * -------------------------------

 * Filter Structure : Direct-Form II, Second-Order Sections

 * Number of Sections : 5

 * Stable : Yes

 * Linear Phase : No

 */

/* General type conversion for MATLAB generated C-code */

#include "tmwtypes.h"

/*

 * Expected path to tmwtypes.h

 * $MATLABROOT\extern\include\tmwtypes.h

 */

#define MWSPT_NSEC 11

const int NL[MWSPT_NSEC] = { 1,3,1,3,1,3,1,3,1,3,1 };

const real64_T NUM[MWSPT_NSEC][3] = {

 {

 0.802536131462, 0, 0

 },

 {

 0.2642710234701, 0.5285420469403, 0.2642710234701

 },

 {

 1, 0, 0

 },

 {

 Exporting Filter Coefficients from FDATool

40-71

 0.1743690465012, 0.3487380930024, 0.1743690465012

 },

#

 {

 0.2436793028081, 0.4873586056161, 0.2436793028081

 },

 {

 1, 0, 0

 },

 {

 0.3768793219093, 0.7537586438185, 0.3768793219093

 },

 {

 1, 0, 0

 }

};

const int DL[MWSPT_NSEC] = { 1,3,1,3,1,3,1,3,1,3,1 };

const real64_T DEN[MWSPT_NSEC][3] = {

 {

 1, 0, 0

 },

 {

 1, -0.1842138030775, 0.1775781189277

 },

 {

 1, 0, 0

 },

{

 1, -0.2160098642842, 0.3808329528195

 },

 {

 1, 0, 0

 }

};

Preventing Memory Corruption When You Export Coefficients to
Processor Memory

• “Allocating Extra Memory for Filter Coefficients” on page 40-71
• “Using the Exported Header File to Allocate Extra Processor Memory” on page

40-72
• “Replacing Existing Coefficients in Memory with Updated Coefficients” on page

40-72
• “Changing Filter Coefficients Stored on Your Processor” on page 40-73

Allocating Extra Memory for Filter Coefficients

You can allocate extra memory by editing the generated ANSI C header file. You can
then load the associated program file into your processor as described in “Using the
Exported Header File to Allocate Extra Processor Memory” on page 40-72. Extra

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-72

memory lets you change filter coefficients and overwrite existing coefficients stored in
processor memory more easily.

To prevent problems when you update filter coefficients in a project, , such as writing
coefficients to unintended memory locations, use the C header file export mode
option in FDATool to update filter coefficients in your program.

Using the Exported Header File to Allocate Extra Processor Memory

You can edit the generated header file so the linked program file allocates extra processor
memory. By allocating extra memory, you avoid the problem of insufficient memory when
you export new coefficients directly to allocated memory.

For example, changing the following command in the header file:

const real64_T NUM[47] = {...}

to

real64_T NUM[256] = {...}

allocates enough memory for NUM to store up to 256 numerator filter coefficients rather
than 47.

Exporting the header file to CCS IDE does not add the filter to your project. To
incorporate the filter coefficients from the header file, add a #include statement:

#include "headerfilename.h"

Refer to “Exporting Filter Coefficients to Your Code Composer Studio Project” on page
40-66 for information about generating a header file to export filter coefficients.

When you export filter coefficients directly to processor memory, the export process
writes coefficients to as many memory locations as they need. The write process does not
perform bounds checking. Plan memory allocation carefully, so that the software writes
to the right locations and has enough memory for filter coefficients.

Replacing Existing Coefficients in Memory with Updated Coefficients

When you redesign a filter and export new coefficients to replace existing coefficients in
memory, verify the following conditions for your new design:

• Your redesign did not increase the memory required to store the coefficients beyond
the allocated memory.

Changes that increase the memory required to store the filter coefficients include the
following redesigns:

 Exporting Filter Coefficients from FDATool

40-73

• Increasing the filter order
• Changing the number of sections in the filter
• Changing the numerical precision (changing the export data type)

• Your changes did not change the export data type.

Caution Identify changes that require additional memory to store the coefficients
before you begin your export. Otherwise, exporting the new filter coefficients may
overwrite data in memory locations you did not allocate for storing coefficients. Also,
exporting filter coefficients to memory after you change the filter order, structure, design
algorithm, or data type can yield unexpected results and corrupt memory.

Changing the filter design algorithm in FDATool, such as changing from Butterworth
to Maximally Flat, often changes the number of filter coefficients (the filter order), the
number of sections, or both. Also, the coefficients from the new design algorithm may not
work with your source code filter implementation.

If you change the design algorithm, verify that your filter structure and length are the
same after you redesign your filter, and that the coefficients will work with the filter you
implemented.

If you change the number of sections or the filter order, your filter will not work well
unless your filter algorithm implementation accommodates the changes.

Changing Filter Coefficients Stored on Your Processor

This example writes filter coefficients to processor memory to replace the existing
coefficients. To perform this process, you need the names of the variables in which your
project stores the filter data.

Before you export coefficients directly to memory, verify that your project allocated
enough memory for the new filter coefficients. If your project allocated enough memory,
you can modify your filter in FDATool and then follow the steps in this example to export
the updated filter coefficients to the allocated memory.

If your new filter requires additional memory space, use a C header file to allocate
memory on the processor and export the new coefficients as described in “Exporting
Filter Coefficients to Your Code Composer Studio Project” on page 40-66.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-74

For important guidelines on writing directly to processor memory, refer to “Preventing
Memory Corruption When You Export Coefficients to Processor Memory” on page
40-71.

Follow these steps to export filter coefficients from FDATool directly to memory on your
processor.

1 Load the program file that contains your filter into CCS IDE to activate the program
symbol table. The symbol must contain the global variables you use to store the filter
coefficients and length parameters.

2 Start FDATool.
3 Click Filter Manager to open the Filter Manager dialog, shown in the following

figure.

4 Highlight the filter to modify on the list of filters, and select Edit current filter.
The highlighted filter appears in FDATool for you to change.

If you did not store your filter from a previous session, design the filter in FDATool
and continue.

 Exporting Filter Coefficients from FDATool

40-75

5 Click Close to dismiss the Filter Manager dialog.
6 Adjust the filter specifications in FDATool to modify its performance.
7 In FDATool, select Targets > Code Composer Studio IDE to open the Export to

Code Composer Studio IDE dialog.

Keep the export dialog open while you work. When you do so, the contents update as
you change the filter in FDATool.

Tip Click Generate to export coefficients to the same processor memory location
multiple times without reentering variable names.

8 In the Export to Code Composer Studio dialog:

• Set Export mode to Write directly to memory
• Clear Disable memory transfer warnings to get a warning if your processor

does not support the export data type.
9 In Variable names in target symbol table, enter the names of the variables

in the processor symbol table that correspond to the memory allocated for the
parameters, such as Numerator and Denominator. Your names must match the
names of the filter coefficient variables in your program.

10 Select Export suggested to accept the recommended export data type.

For more information about how FDATool determines the data type to suggest, refer
to “How FDATool Determines the Export Suggested Data Type” on page 40-66.

11 If you know the board number and processor number of your target, enter
DSP Board # and DSP Processor # values to identify your board.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-76

Note: When you have only one board or simulator, Embedded Coder sets
DSP Board # and DSP Processor # to your board automatically.

If you have more than one board defined in CCS Setup:

• Click Select target to open the Selection Utility dialog.
• Select the board name and processor name to use from the list of boards.

12 Click Generate to export your filter. If your processor does not support the data type
you export, you see a warning similar to the following message.

You can continue to export the filter, or cancel the export process. To prevent this
warning dialog from appearing, select Disable memory transfer warnings in the
Export to Code Composer Studio IDE dialog.

13 (Optional) Continue to optimize filter performance by modifying your filter in
FDATool and then export the updated filter coefficients directly to processor
memory.

14 When you finish testing your filter, return to FDATool, and click Store filter to save
your changes.

 Using Makefiles with Code Composer Studio 3.x

40-77

Using Makefiles with Code Composer Studio 3.x

In this section...

“Introduction” on page 40-77
“Set Up XMakefile for CCSv3” on page 40-77
“Prepare Your Model for CCSv3 and Makefiles” on page 40-78
“Create Target Configuration File in CCSv3” on page 40-79
“Load and Run the Embedded Software” on page 40-79

Introduction

This tutorial shows you how to use the XMakefile feature in your MathWorks software
to build and run embedded software with Code Composer Studio 3.3 (CCSv3). For more
information about XMakefile, see “Makefiles for Software Build Tool Chains” on page
37-15

Note: The Embedded Coder IDE Project Generator feature is not available for CCSv3
in the current release. For more information about IDE Project Generator, see “IDE
Projects” on page 37-13

To build the target software, complete the process covered in this chapter:

• Set up XMakefile for CCSv3.
• Prepare your model for CCSv3.
• Create a Target Configuration File in CCSv3.
• Load and run the embedded software.

Set Up XMakefile for CCSv3

The XMakefile feature tells your MathWorks software how to create makefiles for
a configuration, which is a specific combination of tool chain and embedded target
hardware. Some configurations require additional information before you can use them.

Select and complete a configuration for Code Composer Studio 3.3 (CCSv3):

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-78

1 Enter xmakefilesetup at the MATLAB command prompt. This action opens the
XMakefile User Configuration dialog.

2 Clear Display operational configurations only. This displays the configuration
files, including ones that need updated path information.

3 For Configurations, select a configuration that matches your target and ends with
ccsv3. Then click Apply.

4 If the configuration is incomplete, the software displays a series of Browse For
Folder dialoges that include instructions to provide missing information.

5 Examine the Tool Directories tab to see if the paths are right.
6 When you have supplied the missing information, and the configuration is complete,

click OK to close the XMakefile User Configuration dialog.

For example, to generate code for CCSv3 and a C6000 processor with DSP/BIOS:

1 Enter xmakefilesetup on the command line.
2 In the XMakefile dialog, clear Display operational configurations only, set

Configurations to ticcs_c6000_dspbios_ccsv3, and click Apply.
3 A Browse For Folder appears, stating “Select the C6000 Code Generation Tools

root installation directory...”.

Browse and select a path such as C:\Program Files\Texas Instruments
\C6000 Code Generation Tools.

4 Another Browse For Folder dialog appears, stating “Select the C6000 CSL root
installation directory...”.

Browse and select a path such as C:\Program Files\C6xCSL\.
5 Examine the Tool Directories tab to see if the paths are right.
6 With the updated information, the ticcs_c6000_dspbios_ccsv3 configuration is

operational. Click OK to save the updated configuration, and close the dialog.

Prepare Your Model for CCSv3 and Makefiles

1 Configure your model as described in “Configure Target Hardware Resources” on
page 37-3

2 On the Coder Target pane, under the Tool Chain Automation tab, set Build format
to Makefile.

3 Build your embedded software by pressing CTRL+B.

 Using Makefiles with Code Composer Studio 3.x

40-79

Create Target Configuration File in CCSv3

Before loading and running your target software, use the CCSv3 IDE to create a “target
configuration file”. The TI Debug Server uses this file while it works with CCSv3 to load
and run your target software. The XML-based target configuration file describes the
target board and processor. The file name ends with a *.ccxml extension.

Create a target configuration file:

1 In the CCSv3, select File > New > Target Configuration File to display a New
Target Configuration dialog:

• For File name, update the file name that ends with .ccxml to describe your
project and hardware.

• Click Finish. This action displays a utility in the CCS editor pane for
customizing the target configuration file.

2 Use the utility to select the Connection and Device type. Typing a partial string
next to Device filters the list of devices.

3 Click Save.

Note: For more information about target configuration files, consult the Texas
Instruments documentation for CCSv3.

Load and Run the Embedded Software

First set the Windows system variable, Path, so you can call the TI Debug Server
Scripting (DSS) API from a folder.

1 In Windows, right-click My Computer, and select Properties. This action opens
the System Properties dialog.

2 In System Properties, select the Advanced tab, and click Environment
Variables. This action opens the Environment Variables dialog.

3 In Environment Variables, under System variables, select the Path variable,
and click Edit. This action opens the Edit System Variable dialog.

4 In Edit System Variable, for Variable value, append a semicolon and the full
path of the \ccsv3\scripting\bin subdirectory. For example, append ;C:\ti
\ccsv3\scripting\bin.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-80

Note: The path cannot contain spaces. Customize the installation directory when you
install CCSv3 so it does not contain spaces.

For more information about using DSS, see http://processors.wiki.ti.com/index.php/
Debug_Server_Scripting.

MathWorks provides an example JavaScript file, runProgram.js, for you to use with DSS.
This script loads and runs the specified program on the target specified in the target
configuration file. You can create a copy of this script and modify it to suit your needs.
The location of runProgram.js is:

[MATLABROOT]\toolbox\idelink\extensions\ticcs\ccsdemos

The specific syntax for running dss.bat with runProgram.js is:

> dss runProgram.js targetConfigurationFile programFile

Replace targetConfigurationFile and programFile with paths and file names. For
example, if you are using a working directory called the CCSv3 workspace, and the model
name is myProgram, enter:

> dss runProgram.js c:\workspace\myC6416dsk.ccxml myProgram.out

This command builds and loads your software on the target or simulator.

You have completed the process of loading and running embedded software using
XMakefile and CCSv3.

http://processors.wiki.ti.com/index.php/Debug_Server_Scripting
http://processors.wiki.ti.com/index.php/Debug_Server_Scripting

 Reported Limitations and Tips

40-81

Reported Limitations and Tips

In this section...

“Example Programs Do Not Run Well with Incorrect GEL Files” on page 40-81
“Changing Values of Local Variables Does Not Work” on page 40-82
“Code Composer Studio Cannot Find a File After You Halt a Program” on page 40-82
“C54x XPC Register Can Be Modified Only Through the PC Register” on page 40-84
“Working with More Than One Installed Version of Code Composer Studio” on page
40-84
“Changing CCS Versions During a MATLAB Session” on page 40-85
“MATLAB Hangs When Code Composer Studio Cannot Find a Board” on page 40-85
“Using Mapped Drives” on page 40-86
“Uninstalling Code Composer Studio 3.3 Prevents Embedded Coder From Connecting”
on page 40-86
“PostCodeGenCommand Commands Do Not Apply to IDE Projects” on page 40-87

Some long-standing issues apply to the Embedded Coder product. When you are using
ticcs objects and the software methods to work with Code Composer Studio and
supported hardware or simulators, recall the information in this section.

The latest issues in the list appear at the bottom. HIL refers to “hardware in the loop,”
also called processor in the loop (PIL) here and in other applications, and sometimes
referred to as function calls.

Example Programs Do Not Run Well with Incorrect GEL Files

To run the Embedded Coder examples, you must load the corresponding GEL files before
you run the examples. For some boards, the examples run fine with the default CCS GEL
file. Some boards need to run device-specific GEL files for the examples to work well.

Here are examples and boards which require specific GEL files.

• Board: C5416 DSK

Examples: rtdxtutorial, rtdxlmsdemo

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-82

Emulator: XDS-510

GEL file to load: c5416_dsk.gel

In general, if a example does not run with the default GEL file, try using a device-specific
GEL file by defining the file in the CCS Setup Utility.

Changing Values of Local Variables Does Not Work

If you halt the execution of your program on your DSP and modify a local variable's
value, the new value may not be acknowledged by the compiler. If you continue to run
your program, the compiler uses the original value of the variable.

This problem happens only with local variables. When you write to the local variable via
the Code Composer Studio Watch Window or via a MATLAB object, you are writing into
the variable's absolute location (register or address in memory).

However, within the processor function, the compiler sometimes saves the local variable's
values in an intermediate location, such as in another register or to the stack. That
intermediate location cannot be determined or changed/updated with a new value
during execution. Thus the compiler uses the old, unchanged variable value from the
intermediate location.

Code Composer Studio Cannot Find a File After You Halt a Program

When you halt a running program on your processor, Code Composer Studio may display
a dialog that says it cannot find a source code file or a library file.

When you halt a program, CCS tries to display the source code associated with the
current program counter. If the program stops in a system library like the runtime
library, DSP/BIOS, or the board support library, it cannot find the source code for debug.
You can either find the source code to debug it or select the Don't show this message
again check box to ignore messages like this in the future.

For more information about how CCS responds to the halt, refer the online Help for
CCS. In the online help system, use the search engine to search for the keywords
“Troubleshooting” and “Support.” The following information comes from the online help
for CCS, starting with the error message:

 Reported Limitations and Tips

40-83

File Not Found

The debugger is unable to locate the source file required to enable source-level debugging
for this program.

To specify the location of the source file

1 Click Yes. The Open dialog appears.
2 In the Open dialog, specify the location and name of the source file then click Open.

The next section provides more details about file paths.

Defining a Search Path for Source Files

The Directories dialog enables you to specify the search path the debugger uses to find
the source files included in a project.

To Specify Search Path Directories

1 Select Option > Customize.
2 In the Customize dialog, select the Directories tab. Use the scroll arrows at the top

of the dialog to locate the tab.

The Directories dialog offers the following options.

• Directories. The Directories list displays the defined search path. The
debugger searches the listed folders in order from top to bottom.

If two files have the same name and are located in different folders, the file
located in the folder that appears highest in the Directories list takes
precedence.

• New. To add a new folder to the Directories list, click New. Enter the full path
or click browse [...] to navigate to a folder. By default, the new folder is added to
the bottom of the list.

• Delete. Select a folder in the Directories list, then click Delete to remove
that folder from the list.

• Up. Select a folder in the Directories list, then click Up to move that folder
higher in the list.

• Down. Select a folder in the Directories list, then click Down to move that
folder lower in the list.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-84

3 Click OK to close the Customize dialog and save your changes.

C54x XPC Register Can Be Modified Only Through the PC Register

You cannot modify the XPC register value directly using regwrite to write into the
register. When you are using extended program addressing in C54x, you can modify the
XPC register by using regwrite to write a 23-bit data value in the PC register. Along
with the 16-bit PC register, this operation also modifies the 7-bit XPC register that is
used for extended program addressing. On the C54x, the PC register is 23 bits (7 bits in
XPC + 16 bits in PC).

You can then read the XPC register value using regread.

Working with More Than One Installed Version of Code Composer Studio

When you have more than one version of Code Composer Studio installed on your
machine, you cannot select which CCS version MATLAB Embedded Coder attaches to
when you create a ticcs object. If, for example, you have both CCS for C5000 and CCS
for C6000 versions installed, you cannot choose to connect to the C6000 version rather
than the C5000 version.

When you issue the command

IDE_obj = ticcs

Embedded Coder starts the CCS version you last used. If you last used your C5000
version, the IDE_obj object accesses the C5000 version.

Workaround

To make your ticcs object access the right processor:

1 Start and close the CCS version you plan to use before you create the ticcs object in
MATLAB.

2 Create the ticcs object using the boardnum and procnum properties to select your
processor, if required.

Recall that ccsboardinfo returns the boardnum and procnum values for the
processors that CCS recognizes.

 Reported Limitations and Tips

40-85

Changing CCS Versions During a MATLAB Session

You can use only one version of CCS in a single MATLAB session. Embedded Coder does
not support using multiple versions of CCS in a MATLAB session. To use another CCS
version, exit MATLAB software and restart it. Then create your links to the new version
of CCS.

MATLAB Hangs When Code Composer Studio Cannot Find a Board

In MATLAB software, when you create a ticcs object, the construction process for the
object automatically starts CCS. If CCS cannot find a processor that is connected to
your PC, you see a message from CCS like the following DSP Device Driver dialog that
indicates CCS could not initialize the processor.

Four options let you decide how to respond to the failure:

• Abort — Closes CCS and suspends control for about 30 seconds. If you used MATLAB
software functions to open CCS, such as when you create a ticcs object, the system
returns control to MATLAB command window after a considerable delay, and issues
this warning:

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-86

??? Unable to establish connection with Code Composer Studio.

• Ignore — Starts CCS without connecting to a processor. In the CCS IDE you see a
status message that says EMULATOR DISCONNECTED in the status area of the
IDE. If you used MATLAB to start CCS, you get control immediately and Embedded
Coder creates the ticcs object. Because CCS is not connected to a processor, you
cannot use the object to perform processor operations from MATLAB, such as loading
or running programs.

• Retry — CCS tries again to initialize the processor. If CCS continues not to find
your hardware processor, the same DSP Device Driver dialog reappears. This process
continues until either CCS finds the processor or you choose one of the other options
to respond to the warning.

One more option, Diagnostic, lets you enter diagnostic mode if it is enabled. Usually,
Diagnostic is not available for you to use.

Using Mapped Drives

Limitations in Code Composer Studio do not allow you to load programs after you set
your CCS working folder to a read-only mapped drive. Load operations fail with an
Application Error dialog.

The following combination of commands does not work:

1 cd(IDE_obj,'mapped_drive_letter') % Change CCS working directory

to read-only mapped drive.
2 load(IDE_obj,'program_file') % Loading program fails.

Uninstalling Code Composer Studio 3.3 Prevents Embedded Coder From
Connecting

Description On a machine where CCS 3.3 and CCS 3.1 are installed, uninstalling 3.3
makes 3.1 unusable from MATLAB. This is because the CCS 3.3 uninstaller leaves stale
registry entries in the Windows Registry that prevent MATLAB from connecting to CCS
3.1.

Texas Instruments has documented this uninstall problem and the solution on their Web
site.

http://www-k.ext.ti.com/SRVS/CGI-BIN/WEBCGI.EXE/,/?St=76,E=0000000000008373418,K=3818,Sxi=9,Case=obj(52837)
http://www-k.ext.ti.com/SRVS/CGI-BIN/WEBCGI.EXE/,/?St=76,E=0000000000008373418,K=3818,Sxi=9,Case=obj(52837)

 Reported Limitations and Tips

40-87

Updated information on this issue may also be available from the Bug Reports section of
www.mathworks.com at http://www.mathworks.com/support/bugreports/379676

PostCodeGenCommand Commands Do Not Apply to IDE Projects

PostCodeGenCommand commands, such as the addCompileFlags and addLinkFlags
functions in the BuildInfo API do not alter code generated by Embedded Coder while
System Target File is set to idelink_ert.tlc or idelink_grt.tlc.

Use the 'Compiler options string' and 'Linker options string' parameters located in the
Configuration Parameters dialog (Ctrl+E) on the Code Generation > Coder Target pane
instead. You can also automate this process using a model callback to SET_PARAM the
'CompilerOptionsStr' and 'LinkerOptionsStr' parameters.

http://www.mathworks.com/support/bugreports/379676

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-88

Setting Up Code Composer Studio (ert.tlc System Target File)

In this section...

“Prepare Your Model for CCSv3.3” on page 40-88
“Prepare Your Model for CCSv4/5/6” on page 40-88

Prepare Your Model for CCSv3.3

For Code Composer Studio 3.3, select Texas Instruments Code Composer Studio
v3.3 (C2000) as the toolchain, and press Ctrl + B to build and generate the .out
(executable) file. To download and run the executable, use Code Composer Studio.

Prepare Your Model for CCSv4/5/6

1 Configure your model as described in “Coder Target Pane: Texas Instruments C2000
Processors”, setting Toolchain to Texas Instruments Code Composer Studio
v4 (C2000), Texas Instruments Code Composer Studio v5 (C2000),
or Texas Instruments Code Composer Studio v6 (C2000).

2 If you want to load and run the application automatically after the build, on the
Coder Target pane, select Build, load and run value from Build action and
specify the *.ccxml file in CCS hardware configuration file that matches the
selected target hardware.

Otherwise, you have to create your own .ccxml file that matches the target hardware
and the connection. See “Create Target Configuration File in CCSv4/5/6” on page
40-88 to create your own .ccxml file (Target Configuration File) in CCSv4/5/6.

3 Build your embedded software by pressing CTRL+B.

Create Target Configuration File in CCSv4/5/6

Before loading and running your target software, use the CCSv4/5/6 IDE to create
a “target configuration file”. The TI Debug Server uses this file while it works with
CCSv4/5 to load and run your target software.

Create a target configuration file:

1 In the CCSv4/5/6, select File > New > Target Configuration File to display a
New Target Configuration dialog:

 Setting Up Code Composer Studio (ert.tlc System Target File)

40-89

• For File name, update the file name that ends with .ccxml to describe your
project and hardware.

• Click Finish. This action displays a utility in the CCSv4/5/6 editor pane for
customizing the target configuration file.

2 Use the utility to select the Connection and Device type. Typing a partial string
next to Device filters the list of devices.

3 Click Save.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-90

IDE Link Frequently Asked Question: Why do I get an error when I
invoke TICCS?

In this section...

“Why do I get an error when I invoke TICCS?” on page 40-90
“How can I fix this problem?” on page 40-90
“What happens if I click Deselect All when CCS prompts that 'New components were
detected'?” on page 40-92
“How do I use CCS Component Manager to enable IDE Link Components?” on page
40-92

Why do I get an error when I invoke TICCS?

IDE Link uses a plugin component that needs to be registered with CCS. If the plugin is
not registered, you get the following error messages when you invoke TICCS.

Example 1:

cc = ticcs

Could not start the MATLAB(R) component in CCS.

 Please use IDE Link FAQ to troubleshoot the problem.

Example 2:

cc = ticcs

Could not start the MATLAB component in CCS.

How can I fix this problem?

To fix this problem, perform the following steps:

1 Register IDE Link components.
2 Enable IDE Link component.

Register IDE Link Components

The following instructions show you how to register the components required by IDE
Link.

 IDE Link Frequently Asked Question: Why do I get an error when I invoke TICCS?

40-91

Note: Before you register the components, you must have write permission to modify
the registry. If you do not have this permission, look for someone who has (e.g., system
administrator) and have this person perform the registration.

1 Close Code Composer Studio IDE.
2 Close MATLAB.
3 Open a Microsoft Windows Command Prompt by clicking Start and then Programs >

Accessories > Command Prompt.
4 Register the LinkCCS.dll component. In MATLAB Command Window, enter:

regsvr32 [MATLABROOT]\bin\win32\LinkCCS.dll

5 Verify that the preceding command displays the following message in a dialog box:

DllRegisterServer in [MATLABROOT]\bin\win32\LinkCCS.dll succeeded

6 Register the MWCCSStu.ocx component. In MATLAB Command Window, enter:

regsvr32 [MATLABROOT]\toolbox\idelink\extensions\ticcs\bin\win32\MWCCSStu.ocx

7 Verify that the preceding command displays the following message in a dialog box:

DllRegisterServer in [MATLABROOT]\toolbox\idelink\extensions\ticcs\bin\win32\MWCCSStu.ocx

succeeded

After you register the components, enable the CCS component before using IDE Link.

To enable IDE Link Component

1 Open MATLAB
2 Enter cc = ticcs at the MATLAB prompt. CCS starts and prompts that "New

components were detected".
3 Click Yes to enable components for compatible CCS releases. The first time CCS is

invoked (either through TICCS or directly), it detects new components and asks if
you want enable them. You see the following dialog:

Note: Click OK to enable the new component. For more information on ticcs or to see
this FAQ again, enter help ticcs at the MATLAB prompt. For your convenience these
instructions are available here.

40 Working with Texas Instruments Code Composer Studio 3.3 IDE

40-92

What happens if I click Deselect All when CCS prompts that 'New
components were detected'?

You will not be able to use IDE Link. The New Components dialog box appears only once.

To enable the components after you click 'Deselect All', use the CCS Component
Manager.

How do I use CCS Component Manager to enable IDE Link Components?

1 To open the CCS Component Manager, select Start and then Programs > Texas
Instruments > Code Composer Studio 3.x > Component Manager. The left pane of
the Component Manager presents the CCS installations select tree.

2 On the select tree, double-click The MathWorks, Inc. to see the MathWorks
components.

3 Select the checkbox for [MATLABROOT]\toolbox\idelink\extensions\ticcs\bin
\win32 to enable the component.

4 Select File > Save from the menu bar to save the new settings and then close the
Component Manager.

41

Working with Texas Instruments Code
Composer Studio 4 & 5 IDE

• “Set Up” on page 41-2
• “Code Composer Studio” on page 41-3
• “Getting Started” on page 41-4
• “Using Makefiles with Code Composer Studio 4/5” on page 41-5
• “Reported Limitations and Tips” on page 41-11

41 Working with Texas Instruments Code Composer Studio 4 & 5 IDE

41-2

Set Up

Before you use Embedded Coder with Code Composer Studio (CCS IDE) for the
first time, use the checkEnvSetup function to check for third-party tools and set
environment variables. Run checkEnvSetup again whenever you configure CCS IDE to
interact with a new board or processor, or upgrade the related third-party tools.

To verify that CCSv3 is installed on your machine and has at least one board configured,
enter

ccsboardinfo

in the MATLAB Command Window. With CCS installed and configured, MATLAB
software returns information about the boards that CCS recognizes on your machine, in a
form similar to the following listing.
Board Board Proc Processor Processor

 Num Name Num Name Type

 --- -------------------------------- --- -------------

1 C6xxx Simulator (Texas Instrum .0 6701 TMS320C6701

0 C6x13 DSK (Texas Instruments) 0 CPU TMS320C6x1x

If MATLAB software does not return information about the boards, open your CCS
installation and use the Setup Utility in CCS to configure at least one board.

As a final test, start CCS to verify that it runs. For Embedded Coder to operate with
CCS, the CCS IDE must be able to run on its own.

 Code Composer Studio

41-3

Code Composer Studio

Feature Support

When you use Code Composer Studio 4 or Code Composer Studio 5 with Embedded Coder
software, you can use:

• Makefiles to automate building and deploying software to target hardware. For more
information, see “Makefiles for Software Build Tool Chains” and “Using Makefiles
with Code Composer Studio 4/5” on page 41-5.

• Processor-in-the-loop (PIL) simulations to verify your software running on target
hardware. For more information, see “PIL Simulation for IDE and Toolchain Targets”.

• Execution profiling with PIL to measure the performance of synchronous tasks
running on target hardware. For more information, see “Execution Profiling During
PIL Simulation”.

Features that require IDE projects (Build format = Project), such as IDE Project
Generator and IDE Automation Interface, are not available for use with Code Composer
Studio 4 & 5.

You can use CCSv4/5 with the Simulink Block Libraries for the following Texas
Instruments processors:

• TI’s C2000
• TI’s C5000
• TI’s C6000

41 Working with Texas Instruments Code Composer Studio 4 & 5 IDE

41-4

Getting Started

In this section...

“Verifying Your Code Composer Studio Installation” on page 41-4
“Learning About Makefiles” on page 41-4

Verifying Your Code Composer Studio Installation

On your host computer, install CCSv4/5 and other third-party tools for your board and
processor, and set the environment variables. Then use the checkEnvSetup function in
MATLAB to verify that your setup includes the required software. For more information
and examples, see checkEnvSetup.

Learning About Makefiles

To learn about using makefiles, see “Makefiles for Software Build Tool Chains” on page
37-15.

For an example of using CCSv4/5 with makefiles, model-block PIL, and the Serial
Communications Interface (SCI), see “Performing a Model Block PIL Simulation via SCI
Using Makefiles”.

 Using Makefiles with Code Composer Studio 4/5

41-5

Using Makefiles with Code Composer Studio 4/5

In this section...

“Introduction” on page 41-5
“Set Up XMakefile for CCSv4/5” on page 41-5
“Prepare Your Model for CCSv4/5 and Makefiles” on page 41-6
“Create Target Configuration File in CCSv4/5” on page 41-7
“Configure Windows Path for TI Debug Server Scripting (DSS)” on page 41-7
“Load and Run the Embedded Software Using DSS” on page 41-8

Introduction

This tutorial shows you how to use the XMakefile feature in your MathWorks software
to build and run embedded software with Code Composer Studio 4 or 5 (CCSv4/5). For
more information about XMakefile, see “Makefiles for Software Build Tool Chains” on
page 37-15

Note: The Embedded Coder IDE Project Generator feature is not available for CCSv4/5
in the current release. For more information about IDE Project Generator, see “IDE
Projects” on page 37-13

To build the target software, complete the process covered in this chapter:

• Set up XMakefile for CCSv4/5.
• Prepare your model for CCSv4/5.
• Create a Target Configuration File in CCSv4/5.
• Load and run the embedded software.

Set Up XMakefile for CCSv4/5

The XMakefile feature tells your MathWorks software how to create makefiles for
a configuration, which is a specific combination of tool chain and embedded target
hardware. Some configurations require additional information before you can use them.

Select and complete a configuration for Code Composer Studio 4 & 5 (CCSv4/5):

41 Working with Texas Instruments Code Composer Studio 4 & 5 IDE

41-6

1 Enter xmakefilesetup at the MATLAB command prompt. This action opens the
XMakefile User Configuration dialog.

2 Clear Display operational configurations only. This displays the configuration
files, including ones that need updated path information.

3 For Configurations, select a configuration that matches your target and ends with
ccsv4 or ccsv5. Then click Apply.

4 If the configuration is incomplete, the software displays a series of Browse For
Folder dialoges that include instructions to provide missing information.

5 Examine the Tool Directories tab to see if the paths are right.
6 When you have supplied the missing information, and the configuration is complete,

click OK to close the XMakefile User Configuration dialog.

For example, to generate code for CCSv4/5 and a C6000 processor with DSP/BIOS:

1 Enter xmakefilesetup on the command line.
2 In the XMakefile dialog, clear Display operational configurations

only, set Configurations to ticcs_c6000_dspbios_ccsv4 or
ticcs_c6000_dspbios_ccsv5, and click Apply.

3 A Browse For Folder appears, stating “Select the C6000 Code Generation Tools
root installation directory...”.

Browse and select a path such as C:\Program Files\Texas Instruments
\C6000 Code Generation Tools.

4 Another Browse For Folder dialog appears, stating “Select the C6000 CSL root
installation directory...”.

Browse and select a path such as C:\Program Files\C6xCSL\.
5 Examine the Tool Directories tab and verify the paths shown there. Verify the

DSP/BIOS and XDC installation folders.
6 With the updated information, the ticcs_c6000_dspbios_ccsv4 or

ticcs_c6000_dspbios_ccsv5 configuration is operational. Click OK to save the
updated configuration, and close the dialog.

Prepare Your Model for CCSv4/5 and Makefiles

1 Configure your model as described in “Configure Target Hardware Resources” on
page 37-3 , setting IDE/Tool Chain to Texas Instruments Code Composer

 Using Makefiles with Code Composer Studio 4/5

41-7

Studio v4 (makefile generation only) or Texas Instruments Code
Composer Studio v5 (makefile generation only).

Choosing either of those options automatically sets Build format to Makefile.
2 Build your embedded software by pressing CTRL+B.

Create Target Configuration File in CCSv4/5

Before loading and running your target software, use the CCSv4/5 IDE to create a “target
configuration file”. The TI Debug Server uses this file while it works with CCSv4/5 to
load and run your target software. The XML-based target configuration file describes the
target board and processor. The file name ends with a *.ccxml extension.

Create a target configuration file:

1 In the CCSv4/5, select File > New > Target Configuration File to display a New
Target Configuration dialog:

• For File name, update the file name that ends with .ccxml to describe your
project and hardware.

• Click Finish. This action displays a utility in the CCSv4/5 editor pane for
customizing the target configuration file.

2 Use the utility to select the Connection and Device type. Typing a partial string
next to Device filters the list of devices.

3 Click Save.

Note: For more information about target configuration files, consult the Texas
Instruments documentation for CCSv4/5.

Configure Windows Path for TI Debug Server Scripting (DSS)

Set the Windows system variable, Path, so you can call the TI Debug Server Scripting
(DSS) API from a folder.

1 In Windows, right-click My Computer, and select Properties. This action opens
the System Properties dialog.

2 In System Properties, select the Advanced tab, and click Environment
Variables. This action opens the Environment Variables dialog.

41 Working with Texas Instruments Code Composer Studio 4 & 5 IDE

41-8

3 In Environment Variables, under System variables, select the Path variable,
and click Edit. This action opens the Edit System Variable dialog.

4 In Edit System Variable, for Variable value, append a semicolon and the full path
of the \ccsv4\scripting\bin or \ccsv5\scripting\bin subdirectory. For
example, append ;C:\ti\ccsv4\scripting\bin.

Note: The path cannot contain spaces. Customize the installation directory when you
install CCSv4/5 so it does not contain spaces.

Load and Run the Embedded Software Using DSS

MathWorks provides an example JavaScript file, runProgram.js, for you to use with DSS.
This script loads and runs the specified program on the target specified in the target
configuration file. You can create a copy of this script and modify it to suit your needs.
The location of runProgram.js is:

[MATLABROOT]\toolbox\idelink\extensions\ticcs\ccsdemos

Load and Run Embedded Software Automatically Using XMakefile Configuration

The syntax for running dss.bat with runProgram.js using XMakefile Configuration is:

> dss runProgramFile targetConfigurationFile [|||MW_XMK_GENERATED_TARGET_REF[E]|||]

For example, to automate, load, and run an embedded software on C2000 processor with
CCSv4/5 using xmakefile configuration, the steps are as follows:

1 Enter

xmakefilesetup

on the [MATLAB] command prompt.
2 In the XMakefile User Configuration dialog box, clear Display operational

configurations only check box.
3 Select ticcs_c2000_ccsv4 or ticcs_c2000_ccsv5 in Configuration parameter.
4 Click Apply.
5 Create a new Configuration as explained in the section, “Creating a New XMakefile

Configuration”.
6 Select Execute tab. In this tab, enter values for the syntax

> dss runProgramFile targetConfigurationFile

 Using Makefiles with Code Composer Studio 4/5

41-9

 [|||MW_XMK_GENERATED_TARGET_REF[E]|||]

in the Execute tool and Arguments parameters.

• In the Execute tool parameter, enter the executable name ‘dss.bat’.
• In the Arguments parameter, replace runProgramFile and

targetConfigurationFile with complete filepath.

When you enter the filepath, use double quotes or double back-slashes.

For example:

[MATLABROOT]\\toolbox\\idelink\\extensions\\ticcs\\ccsdemos\
\runProgram.js

C:\\ccsv4\\CCSTargetConfigurations\\ezdsp28335.ccxml

[|||MW_XMK_GENERATED_TARGET_REF[E]|||]

or

“[MATLABROOT]\toolbox\idelink\extensions\ticcs\ccsdemos\runProgram.js"

"C:\ccsv4\CCSTargetConfigurations\ezdsp28335.ccxml"

[|||MW_XMK_GENERATED_TARGET_REF[E]|||]

You have completed the process of loading and running the embedded software using
XMakefile on the target or simulator.

Load and Run Embedded Software Using Windows Command Prompt

The syntax for running dss.bat with runProgram.js using Windows command prompt is:

> dss runProgramFile targetConfigurationFile programFile

Replace runProgramFile, targetConfigurationFile, and the programFile with complete
file path and the file name. For example, if you are using a working directory called
‘CCSv4/5 workspace’, and the model name ‘myProgram’, enter,

> dss c:\ccsv4\runProgram.js c:\workspace\myC6416dsk.ccxml

c:\test\myProgram.out

This command loads and runs the embedded software on the target or simulator.

41 Working with Texas Instruments Code Composer Studio 4 & 5 IDE

41-10

For more information about using DSS, see http://processors.wiki.ti.com/index.php/
Debug_Server_Scripting.

Troubleshooting DSS

With Code Composer Studio 4 & 5, using runProgram.js to download and run the
generated program file can produce an error message similar to:
SEVERE: Could not open session. Found 2 devices matching: .*

 Spectrum Digital DSK-EVM-eZdsp onboard USB Emulator_0/C64XP_0

Spectrum Digital DSK-EVM-eZdsp onboard USB Emulator_0/IcePick_C_0

If this happens, specify one of the devices in line 65 in runProgram.js. For example:
debugSession = debugServer.openSession(".*C64XP.*");

Alternatively, to connect to the first board & CPU detected, use ("*","*") in line 65.
For example:

debugSession = debugServer.openSession("*","*");

Remember to restore the original code to work with other devices.

Advanced DSS Features

To use advanced DSS features, you can also use the CCSv4/5 example batch file,
loadti.bat, as follows:

Change directories to the loadti subdirectory. For example:

> cd c:\ccs4_install\ccsv4\scripting\examples\loadti

Run loadti.bat using the following syntax:

> loadti -a -c=targetConfigurationFile programFile

Replace targetConfigurationFile with the complete path of the target configuration
file.

Replace programFile with the name of the .out created using the XMakefile feature.
For example:

> loadti -a -c=c:\workspace\myC6416dsk.ccxml myProgram.out

For more information about loadti and its options, type the following on your system
command prompt

> loadti -help

http://processors.wiki.ti.com/index.php/Debug_Server_Scripting
http://processors.wiki.ti.com/index.php/Debug_Server_Scripting

 Reported Limitations and Tips

41-11

Reported Limitations and Tips

In this section...

“Example Programs Do Not Run well with Incorrect GEL Files” on page 41-11
“PostCodeGenCommand Commands Do Not Apply to IDE Projects” on page 41-11

Some long-standing issues apply to the Embedded Coder product.

Example Programs Do Not Run well with Incorrect GEL Files

To run the Embedded Coder examples, you must load the GEL files before you run the
examples. For some boards, the examples run fine with the default CCSv4/5 GEL file.
Some boards need to run device-specific GEL files for the examples to work.

Here are examples and boards which require specific GEL files.

• Board: C5416 DSK

Examples: rtdxtutorial, rtdxlmsdemo

Emulator: XDS-510

GEL file to load: c5416_dsk.gel

In general, if a example does not run with the default GEL file, try using a device-specific
GEL file by defining the file in the CCSv4/5 Setup Utility.

PostCodeGenCommand Commands Do Not Apply to IDE Projects

PostCodeGenCommand commands, such as the addCompileFlags and addLinkFlags
functions in the BuildInfo API do not alter code generated while System Target File is
set to idelink_ert.tlc or idelink_grt.tlc.

Use the 'Compiler options string' and 'Linker options string' parameters located in the
Configuration Parameters dialog (Ctrl+E) on the Code Generation > Coder Target
pane instead. You can also automate this process using a model callback to SET_PARAM
the 'CompilerOptionsStr' and 'LinkerOptionsStr' parameters.

Code Generation from MATLAB Code

42

Build Configuration for Code
Generation from MATLAB Code

• “Specify Comment Style for C/C++ Code” on page 42-2
• “Specify Indent Style for C/C++ Code” on page 42-4
• “Generate Custom File and Function Banners for C/C++ Code” on page 42-6
• “Code Generation Template Files for MATLAB” on page 42-9
• “Customize Generated Identifiers” on page 42-20
• “Control Signed Left Shifts in Generated Code” on page 42-23
• “Control Data Type Casts in Generated Code” on page 42-25

42 Build Configuration for Code Generation from MATLAB Code

42-2

Specify Comment Style for C/C++ Code

In this section...

“Specify Comment Style Using the MATLAB Coder App” on page 42-2
“Specify Comment Style Using the Command-Line Interface” on page 42-3

If you have an Embedded Coder license, you can specify the comment style for C/C+
+ code generated from MATLAB code. Specify single-line style to generate single-line
comments preceded by //. Specify multi-line style to generate single-line or multi-
line comments delimited by /* and */. Single-line style is the default for C++ code
generation. Multi-line style is the default for C code generation. For C code generation,
select single-line comment style only if your compiler supports it.

Specify Comment Style Using the MATLAB Coder App

1 On the Generate Code page, to open the Generate dialog box, click the Generate

arrow .
2 Set Build type to one of the following:

• Source Code

• Static Library (.lib)

• Dynamic Library (.dll)

• Executable (.exe)

3 Click More Settings.
4 On the Code Appearance tab, select the Include Comments check box if it is not

already selected. By default, the Include Comments check box is selected.
5 Set Comment Style to one of the following options.

Value Description

Auto(Use standard comment style

of the target language)

For C, generate multi-line comments.
For C++, generate single-line comments.
(default)

Single-line (Use C++-style

comments)

Generate single-line comments preceded
by //.

Multi-line (Use C-style

comments)

Generate single or multi-line comments
delimited by /* and */.

 Specify Comment Style for C/C++ Code

42-3

Specify Comment Style Using the Command-Line Interface

1 Create a code configuration object for C/C++ code generation. For example, create a
configuration object for C/C++ static library generation:

cfg = coder.config('lib','ecoder',true);

2 Set the CommentStyle property to one of the following values:

Value Description

'Auto' For C, generate multi-line comments. For C++, generate single-
line comments. (default)

'Single-line' Generate single-line comments preceded by //.
'Multi-line' Generate single or multi-line comments delimited by /* and */.

For example, this code sets the comment style to single-line style:

cfg.CommentStyle='Single-line';

42 Build Configuration for Code Generation from MATLAB Code

42-4

Specify Indent Style for C/C++ Code

In this section...

“Specify Indent Style Using the MATLAB Coder App” on page 42-5
“Specify Indent Style Using the Command-Line Interface” on page 42-5

If you have an Embedded Coder license, you can control the indent style and indent size
in C/C++ code generated from MATLAB code. Indent style controls the placement of
braces. Indent size controls the number of characters per indentation level.

You can specify the K&R indent style or the Allman indent style. Both styles:

• Place the function opening and closing braces on their own lines at the same
indentation level as the function header.

• Indent code within the function according to the indent size.
• For blocks within a function, place closing braces on a new line at the same

indentation level as the control statement.
• Indent code within a block according to the indent size.

The K&R style and the Allman style differ in their placement of the opening brace
for a control statement. If you want the opening brace on the same line as its control
statement, select the K&R style. Here is code that has the K&R indent style:

void addone(const double x[6], double z[6])

{

 int i0;

 for (i0 = 0; i0 < 6; i0++) {

 z[i0] = x[i0] + 1.0;

 }

}

If you want the opening brace on its own line, select the Allman style. Here is code that
has the Allman indent style:

void addone(const double x[6], double z[6])

{

 int i0;

 for (i0 = 0; i0 < 6; i0++)

 {

 z[i0] = x[i0] + 1.0;

 Specify Indent Style for C/C++ Code

42-5

 }

}

Specify Indent Style Using the MATLAB Coder App

1 On the Generate Code page, to open the Generate dialog box, click the Generate

arrow .
2 Set Build type to one of the following:

• Source Code

• Static Library (.lib)

• Dynamic Library (.dll)

• Executable (.exe)

3 Click More Settings.
4 On the All Settings tab, under Advanced, set Indent style to K&R or Allman.
5 On the All Settings tab, under Advanced, set Indent size to an integer from 2 to

8.

Specify Indent Style Using the Command-Line Interface

1 Create a code configuration object for 'lib', 'dll', or 'exe'. For example:

cfg = coder.config('lib','ecoder',true); % or dll or exe

2 Set the IndentStyle property to 'K&R' or 'Allman'. For example:

cfg.IndentStyle = 'Allman';

3 Set the IndentSize property to an integer from 2 to 8. For example:

cfg.IndentSize = 4;

42 Build Configuration for Code Generation from MATLAB Code

42-6

Generate Custom File and Function Banners for C/C++ Code

When you generate C and C++ code from MATLAB code, you can use a code generation
template (CGT) file to specify custom:

• File banners
• Function Banners
• File trailers
• Comments before code sections

This example shows how you can create your own CGT file and customize it to generate
your own file and function banners.

1 Create a local copy of the default CGT file for MATLAB Coder and rename it. The
default CGT file is matlabcoder_default_template.cgt in the matlabroot/toolbox/
coder/matlabcoder/templates/ folder.

2 Store the copy in a folder that is outside of the MATLAB folder structure, but on
the MATLAB path. If necessary, add the folder to the MATLAB path. If you intend
to use the CGT file with a custom target, locate the CGT file in a folder under your
target root folder. If the file is not on the MATLAB path, specify a full path to the file
when adding the file to your configuration.

3 View the default template and generated output. For example, here is the default
File Banner section:
%%

%% Custom File Banner section (optional)

%% Customize File banners by using either custom tokens or the following

%% predefined tokens:

%% %<FileName>, %<MATLABCoderVersion>, %<EmbeddedCoderVersion>

%% %<SourceGeneratedOn>, %<HardwareSelection>, %<OutputType>

%%

%% You can also use "custom tokens" in all of the sections below. See the

%% documentation center for more details.

%%

<FileBanner style="classic">

File: %<FileName>

MATLAB Coder version : %<MATLABCoderVersion>

C/C++ source code generated on : %<SourceGeneratedOn>

</FileBanner>

When you generate code using this default, the file banner looks similar to this file
banner:
/*

 Generate Custom File and Function Banners for C/C++ Code

42-7

 * File: coderand.c

 *

 * MATLAB Coder version : 2.7

 * C/C++ source code generated on : 06-Apr-2014 14:34:15

 */

4 Edit your local copy of the CGT file. You can change the default values and add
your own custom tokens. For example, here is the File Banner section with the style
changed to box and a custom token myCustomToken:
%%

%% Custom File Banner section (optional)

%% Customize File banners by using either custom tokens or the following

%% predefined tokens:

%% %<FileName>, %<MATLABCoderVersion>, %<EmbeddedCoderVersion>

%% %<SourceGeneratedOn>, %<HardwareSelection>, %<OutputType>

%%

%% You can also use "custom tokens" in all of the sections below. See the

%% documentation center for more details.

%%

<FileBanner style="box">

File: %<FileName>

My custom token : %<myCustomToken>

MATLAB Coder version : %<MATLABCoderVersion>

C/C++ source code generated on : %<SourceGeneratedOn>

</FileBanner>

For more information, see “Code Generation Template Files for MATLAB”.
5 Create a configuration object for generation of a C static library for an embedded

target.

% Create configuration object for an embedded target

cfgObj = coder.config('lib','ecoder',true);

6 Create a MATLABCodeTemplate object from your CGT file and add it to the
configuration object.

% Specify the custom CGT file

CGTFile = 'myCGTFile.cgt';

% Use custom template

cfgObj.CodeTemplate = coder.MATLABCodeTemplate(CGTFile);

7 Assign values for custom tokens that you added to the template. For example, assign
the value 'myValue' to the myCustomToken token that you added in a previous
step.

cfgObj.CodeTemplate.setTokenValue('myCustomToken','myValue');

8 Generate code using the configuration object that you created.

42 Build Configuration for Code Generation from MATLAB Code

42-8

codegen -config cfgObj coderand

9 View the changes to the generated file banner. For example, here is the file banner
for coderand.c using the customized CGT file:
/**/

/* File: coderand.c */

/* */

/* My custom token : myValue */

/* */

/* MATLAB Coder version : 2.7 */

/* C/C++ source code generated on : 06-Apr-2014 14:42:55 */

/**/

Changes to a CGT file do not affect the generated code unless you create a
MATLABCodeTemplate object from the modified CGT file, and then add it to the
configuration object. If you modify the CGT File, myCGTFile.cgt, used in the previous
example, you must repeat these steps:

1 Create a MATLABCodeTemplate object from myCGTFile.cgt and add it to the
configuration object.

CGTFile = 'myCGTFile.cgt';

cfgObj.CodeTemplate = coder.MATLABCodeTemplate(CGTFile);

2 Assign the value 'myValue' to the myCustomToken token.

cfgObj.CodeTemplate.setTokenValue('myCustomToken','myValue');

3 Generate code.

codegen -config cfgObj coderand

 Code Generation Template Files for MATLAB

42-9

Code Generation Template Files for MATLAB

In this section...

“Default CGT File” on page 42-9
“CGT File Structure” on page 42-9
“Components of the CGT File Sections” on page 42-11

A code generation template (CGT) file defines the sections in generated code that you can
customize using comments and tokens. Using a code generation template (CGT) file for
the generation of C and C++ code from MATLAB, you can specify custom file banners and
function banners for generated code. File banners are comment sections in the header
and trailer sections of a generated file. Function banners are comment sections for each
function in the generated code. You can also customize comments before code sections.
Use these banners to:

• Add a company copyright statement.
• Specify a special version symbol for your configuration management system.
• Remove time stamps.
• Add other custom information to your generated files.

For information on creating, customizing, and using a CGT file, see “Generate Custom
File and Function Banners for C/C++ Code” on page 42-6.

Default CGT File

You can base your custom template on the default CGT file,
matlabcoder_default_template.cgt, in the matlabroot/toolbox/coder/
matlabcoder/templates/ folder.

Note: If you choose not to customize banners for your generated code, the default
template is used for code generation.

CGT File Structure

A CGT file consists of 13 optional sections.

42 Build Configuration for Code Generation from MATLAB Code

42-10

File Banner Section

Contains comments and tokens for use in generating a custom file banner.

Function Banner Section

Contains comments and tokens for use in generating a custom function banner.

Shared Utility Function Banner

Contains comments and tokens for use in generating custom banners for shared utility
functions.

File Trailer Section

Contains comments for use in generating a custom trailer banner.

Include Files Banner

Contains comments for use in generating a custom banner for the include files section.

Type Definitions

Contains comments for use in generating a custom banner for the type definitions
section.

Named Constants

Contains comments for use in generating a custom banner for the named constants
section.

Variable Declarations

Contains comments for use in generating a custom banner for the variable declarations
section.

Variable Definitions

Contains comments for use in generating a custom banner for the variable definitions
section.

Function Declarations

Contains comments for use in generating a custom banner for the function declarations
section.

 Code Generation Template Files for MATLAB

42-11

Function Definitions

Contains comments for use in generating a custom banner for the function definitions
section.

Custom Source Code

Contains comments for use in generating a custom banner for the custom source code
section.

Custom Header Code

Contains comments for use in generating a custom banner for the custom header code
section.

Components of the CGT File Sections

Each CGT file section is defined by open and close tags.

CGT File Section Open Tag Close Tag

“File Banner” on page
42-14

<FileBanner> </FileBanner>

“Function Banner
Section” on page
42-10

<FunctionBanner> </FunctionBanner>

“Shared Utility Function
Banner” on page
42-10

<SharedUtilityBanner> </SharedUtilityBanner>

“File Trailer Section” on
page 42-10

<FileTrailer> </FileTrailer>

“Include Files Banner” on
page 42-10

<IncludeFilesBanner> </IncludeFilesBanner>

“Type Definitions” on
page 42-10

<TypeDefinitionsBanner> </TypeDefinitionsBanner>

“Named Constants” on
page 42-10

<NamedConstantsBanner> </NamedConstantsBanner>

“Variable Declarations”
on page 42-10

<VariableDeclarationsBanner></

VariableDeclarationsBanner>

42 Build Configuration for Code Generation from MATLAB Code

42-12

CGT File Section Open Tag Close Tag

“Variable Definitions” on
page 42-10

<VariableDefinitionsBanner> </

VariableDefinitionsBanner>

“Function Declarations”
on page 42-10

<FunctionDeclarationsBanner></

FunctionDeclarationsBanner>

“Function Definitions” on
page 42-11

<FunctionDefinitionsBanner> </

FunctionDefinitionsBanner>

“Custom Source Code” on
page 42-11

<CustomSourceCodeBanner> </CustomSourceCodeBanner>

“Custom Header Code” on
page 42-11

<CustomHeaderCodeBanner> </CustomHeaderCodeBanner>

You can customize your banners by including tokens and comments between the open
and close tags for each section. Tokens are replaced with values in the generated code.
The following rules apply to tokens in your CGT file:

• You can have only one token per line.
• Token values must not contain a ‘\t’ for formatting.

Note: In the contents of your banner, C comment indicators, '/*' or '*/', can introduce an
error in the generated code.

An open tag includes tag attributes. Enclose the value of the attribute in double quotes.
The attributes available for an open tag are:

• width: specifies the width of the file or function banner comments in the generated
code. The default value is 80.

• style: specifies the boundary for the file or function banner comments in the
generated code.

The open tag syntax is:

<OpenTag style = “style_value” width = “num_width”>

There are five options for the banner style. The CommentStyle and TargetLang
configuration object properties determine the use of C or C++ comment style. The built-in
style options for the style attribute are:

 Code Generation Template Files for MATLAB

42-13

• classic

Using C style comments

/* single line comments */

/*

 * multiple line comments

 * second line

 */

Using C++ style comments

// single line comments

//

// multiple line comments

// second line

//

• box

Using C style comments

/**/

/* banner contents */

/**/

Using C++ style comments

//

// banner contents //

//

• open_box

Using C style comments

/**

 * banner contents

 **/

Using C++ style comments

//

// banner contents

42 Build Configuration for Code Generation from MATLAB Code

42-14

//

• doxygen

Using C style comments

/** single line comments */

/**

 * multiple line comments

 * second line

 */

Using C++ style comments

///single line comments

///

/// multiple line comments

///second line

///

• doxygen_qt

Using C style comments

/*! single line comments */

/*!

 * multiple line comments

 * second line

 */

Using C++ style comments

//!single line comments

//!

//! multiple line comments

//!second line

//!

File Banner

This section contains comments and tokens for use in generating a custom file banner
that precedes the generated C and C++ code. If you omit the file banner section from the

 Code Generation Template Files for MATLAB

42-15

CGT file, the code generation software does not generate a file banner in the generated
code. The file banner section provided in the default CGT file is:
%%

%% Custom File Banner section (optional)

%% Customize File banners by using either custom tokens or the following

%% predefined tokens:

%% %<FileName>, %<MATLABCoderVersion>, %<EmbeddedCoderVersion>

%% %<SourceGeneratedOn>, %<HardwareSelection>, %<OutputType>

%%

%% You can also use "custom tokens" in all of the sections below. See the

%% documentation center for more details.

%%

<FileBanner style="classic">

File: %<FileName>

MATLAB Coder version : %<MATLABCoderVersion>

C/C++ source code generated on : %<SourceGeneratedOn>

</FileBanner>

Summary of Tokens for File Banner Generation

FileName Name of the generated file (for example, "kalman.c")
SourceGeneratedOn Time stamp of generated file
MATLABCoderVersion Version of MATLAB Coder
EmbeddedCoderVersion Version of Embedded Coder
HardwareSelection Selected target
OutputType Type of output (for example, lib, exe, or dll)

Function Banner

This section contains comments and tokens for use in generating a custom function
banner that precedes a generated C or C++ function. If you omit the function banner
section from the CGT file, the code generation software does not generate function
banners. The function banner section provided in the default CGT file is:
%%%

%% Custom function banner section (optional)

%% Customize function banners by using the following predefined tokens:

%% %<FunctionName>, %<FunctionDescription>

%% %<Arguments>, %<ReturnType>

%%

<FunctionBanner style="classic">

%<FunctionDescription>

Arguments : %<Arguments>

Return Type : %<ReturnType>

%</FunctionBanner>

42 Build Configuration for Code Generation from MATLAB Code

42-16

Summary of Tokens for Function Banner Generation

FunctionName Name of function
FunctionDescription Short abstract about the function
Arguments List of function arguments
ReturnType Return type of function

Shared Utility Banner

This section contains comments and tokens for use in generating a custom shared utility
function banner that precedes a generated C or C++ shared utility function. If you
omit the shared utility function banner section from the CGT file, the code generation
software does not generate shared utility function banners. The shared utility function
banner section provided in the default CGT file is:
%%

%% Custom Shared Utility Function Banner section (optional)

%% Customize shared utility function banners by using the following

%% predefined tokens:

%% %<FunctionName>, %<FunctionDescription>

%% %<Arguments>, %<ReturnType>

%%

<SharedUtilityBanner style="classic">

Arguments : %<Arguments>

Return Type : %<ReturnType>

</SharedUtilityBanner>

Summary of Tokens for Shared Utility Function Banner Generation

FunctionName Name of function
FunctionDescription Short abstract about the function
Arguments List of function arguments
ReturnType Return type of function

File Trailer

The file trailer section contains comments for generating a custom file trailer that follows
the generated C or C++ code. If you omit the file trailer section from the CGT file, the
code generation software does not generate a file trailer. The file trailer section provided
in the default CGT file is:
%%%

%% Custom file trailer section (optional)

%% You can use any of the predefined tokens used for File Banner

 Code Generation Template Files for MATLAB

42-17

%%

<FileTrailer style="classic">

File trailer for %<FileName>

[EOF]

</FileTrailer>

Tokens for the file banner are available for the file trailer. See Summary of Tokens for
File Banner Generation.

Include Files Banner

The include files banner section contains comments for generating a custom banner
that precedes the include files section in the generated code. If you omit the include
files banner section from the CGT file, the code generation software does not generate a
banner for this section. The include files banner section provided in the default CGT file
is:

<IncludeFilesBanner style="classic">

Include Files

</IncludeFilesBanner>

Type Definitions Banner

The type definitions banner section contains comments for generating a custom banner
that precedes the type definitions section in the generated code. If you omit the type
definitions banner section from the CGT file, the code generation software does not
generate a banner for this section. The type definitions banner section provided in the
default CGT file is:

<TypeDefinitionsBanner style="classic">

Type Definitions

</TypeDefinitionsBanner>

Named Constants Banner

The named constants banner section contains comments for generating a custom banner
that precedes the named constants section in the generated code. If you omit the named
constants banner section from the CGT file, the code generation software does not
generate a banner for this section. The named constants banner section provided in the
default CGT file is:

<NamedConstantsBanner style="classic">

Named Constants

</NamedConstantsBanner>

42 Build Configuration for Code Generation from MATLAB Code

42-18

Variable Declarations

The variable declarations banner section contains comments for generating a custom
banner that precedes the variable declarations section in the generated code. If you omit
the variable declarations banner section from the CGT file, the code generation software
does not generate a banner for this section. The variable declarations banner section
provided in the default CGT file is:

<VariableDeclarationsBanner style="classic">

Variable Declarations

</VariableDeclarationsBanner>

Variable Definitions

The variable definitions banner section contains comments for generating a custom
banner that precedes the variable definitions section in the generated code. If you omit
the variable definitions banner section from the CGT file, the code generation software
does not generate a banner for this section. The variable definitions banner section
provided in the default CGT file is:

<VariableDefinitionsBanner style="classic">

Variable Definitions

</VariableDefinitionsBanner>

Function Declarations

The function declarations banner section contains comments for generating a custom
banner that precedes the function declarations section in the generated code. If you omit
the function declarations banner section from the CGT file, the code generation software
does not generate a banner for this section. The function declarations banner section
provided in the default CGT file is:

<functionDeclarationsBanner style="classic">

Function Declarations

</FunctionDeclarationsBanner>

Function Definitions

The function definitions banner section contains comments for generating a custom
banner that precedes the function definitions section in the generated code. If you omit
the function definitions banner section from the CGT file, the code generation software
does not generate a banner for this section. The function definitions banner section
provided in the default CGT file is:

 Code Generation Template Files for MATLAB

42-19

<FunctionDefinitionsBanner style="classic">

Function Definitions

</FunctionDefinitionsBanner>

Custom Source Code

The custom source code banner section contains comments for generating a custom
banner that precedes the custom source code section in the generated code. If you omit
the custom source code banner section from the CGT file, the code generation software
does not generate a banner for this section. The custom source code banner section
provided in the default CGT file is:

<CustomSourceCodeBanner style="classic">

Custom Source Code

</CustomSourceCodeBanner>

Customer Header Code

The custom header code banner section contains comments for generating a custom
banner that precedes the custom header code section in the generated code. If you omit
the custom header code banner section from the CGT file, the code generation software
does not generate a banner for this section. The custom header code banner section
provided in the default CGT file is:

<CustomHeaderCodeBanner style="classic">

Custom Header Code

</CustomHeaderCodeBanner>

42 Build Configuration for Code Generation from MATLAB Code

42-20

Customize Generated Identifiers

In this section...

“Customize Identifiers Using the MATLAB Coder App” on page 42-20
“Customize Generated Identifiers Using the Command Line Interface” on page 42-21

If you have an Embedded Coder license, you can customize the identifiers that the
MATLAB Coder software generates in the C/C++ code. To customize generated
identifiers, specify the identifier format parameters in the project build settings or the
embedded code configuration object. For each parameter, enter a macro string. The
code generation software expands the macro string and includes it in the generated
identifiers.

The macro string can include:

• Valid C or C++ language identifiers (a-z, A-Z, _, 0–9).
• The tokens listed in the following table. $M is required.

Token Description

$M Insert name mangling string to avoid naming collisions.

Required.
$N Insert name of the object (global variable, global type, local

function, local temporary variable, or constant macro) for which
the identifier is generated.

Improves readability of generated code.
$R Insert root project name into identifier, replacing unsupported

characters with the underscore (_) character.

Customize Identifiers Using the MATLAB Coder App

1 On the Generate Code page, to open the Generate dialog box, click the Generate

arrow .
2 Set Build type to one of the following:

• Source Code

 Customize Generated Identifiers

42-21

• Static Library (.lib)

• Dynamic Library (.dll)

• Executable (.exe)

3 Click More Settings.
4 On the Code Appearance tab, under Identifier Format, enter macros for the

parameters that you want to customize:

Parameter Default Macro

Global variables MN

Global types MN

Field name of global types MN

Local functions MN

Local temporary variables MN

Constant macros MN

EMX Array Types emxArray_MN

EMX Array Utility Functions emxMN

For example, suppose that Global variables has the value glob_MN. For a global
variable named g, when name mangling is not required, the generated identifier is
glob_g. If name mangling is required, the generated identifier includes the name
mangling string.

Customize Generated Identifiers Using the Command Line Interface

1 Create a code configuration object for 'lib', 'dll', or 'exe'. For example:

cfg = coder.config('lib','ecoder',true); % or dll or exe

2 Define macros for the parameters that you want to customize.

Parameter Description Default Macro

CustomSymbolStrGlobalVar Global variables 'MN'

CustomSymbolStrType Global types 'MN'

CustomSymbolStrField Field name of global types 'MN'

CustomSymbolStrFcn Local functions 'MN'

42 Build Configuration for Code Generation from MATLAB Code

42-22

Parameter Description Default Macro

CustomSymbolStrTmpVar Local temporary variables 'MN'

CustomSymbolStrMacro Constant macros 'MN'

CustomSymbolStrEMXArray EMX Array Types 'emxArray_$M

$N'

CustomSymbolStrEMXArrayFcnEMX Array Utility Functions 'emxMN'

For example:

cfg.CustomSymbolStrGlobalVar = 'glob_MN';

For a global variable named g, when name mangling is not required, the generated
identifier is glob_g. If name mangling is required, the generated identifier includes the
name mangling string.

 Control Signed Left Shifts in Generated Code

42-23

Control Signed Left Shifts in Generated Code

In this section...

“Control Signed Left Shifts Using the MATLAB Coder App” on page 42-23
“Control Signed Left Shifts Using the Command-Line Interface” on page 42-23

If you have an Embedded Coder license, you can control whether MATLAB Coder
replaces multiplications by powers of two with signed left bitwise shifts. Some coding
standards, such as MISRA, do not allow bitwise operations on signed integers.

By default, MATLAB Coder replaces multiplication by powers of two with signed
left shifts. Here is an example of generated C code that uses a signed left shift for
multiplication by eight.

i <<= 3;

To increase the likelihood of generating MISRA-C:2004 compliant code, disable the
replacement of multiplication by powers of two with signed left shifts. Here is an example
of generated C code that does not use a signed left shift for multiplication by eight:

i = i * 8;

Control Signed Left Shifts Using the MATLAB Coder App

1 On the Generate Code page, to open the Generate dialog box, click the Generate

arrow .
2 Set Build type to one of the following:

• Source Code

• Static Library (.lib)

• Dynamic Library (.dll)

• Executable (.exe)

3 Click More Settings.
4 On the Code Appearance tab, select or clear the Use signed shift left for fixed-

point operations and multiplication by powers of 2 check box.

Control Signed Left Shifts Using the Command-Line Interface

1 Create a code configuration object for 'lib', 'dll', or 'exe'. For example:

42 Build Configuration for Code Generation from MATLAB Code

42-24

cfg = coder.config('lib','ecoder',true); % or dll or exe

2 Set the EnableSignedLeftShifts property to true or false. For example:

cfg.EnableSignedLeftShifts = false;

 Control Data Type Casts in Generated Code

42-25

Control Data Type Casts in Generated Code

In this section...

“Specify Casting Mode Using the MATLAB Coder App” on page 42-26
“Specify Casting Mode Using the Command-Line Interface” on page 42-27

If you have an Embedded Coder license, you can control data type casts in code generated
from MATLAB code. You can specify one of the following casting modes.

Casting Mode Description

Nominal Nominal casting mode is the default
casting mode. Generated C/C++ code
uses the default C compiler data type
casting. When you do not have special data
type information requirements, choose
this option. Here is an example of code
generated using nominal casting mode:

short addone(short x)

{

 int i0;

 i0 = x + 1;

 if (i0 > 32767) {

 i0 = 32767;

 }

 return (short)i0;

}

Standards Compliant Generated C/C++ code has data type
casts that conform to MISRA standards.
The MISRA data type casting eliminates
common MISRA standard violations,
including address arithmetic and
assignment. It reduces 10.1, 10.2, 10.3,
and 10.4 violations. Here is an example of
code generated using standards-compliant
casting mode:

short addone(short x)

42 Build Configuration for Code Generation from MATLAB Code

42-26

Casting Mode Description
{

 int i0;

 i0 = (int)x + (int)1;

 if (i0 > (int)32767) {

 i0 = (int)32767;

 }

 return (short)i0;

}

Explicit Generated C/C++ code has explicit data
type casts. Explicit data type casts
provide information about the amount of
memory that the variable uses and the
level of precision for calculations using
the variable. Here is an example of code
generated using explicit casting mode:

short addone(short x)

{

 int i0;

 i0 = (int)x + 1;

 if (i0 > 32767) {

 i0 = 32767;

 }

 return (short)i0;

}

Specify Casting Mode Using the MATLAB Coder App

1 On the Generate Code page, to open the Generate dialog box, click the Generate

arrow .
2 Set Build type to one of the following:

• Source Code

• Static Library (.lib)

• Dynamic Library (.dll)

• Executable (.exe)

3 Click More Settings.

 Control Data Type Casts in Generated Code

42-27

4 On the All Settings tab, under Advanced, set Casting mode to one of the
following values:

• Nominal

• Standards Compliant

• Explicit

Specify Casting Mode Using the Command-Line Interface

1 Create a code configuration object for 'lib', 'dll', or 'exe'. For example:

cfg = coder.config('lib','ecoder',true); % or dll or exe

2 Set the CastingMode property to one of the following values:

• 'Nominal'

• 'Standards'

• 'Explicit'

For example:

cfg.IndentStyle = 'Standards';

43

Code Replacement for MATLAB Code

• “What Is Code Replacement?” on page 43-2
• “Code You Can Replace from MATLAB Code” on page 43-4
• “Code Replacement Libraries” on page 43-15
• “Code Replacement Terminology” on page 43-17
• “Code Replacement Limitations” on page 43-20
• “Replace Code Generated from MATLAB Code” on page 43-21
• “Choose a Code Replacement Library” on page 43-24

43 Code Replacement for MATLAB Code

43-2

What Is Code Replacement?

Code replacement is a technique to change the code that the code generator produces for
functions and operators to meet application code requirements. For example, you can
replace generated code to meet requirements such as:

• Optimization for a specific run-time environment, including, but not limited to,
specific target hardware.

• Integration with existing application code.
• Compliance with a standard, such as AUTOSAR.
• Modification of code behavior, such as enabling or disabling nonfinite or inline

support.
• Application- or project-specific code requirements, such as:

• Elimination of math.h.
• Elimination of system header files.
• Elimination of calls to memcpy or memset.
• Use of BLAS.
• Use of a specific BLAS.

To apply this technique, configure the code generator to apply a code replacement
library (CRL) during code generation. By default, the code generator does not apply a
code replacement library. You can choose from the following libraries that MathWorks
provides:

• GNU C99 extensions—GNU6 gcc math library, which provides C99 extensions as
defined by compiler option -std=gnu99.

• Intel IPP for x86-64 (Windows)—Generates calls to the Intel Performance Primitives
(IPP) library for the x86-64 Windows platform.

• Intel IPP/SSE with GNU99 extensions for x86-64 (Windows)—GNU libraries for Intel
Performance Primitives (IPP) and Streaming SIMD Extensions (SSE), with GNU C99
extensions.

• Intel IPP for x86/Pentium (Windows)—Generates calls to the Intel Performance
Primitives (IPP) library for the x86/Pentium Windows platform.
6. GNU is a registered trademark of the Free Software Foundation.

 What Is Code Replacement?

43-3

• Intel IPP/SSE with GNU99 extensions for x86/Pentium (Windows)—Generates calls
to the GNU libraries for Intel Performance Primitives (IPP) and Streaming SIMD
Extensions (SSE), with GNU C99 extensions, for the x86/Pentium Windows platform.

• Intel IPP for x86-64 (Linux)—Generates calls to the Intel Performance Primitives
(IPP) library for the x86-64 Linux platform.

• Intel IPP/SSE with GNU99 extensions for x86-64 (Linux)—Generates calls to
the GNU libraries for Intel Performance Primitives (IPP) and Streaming SIMD
Extensions (SSE), with GNU C99 extensions, for the x86-64 Linux platform.

Libraries that include GNU99 extensions are intended for use with the GCC compiler. If
use one of those libraries with another compiler, generated code might not compile.

Depending on the product licenses that you have, other libraries might be available . If
you have an Embedded Coder license, you can view and choose from other libraries and
you can create custom code replacement libraries.

Code replacement is a technique to change the code that the code generator produces for
functions and operators to meet application code requirements. For example, you can
replace generated code to meet requirements such as:

• Optimization for a specific run-time environment, including, but not limited to,
specific target hardware.

• Integration with existing application code.
• Compliance with a standard, such as AUTOSAR.
• Modification of code behavior, such as enabling or disabling nonfinite or inline

support.
• Application- or project-specific code requirements, such as:

• Elimination of math.h.
• Elimination of system header files.
• Elimination of calls to memcpy or memset.
• Use of BLAS.
• Use of a specific BLAS.

To apply this technique, configure the code generator to apply a code replacement
library (CRL) during code generation. By default, the code generator does not apply a
code replacement library. You can choose from the following libraries that MathWorks
provides:

43 Code Replacement for MATLAB Code

43-4

• GNU C99 extensions—GNU7 gcc math library, which provides C99 extensions as
defined by compiler option -std=gnu99.

• Intel IPP for x86-64 (Windows)—Generates calls to the Intel Performance Primitives
(IPP) library for the x86-64 Windows platform.

• Intel IPP/SSE with GNU99 extensions for x86-64 (Windows)—GNU libraries for Intel
Performance Primitives (IPP) and Streaming SIMD Extensions (SSE), with GNU C99
extensions.

• Intel IPP for x86/Pentium (Windows)—Generates calls to the Intel Performance
Primitives (IPP) library for the x86/Pentium Windows platform.

• Intel IPP/SSE with GNU99 extensions for x86/Pentium (Windows)—Generates calls
to the GNU libraries for Intel Performance Primitives (IPP) and Streaming SIMD
Extensions (SSE), with GNU C99 extensions, for the x86/Pentium Windows platform.

• Intel IPP for x86-64 (Linux)—Generates calls to the Intel Performance Primitives
(IPP) library for the x86-64 Linux platform.

• Intel IPP/SSE with GNU99 extensions for x86-64 (Linux)—Generates calls to
the GNU libraries for Intel Performance Primitives (IPP) and Streaming SIMD
Extensions (SSE), with GNU C99 extensions, for the x86-64 Linux platform.

Libraries that include GNU99 extensions are intended for use with the GCC compiler. If
use one of those libraries with another compiler, generated code might not compile.

Depending on the product licenses that you have, other libraries might be available . If
you have an Embedded Coder license, you can view and choose from other libraries and
you can create custom code replacement libraries.

Related Examples
• “Replace Code Generated from MATLAB Code”
• “Choose a Code Replacement Library”

More About
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Limitations”

7. GNU is a registered trademark of the Free Software Foundation.

 Code You Can Replace from MATLAB Code

43-5

Code You Can Replace from MATLAB Code

In this section...

“About Code You Can Replace” on page 43-4
“Math Functions” on page 43-4
“Memory Functions” on page 43-9
“Operators” on page 43-10

About Code You Can Replace

Code that the code generator replaces depends on the code replacement library (CRL)
that you use. By default, the code generator does not apply a code replacement library.
Your choice of libraries is dependent on product licensing and whether you have access to
custom libraries.

For information on how to explore functions and operators that a code replacement
library supports, see “Choose a Code Replacement Library”. If you have an Embedded
Coder license and want to develop a custom code replacement library, see Code
Replacement Customization.

Math Functions

When generating C/C++ code from MATLAB code, depending on code replacement
libraries available in your development environment, you can configure the code
generator to replace instances of the following math functions with application-specific
implementations.

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

abs1 Floating point Scalar Real

acos Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

acosd Floating point Scalar
Vector
Matrix

Real
Complex

43 Code Replacement for MATLAB Code

43-6

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

acot Floating point Scalar
Vector
Matrix

Real
Complex

acotd Floating point Scalar
Vector
Matrix

Real
Complex

acoth Floating point Scalar
Vector
Matrix

Real
Complex

acsc Floating point Scalar
Vector
Matrix

Real
Complex

acscd Floating point Scalar
Vector
Matrix

Real
Complex

acsch Floating point Scalar
Vector
Matrix

Real
Complex

asec Floating point Scalar
Vector
Matrix

Real
Complex

asecd Floating point Scalar
Vector
Matrix

Real
Complex

asech Floating point Scalar
Vector
Matrix

Real
Complex

asin Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

 Code You Can Replace from MATLAB Code

43-7

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

asind Floating point Scalar
Vector
Matrix

Real
Complex

atan Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

atan2 Floating point Scalar
Vector
Matrix

Real

atan2d Floating point Scalar
Vector
Matrix

Real

atand Floating point Scalar
Vector
Matrix

Real
Complex

cos Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

ceil • Floating-point
• Scalar

• Floating-point
• Scalar

• Floating-point
• Scalar

cosd Floating point Scalar
Vector
Matrix

Real
Complex

cosh Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

cot Floating point Scalar
Vector
Matrix

Real
Complex

43 Code Replacement for MATLAB Code

43-8

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

cotd Floating point Scalar
Vector
Matrix

Real
Complex

coth Floating point Scalar
Vector
Matrix

Real
Complex

csc Floating point Scalar
Vector
Matrix

Real
Complex

cscd Floating point Scalar
Vector
Matrix

Real
Complex

csch Floating point Scalar
Vector
Matrix

Real
Complex

exp Floating point Scalar Real
fix Floating point Scalar Real
floor • Floating-point

• Scalar
• Floating-point
• Scalar

• Floating-point
• Scalar

hypot Floating point Scalar
Vector
Matrix

Real

ldexp Floating point Scalar Real
log Floating point Scalar

Vector
Matrix

Real
Complex

log10 Floating point Scalar
Vector
Matrix

Real
Complex

log2 Floating point Scalar
Vector
Matrix

Real
Complex

 Code You Can Replace from MATLAB Code

43-9

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

max Integer
Floating point

Scalar Real

min Integer
Floating point

Scalar Real

pow Floating point Scalar Real
rem Floating point Scalar Real
round Floating point Scalar Real
sec Floating point Scalar

Vector
Matrix

Real
Complex

secd Floating point Scalar
Vector
Matrix

Real
Complex

sech Floating point Scalar
Vector
Matrix

Real
Complex

sign Floating point Scalar Real
sin Floating point Scalar

Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

sind Floating point Scalar
Vector
Matrix

Real
Complex

sinh Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

sqrt Floating point Scalar Real

43 Code Replacement for MATLAB Code

43-10

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

tan Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

tand Floating point Scalar
Vector
Matrix

Real
Complex

tanh Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

1 Wrap on integer overflow only

Memory Functions

Depending on code replacement libraries available in your development environment,
you can configure the code generator to replace instances of the following memory
functions with application-specific implementations.

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

memcmp Void pointer (void*) Scalar
Vector
Matrix

Real
Complex

memcpy Void pointer (void*) Scalar
Vector
Matrix

Real
Complex

memset Void pointer (void*) Scalar
Vector
Matrix

Real
Complex

memset2zero Void pointer (void*) Scalar
Vector
Matrix

Real
Complex

 Code You Can Replace from MATLAB Code

43-11

Some target processors provide optimized functions to set memory to zero. Use the code
replacement library programming interface to replace the memset2zero function with
more efficient target-specific functions.

Operators

When generating C/C++ code from MATLAB code, depending on code replacement
libraries available in your development environment, you can configure the code
generator to replace instances of the following operators with application-specific
implementations.

Mixed data type support indicates you can specify different data types of different inputs.

Operator Key Data Type
Support

Scalar, Vector,
Matrix Support

Real,
Complex
Support

Addition (+) RTW_OP_ADD Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Subtraction (-) RTW_OP_MINUS Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Multiplication
(*)1

RTW_OP_MUL Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Division (/) RTW_OP_DIV Integer
Floating point
Fixed-point
Mixed

Scalar Real
Complex

Data type
conversion (cast)

RTW_OP_CAST Integer
Floating
point2

Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Shift left (<<) RTW_OP_SL Integer Scalar Real

43 Code Replacement for MATLAB Code

43-12

Operator Key Data Type
Support

Scalar, Vector,
Matrix Support

Real,
Complex
Support

Fixed-point
Mixed

Vector
Matrix

Shift right
arithmetic (>>)3

RTW_OP_SRA Integer
Fixed-point
Mixed

Scalar
Vector
Matrix

Real

Shift right logical
(>>)

RTW_OP_SRL Integer
Fixed-point
Mixed

Scalar
Vector
Matrix

Real

Element-
wise matrix
multiplication
(.*)4

RTW_OP_ELEM_MUL Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Complex
conjugation

RTW_OP_CONJUGATE Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Transposition
(.')

RTW_OP_TRANS Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Hermitian
(complex
conjugate)
transposition (')

RTW_OP_HERMITIAN Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Multiplication
with
transposition1

RTW_OP_TRMUL Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Multiplication
with Hermitian
transposition1

RTW_OP_HMMUL Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

 Code You Can Replace from MATLAB Code

43-13

Operator Key Data Type
Support

Scalar, Vector,
Matrix Support

Real,
Complex
Support

Greater than (>) RTW_OP_GREATER_

THAN

Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Greater than or
equal(>=)

RTW_OP_GREATER_

THAN_OR_EQUAL

Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Less than (<) RTW_OP_LESS_THAN Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Less than or
equal (<=)

RTW_OP_LESS_THAN_

OR_EUQAL

Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Equal (==) RTW_OP_EUQAL Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Not equal (!=) RTW_OP_NOT_EUQAL Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

1 Can map to Basic Linear Algebra Subroutine (BLAS) multiplication functions.

2 Scaled floating point is not supported.

3 Code replacement libraries that provide arithmetic shift right implementations should
also provide logical shift right implementations, because some arithmetic shift rights
are converted to logical shift rights during code generation.

4 Use the multiplication (*) operator (RTW_OP_MUL) for scalar multiplication.

43 Code Replacement for MATLAB Code

43-14

Related Examples
• “Choose a Code Replacement Library”

More About
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Limitations”

 Code Replacement Libraries

43-15

Code Replacement Libraries

A code replacement library consists of one or more code replacement tables that specify
application-specific implementations of functions and operators. For example, a library
for a specific embedded processor specifies function and operator replacements that
optimize generated code for that processor.

A code replacement table contains one or more code replacement entries, with each entry
representing a potential replacement for a function or operator. Each entry maps a
conceptual representation of a function or operator to an implementation representation
and priority.

Table Entry
Component

Description

Conceptual
representation

Identifies the table entry and contains match criteria for the code
generator. Consists of:

• Function name or a key. The function name identifies most
functions. For operators and some functions, a string called
a key identifies a function or operator. For example, function
name 'cos' and operator key 'RTW_OP_ADD'.

• Conceptual arguments that observe code generator naming
('y1', 'u1', 'u2', ...), with corresponding I/O types (output or
input) and data types.

• Other attributes, such as an algorithm, fixed-point saturation,
and rounding modes, which identify matching criteria for the
function or operator.

43 Code Replacement for MATLAB Code

43-16

Table Entry
Component

Description

Implementation
representation

Specifies replacement code. Consists of:

• Function name. For example, 'cos_dbl' or 'u8_add_u8_u8')
• Implementation arguments, with corresponding I/O types

(output or input) and data types.
• Parameters that provide additional implementation details,

such as header and source file names and paths of build
resources.

Priority Defines the entry priority relative to other entries in the table. The
value can range from 0 to 100, with 0 being the highest priority. If
multiple entries have the same priority, the code generator uses the
first match with that priority.

When the code generator looks for a match in a code replacement library, it creates and
populates a call site object with the function or operator conceptual representation. If
a match exists, the code generator uses the matched code replacement entry populated
with the implementation representation and uses it to generate code.

The code generator searches the tables in a code replacement library for a match in the
order that the tables appear in the library. If the code generator finds multiple matches
within a table, the priority determines the match. The code generator uses a higher-
priority entry over a similar entry with a lower priority.

Related Examples
• “What Is Code Replacement?”
• “Replace Code Generated from MATLAB Code”
• “Choose a Code Replacement Library”

More About
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Terminology”

 Code Replacement Terminology

43-17

Code Replacement Terminology

Term Definition

Cache hit A code replacement entry for a function or operator,
defined in the specified code replacement library,
for which the code generator finds a match.

Cache miss A conceptual representation of a function or
operator for which the code generator does not find
a match.

Call site object Conceptual representation of a function or operator
that the code generator uses when it encounters
a call site for a function or operator. The code
generator uses the object to query the code
replacement library for a conceptual representation
match. If a match exists, the code generator returns
a code replacement object, fully populated with
the conceptual representation, implementation
representation, and priority, and uses that object to
generate replacement code.

Code replacement library One or more code replacement tables that specify
application-specific implementations of functions
and operators. When configured to use a code
replacement library, the code generator uses
criteria defined in the library to search for matches.
If a match is found, the code generator replaces
code that it generates by default with application-
specific code defined in the library.

Code replacement table One or more code replacement table entries.
Provides a way to group related or shared entries
for use in different libraries.

Code replacement entry Represents a potential replacement for a function
or operator. Maps a conceptual representation
of a function or operator to an implementation
representation and priority.

Conceptual argument Represents an input or output argument for a
function or operator being replaced. Conceptual
arguments observe naming conventions ('y1',

43 Code Replacement for MATLAB Code

43-18

Term Definition

'u1', 'u2', ...) and data types familiar to the code
generator.

Conceptual representation Represents match criteria that the code generator
uses to qualify functions and operators for
replacement. Consists of:

• Function or operator name or key
• Conceptual arguments with type, dimension,

and complexity specification for inputs and
output

•
Attributes, such as an algorithm and fixed-point
saturation and rounding modes

Implementation argument Represents an input or output argument for a C
or C++ replacement function. Implementation
arguments observe C/C++ name and data type
specifications.

Implementation representation Specifies C or C++ replacement function prototype.
Consists of:

• Function name (for example, 'cos_dbl' or
'u8_add_u8_u8')

• Implementation arguments specifying type,
type qualifiers, and complexity for the function
inputs and output

• Parameters that provide build information, such
as header and source file names and paths of
build resources and compile and link flags

Key A string that identifies a function or operator
that is being replaced. A function name or key
appears in the conceptual representation of a code
replacement entry. The key RTW_OP_ADD identifies
the addition operator.

 Code Replacement Terminology

43-19

Term Definition

Priority Defines the match priority for a code replacement
entry relative to other entries, which have the
same name and conceptual argument list, within
a code replacement library. The priority can
range from 0 to 100, with 0 being the highest
priority. The default is 100. If a library provides
two implementations for a function or operator, the
implementation with the higher priority shadows
the one with the lower priority.

More About
• “What Is Code Replacement?”
• “Code Replacement Libraries”

43 Code Replacement for MATLAB Code

43-20

Code Replacement Limitations

Code replacement verification — It is possible that code replacement behaves differently
than you expect. For example, data types that you observe in code generator input might
not match what the code generator uses as intermediate data types during an operation.
Verify code replacements by examining generated code.

Related Examples
• “Replace Code Generated from MATLAB Code”

More About
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Libraries”

 Replace Code Generated from MATLAB Code

43-21

Replace Code Generated from MATLAB Code

This example shows how to replace generated code using a code replacement library.
Code replacement is a technique for changing the code that the code generator produces
for functions and operators to meet application code requirements.

Prepare for Code Replacement

1 Make sure that you have installed required software. Required software is:

• MATLAB
• MATLAB Coder
• C compiler

Some code replacement libraries available in your development environment require
Embedded Coder.

For instructions on installing MathWorks products, see the MATLAB installation
documentation. If you have installed MATLAB and want to see which other
MathWorks products are installed, in the MATLAB Command Window, enter ver.

2 Identify an existing MATLAB function or create a new MATLAB function for which
you want the code generator to replace code.

Choose a Code Replacement Library

If you are not sure which library to use, explore available libraries.

Configure Code Generator To Use Code Replacement Library

1 Configure the code generator to apply a code replacement library during code
generation for the MATLAB function. Do one of the following:

• In a project, on the Hardware tab, set the Code Replacement Library
parameter.

• In a code configuration object, set the CodeReplacementLibrary parameter.
2 Configure the code generator to produce only code. Before you build an executable,

verify your code replacements. Do one of the following:

• In a project, in the Generate dialog box, set the Generate code only
parameter.

43 Code Replacement for MATLAB Code

43-22

• In a code configuration object, set the GenCodeOnly parameter.

Include Code Replacement Information In Code Generation Report

If you have an Embedded Coder license, you can configure the code generator to include a
code replacement section in the code generation report. The additional information helps
you verify code replacements.

1 Configure the code generator to generate a report.

• In a project, on the Debugging tab, set the Always create a code generation
report parameter.

• In a code configuration object, set the GenerateReport parameter.
2 Include the code replacement section in the report.

• In a project, on the Debugging tab, set the Code replacements parameter.
• In a code configuration object, set the GenerateCodeReplacementReport

parameter.

Generate Replacement Code

Generate C/C++ code from the MATLAB code. If you configured the code generator to
produce a report, generate a code generation report. For example, in the MATLAB Coder
app, on the Generate Code page, click Generate. Or, at the command prompt, enter:

codegen -report myFunction -args {5} -config cfg

The code generator produces the code and displays the report.

Verify Code Replacements

Verify code replacements by examining the generated code. Code replacement can
sometimes behave differently than you expect. For example, data types that you
observe in the code generator input might not match what the code generator uses as
intermediate data types during an operation.

Related Examples
• “Choose a Code Replacement Library”
• “Configure Build Settings”
• “Verify Code Replacements”

 Replace Code Generated from MATLAB Code

43-23

More About
• “What Is Code Replacement?”
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Limitations”

External Web Sites
• Supported Compilers

http://www.mathworks.com/support/compilers/current_release/

43 Code Replacement for MATLAB Code

43-24

Choose a Code Replacement Library

In this section...

“About Choosing a Code Replacement Library” on page 43-24
“Explore Available Code Replacement Libraries” on page 43-24
“Explore Code Replacement Library Contents” on page 43-32

About Choosing a Code Replacement Library

By default, the code generator does not use a code replacement library.

If you are considering using a code replacement library:

1 Explore available libraries. Identify one that best meets your application needs.

• Consider the lists of application code replacement requirements and libraries that
MathWorks provides in “What Is Code Replacement?”.

• See “Explore Available Code Replacement Libraries”.
2 Explore the contents of the library. See “Explore Code Replacement Library

Contents”.

If you do not find a suitable library and you have an Embedded Coder license, you can
create a custom code replacement library.

Explore Available Code Replacement Libraries

You can select the code replacement library to use for code generation in a project, on the
Hardware tab, by setting the Code Replacement Library parameter. Alternatively,
in a code configuration object, set the CodeReplacementLibrary parameter.

Explore Code Replacement Library Contents

Use the Code Replacement Viewer to explore the content of a code replacement library.

1 At the command prompt, type crviewer.
>> crviewer

 Choose a Code Replacement Library

43-25

The viewer opens. To view the content of a specific library, specify the name of the
library as an argument in single quotes. For example:
>> crviewer('GNU C99 extensions')

2 In the left pane, select the name of a library. The viewer displays information about
the library in the right pane.

3 In the left pane, expand the library, explore the list of tables it contains, and select a
table from the list. In the middle pane, the viewer displays the function and operator
entries that are in that table, along with abbreviated information for each entry.

4 In the middle pane, select a function or operator. The viewer displays information
from the table entry in the right pane.

If you select an operator entry that specifies net slope fixed-point parameters
(instantiated from entry class RTW.TflCOperationEntryGenerator or
RTW.TflCOperationEntryGenerator_NetSlope), the viewer displays an
additional tab that shows fixed-point settings.

See Code Replacement Viewer for details on what the viewer displays.

Related Examples
• “Replace Code Generated from MATLAB Code”

More About
• “What Is Code Replacement?”
• “Code You Can Replace from MATLAB Code”
• “Code Replacement Libraries”
• “Code Replacement Terminology”
• “Code Replacement Limitations”

44

Verification of Code Generated from
MATLAB Code

• “Highlight Potential Data Type Issues in a Report” on page 44-2
• “Find Potential Data Type Issues in Generated Code” on page 44-5

44 Verification of Code Generated from MATLAB Code

44-2

Highlight Potential Data Type Issues in a Report

In this section...

“Enable Highlight Option Using the MATLAB Coder App” on page 44-3
“Enable Highlight Option Using the Command Line Interface” on page 44-4

If you have an Embedded Coder license, you have the option to highlight potential data
types issues in the code generation report for standalone code generated from MATLAB
code. If you enable this option, the Highlight section on the MATLAB Code tab lists
the number of single-precision and double-precision operations in the generated C/C+
+ code. If you have a Fixed-Point Designer license, it also lists the number of expensive
fixed-point operations.

To highlight the MATLAB code that corresponds to the potential data type issues:

1 Select the check box for the type of operation that you want to highlight.
2 Select the function that you want to highlight.

The report highlights the operations in the selected function. The following example
report highlights MATLAB code that results in double-precision operations in the
generated code.

 Highlight Potential Data Type Issues in a Report

44-3

The option to highlight potential data type issues is disabled by default.

Enable Highlight Option Using the MATLAB Coder App

1 On the Generate Code page, to open the Generate dialog box, click the Generate

arrow .
2 Set Build type to one of the following:

• Source Code

• Static Library (.lib)

• Dynamic Library (.dll)

44 Verification of Code Generated from MATLAB Code

44-4

• Executable (.exe)

3 Click More Settings.
4 On the Debugging tab, select the Always create a code generation report and

Highlight potential data type issues check boxes.

Enable Highlight Option Using the Command Line Interface

1 Create an embedded code configuration object for 'lib', 'dll', or 'exe':

cfg = coder.config('lib','ecoder',true); % or dll or exe

2 Set the GenerateReport and HighlightPotentialDataTypeIssues
configuration object properties to true:

cfg.GenerateReport = true;

cfg.HighlightPotentialDataTypeIssues = true;

Related Examples
• “Find Potential Data Type Issues in Generated Code”

 Find Potential Data Type Issues in Generated Code

44-5

Find Potential Data Type Issues in Generated Code
In this section...

“Data Type Issues Overview” on page 44-5
“Enable Highlighting of Potential Data Type Issues” on page 44-5
“Find and Address Cumbersome Operations” on page 44-6
“Find and Address Expensive Rounding” on page 44-8
“Find and Address Expensive Comparison Operations” on page 44-9

Data Type Issues Overview

When you generate C code from MATLAB code, you can highlight potential data type
issues in the C code generation report. The report highlights MATLAB code that requires
single-precision, double-precision, or expensive fixed-point operations. The expensive
fixed-point operations checks require a Fixed-Point Designer license.

• The double-precision check highlights expressions that result in a double-precision
operation. Manual inspection of code to find unwanted doubles can be time-consuming
and error prone.

• The single-precision check highlights expressions that result in a single operation.
• The expensive fixed-point operations check identifies optimization opportunities

for fixed-point code. It highlights expressions in the MATLAB code that require
cumbersome multiplication or division, or expensive rounding. For more information
on optimizing generated fixed-point code, see “Tips for Making Generated Code More
Efficient”.

Enable Highlighting of Potential Data Type Issues

Procedure 44.1. Enable the highlight option using the MATLAB Coder app

1 On the Generate Code page, to open the Generate dialog box, click the Generate

arrow .
2 Set Build type to one of the following:

• Source Code

• Static Library (.lib)

• Dynamic Library (.dll)

44 Verification of Code Generated from MATLAB Code

44-6

• Executable (.exe)

3 Click More Settings.
4 On the Debugging tab, select the Always create a code generation report and

Highlight potential data type issues check boxes.

Procedure 44.2. Enable the highlight option using the command-line interface

1 Create an embedded code configuration object for 'lib', 'dll', or 'exe':

cfg = coder.config('lib','ecoder',true); % or dll or exe

2 Set the GenerateReport and HighlightPotentialDataTypeIssues
configuration object properties to true:

cfg.GenerateReport = true;

cfg.HighlightPotentialDataTypeIssues = true;

Find and Address Cumbersome Operations

Cumbersome operations usually occur due to an insufficient range of output. Avoid
inputs to a multiply or divide operation that have word lengths larger than the base
integer type of your processor. Software can process operations with larger word lengths,
but this approach requires more code and runs slower.

This example requires Embedded Coder and Fixed-Point Designer licenses to run.

1 Create the function myMul.

function out = myMul(in1, in2)

 out = in1 * in2;

end

2 Generate code for myMul.

cfg = coder.config('lib');

cfg.GenerateReport = true;

cfg.HighlightPotentialDataTypeIssues = true;

codegen -config cfg myMul -args {fi(1, 1, 33, 4), fi(1, 1, 32, 4)}

3 Click View report.
4 In the Code Generation Report, on the left pane, click the MATLAB code tab.
5 Expand the Highlight section and select the Expensive fixed-point operations

check box.

 Find Potential Data Type Issues in Generated Code

44-7

The in1 * in2 operation is highlighted in the HTML report. On the bottom pane,
click the Variables tab. The word length of in1 is 33, and the word length of in2
is 32. Hovering over the highlighted expression reveals that the product has a
word length of 65, which is larger than the target word length of 64. Therefore, the
software detects a cumbersome operation.

To resolve this issue, modify the data types of in1 and in2 so the word length of the
product does not exceed the target word length.

44 Verification of Code Generated from MATLAB Code

44-8

Find and Address Expensive Rounding

Traditional handwritten code, especially for control applications, almost always uses
"no effort" rounding. For example, for unsigned integers and two's complement signed
integers, shifting right and dropping the bits is equivalent to rounding to floor. To get
results comparable to, or better than, what you expect from traditional handwritten code,
use the floor rounding method.

This example requires Embedded Coder and Fixed-Point Designer licenses to run.

1 Create the function myRounding.

function [quot] = myRounding(in1, in2)

 quot = in1 / in2;

end

2 Generate code for myRounding.

cfg = coder.config('lib');

cfg.GenerateReport = true;

cfg.HighlightPotentialDataTypeIssues = true;

codegen -config cfg myRounding -args {fi(1, 1, 32, 2), fi(1, 1, 32, 4)}

3 Click View report.
4 In the Code Generation Report, on the left pane, click the MATLAB code tab.
5 Expand the Highlight section and select the Expensive fixed-point operations

check box.

 Find Potential Data Type Issues in Generated Code

44-9

This division operation uses the default rounding method, nearest. Changing the
rounding method to Floor provides a more efficient implementation.

Find and Address Expensive Comparison Operations

Comparison operations generate extra code when a casting operation is required to do
the comparison. For example, before comparing an unsigned integer to a signed integer,
one of the inputs must be cast to the signedness of the other. Consider optimizing the
data types of the input arguments so that a cast is not required in the generated code.

This example requires Embedded Coder and Fixed-Point Designer licenses to run.

44 Verification of Code Generated from MATLAB Code

44-10

1 Create the function myRelop.

function out = myRelop(in1, in2)

 out = in1 > in2;

end

2 Generate code for myRelop.

cfg = coder.config('lib');

cfg.GenerateReport = true;

cfg.HighlightPotentialDataTypeIssues = true;

codegen -config cfg myRelop -args {fi(1, 1, 32, 1.5, 9, 17), fi(1, 0, 32, 16)}

3 Click View report.
4 In the Code Generation Report, on the left pane, click the MATLAB code tab.
5 Expand the Highlight section and select the Expensive fixed-point operations

check box.

 Find Potential Data Type Issues in Generated Code

44-11

The first input argument, in1, is signed with slope bias scaling, while in2 is
unsigned with binary point scaling. Extra code is generated because a cast must
occur before the two inputs can be compared.

Change the signedness and scaling of one of the inputs to generate more efficient
code.

